文档库 最新最全的文档下载
当前位置:文档库 › 超声波加工技术

超声波加工技术

超声波加工技术
超声波加工技术

超声波加工技术

1.绪论

人耳能感受到的声波频率在20—20000HZ范围内,声波频率超过20000HZ被称为超声波。超声波加工(Ultrasonic Machining简称USM)是近几十年来发展起来的一种加工方法,它是指给工具或工件沿一定方向施加超声频振动进行加工的方法,或利用超声振动的工具在有磨料的液体介质或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀来去除材料,又或利用超声振动使工件相互结合的加工方法。它弥补了电火花加工的电化学加工的不足。电火花加工和电化学加工一般只能加工导电材料,不能加工不导电的非金属材料。而超声波加工不仅能加工硬脆金属材料,而且更适合于加工不导电的硬脆非金属材料,如玻璃、陶瓷、半导体锗和硅片等。同时超声波还可用于清洗、焊接和探伤等。

1.1超声波加工的发展状况

超声波加工是利用超声振动的工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。超声加工系统由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。超声波发生器的作用是将220V或380V的交流电转换成超声频电振荡信号;换能器的作用是将超声频电振荡信号转换为超声频机械振动;变幅杆的作用是将换能器的振动振幅放大;超声波的机械振动经变幅杆放大后传给工具,使工具以一定的能量与工件作用,进行加工。

超声加工技术是超声学的一个重要分支。超声加工技术是伴随着超声学的发展而逐渐发展的。

早在1830年,为探讨人耳究竟能听到多高的频率,F.Savrt曾用一多齿的齿轮,第一次人工产生了2.44

HZ的超声波,1876年加尔顿的气哨实验产生的超声波的频

10

率达到了34

?HZ.这些实验使人们开始对超

10

?HZ,后改用氢气时,其频率达到了84

10

声波的性质有了一定的认识。

对超声波的诞生起重大推进作用的是1912年豪华客轮泰坦尼克号在首航中碰撞冰山后沉没,这个当时震惊世界的悲剧促使科学家提出用声学方法来探测冰山。这些活动启发了第一次世界大战期间侦查德国潜艇的紧张研究。1916年以法国著名物理学家郎之万为首的科学家开始研究产生和运用水下超声作为侦测手段,并在1918年发现压电效应可使石英板振动,制成了可用作超声源的石英压电振荡器。这就是现代超声学的开端。

1927年美国物理学家伍德和卢米斯最早做了超生加工试验,利用强烈的超声振动对玻璃板进行雕刻和快速钻孔,但当时并未应用在工业上。1951年,美国的科恩制成了第一台实用的超生加工机,并引起广泛的关注,为超声加工技术的发展奠定了基础。

日本是较早研究超声加工技术的国家,20世纪50年代,日本已经设立专门的振动切削研究所,许多大学和科研机构也都设有这个研究课题。日本研究超声加工的主要代表人物有两位:一位是中央大学的岛川正寭教授,《超声波工学—理论和实际》是他的代表作;另外一位是宇都宫大学的隈部淳一郎教授,《精密加工、振动切削基础和应用》是他的代表作。日本研究人员不但把超声加工用在普通设备上,而且在精密机床、数控机床中也引入了超声振动系统。1977年日本将超声振动切削与磨削用于生产,可对直径为mm

φ大型船用柴油机缸套进行镗孔。

600

原苏联的超生加工研究也比较早,20世纪50年代末60年代初已经发表过很有价值的论文。在超声车削、钻孔、磨削、光整加工、复合加工等方面均有生产应用,并取得了良好的经济效果。为了推动超声加工的应用,1973年原苏联召开了一次全国性的讨论会,充分肯定了超声加工的经济效果和使用价值,对这项新技术在全国的推广应用起到了积极的作用。到80年代末期,当时苏联已经生产系列超声振动钻削装置。

20世纪70年代中期,美国在超声钻中心孔、光整加工、磨削拉管和焊接等方面已处于生产应用阶段,超声车削、钻孔、镗孔已处于试验性生产设备原型阶段。1979年通用超声振动切削系统已供应工业界应用。

德国和英国也对超声波加工的机理和工业应用进行了大量的研究,并发表了许多有价值的论文,在生产中也得到了积极的应用。例如,英国于1964年提出使用烧结或

电镀金刚石工具的超声旋转加工的方法,克服了一般超声加工深孔时加工速度低和精度差的缺点,取得了较好的效果。

我国超声加工技术的研究始于20世纪50年代末,60年代末开始了超声振动车削的研究,1973年上海超声波电子仪器厂研制成功CNM-2型超声研磨机。1982年,上海钢管厂、中国科学院声学研究所以及上海超声波仪器厂研制成功超声拉管设备,为我国超声加工在金属塑性加工中的应用填补了空白。1983年10月,机械电子工业部科技司委托《机械工艺师》杂志编辑部在西安召开了我国第一次“振动切削专题讨论会”,会议充分肯定了振动切削在金属切削中的重要作用,,交流了研究和应用成果,促进了这项新技术在我国的深入研究和推广应用。1985年,广西大学、南京电影机械厂和南京刃具厂联合开发了我国第一套“CZQ-250A型”超声振动切削系统。同年,机械电子工业部第11研究所研制成功超声旋转加工机,在玻璃、陶瓷、YAG激光晶体等硬脆材料的钻孔、套料、端铣、内外圆磨削及螺纹加工中,取得了良好的工艺效果。1987年,北京市电加工研究所在国际上首次提出了超声频调制电火花与超声波复合的研磨、抛光加工技术,并成功应用于聚晶金刚石拉丝模的研磨和抛光。1989年,我国研制成功超声珩磨装置。1991年研制成功变截面细长杆超声车削装置。

20世纪末到本世纪初的十几年间,我国的超声加工技术发展迅速,在超声振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声复合加工领域均有较广泛的研究,尤其是在金刚石、陶瓷、玛瑙、玉石、淬火钢、模具钢、花岗岩、大理石、石英、玻璃和烧结永磁体等难加工材料领域解决了许多关键性问题,取得了良好的效果。

1.2超声波加工的基本原理

图1超声加工的原理图

超声波加工的原理如上图1所示,超声波发生器7产生的超声频电振荡通过换能器6产生20000 Hz以上的超声频纵向振动,并借助于变幅杆4把振幅放大到0.05~0.1 mm左右,从而使工具1的端面作超声频振动。在工具1和工件2之间注入磨料悬浮液3,当工具端面迫使磨料悬浮液中的磨粒以很大的速度和加速度不断的撞击、抛磨被加工表面时,把被加工表面的材料粉碎成很细的微粒,从工件上剥落下来。虽然每次剥落下来的材料很少,但由于每秒钟撞击的次数多达20000次以上,所以仍有一定的加工速度。与此同时,当工具端面以很大的加速度离开工件表面时,加工间隙内形成负压和局部真空,在工件液体内形成很多微空腔;当工具端面又以很大的加速度接近工件表面时,空泡闭合,引起极强的液压冲击波,从而强化加工过程。此外正负交变的液压冲击也使悬浮磨料的工作液在加工间隙中强迫循环,使变钝的磨粒及时得到更新。

由此可见,超声波加工是磨粒在超声振动作用下的机械撞击和抛磨作用以及超声波空化作用的综合结果,其中磨粒的撞击作用是主要的。

1.3超声波加工的特点

1)适合于加工各种硬脆材料。既然超声波加工是基于微观局部撞击作用,所以材料越是脆硬,受撞击作用所遭受的破坏越大,愈适应超声波加工。例如玻璃、陶瓷、石英、石墨、玛瑙、宝石等材料,比较适合超声波加工。相反,脆性和硬度不大却具有韧性的材料,由于具有缓冲作用而难以采用超声波加工。因此,选择工具材料时,应选择既能撞击磨粒,又不使自身受到很大破坏的材料,例如不淬火的45钢等。

2)由于工具材料较软,易制成复杂的形状,工具和工件又无需做复杂的相对运

动,因此普通的超声波加工设备机构简单。但若需要加工较大而复杂精密的三维机构,可以预见,仍需设计和制造三坐标数控超声波加工机床。

3)由于去除加工材料是靠极小磨粒瞬时局部的撞击作用,故工件表面的宏观切削力很小,切削应力、切削热很小,不会引起变形及烧伤,表面粗糙度

R值可达

a

1.0—0.1m

,加工精度可达0.01—0.02mm,并可加工细小结构和低刚度的工件。

2.超声波加工设备及其组成部分

超声波加工设备一般包括超声波发生器、超声波振动系统、机床本体和磨料工作液循环系统。

2.1超声波发生器

超声波发生器将50HZ工频交流电转变为有一定功率输出的超声频电振荡,以提供工具端面往复振动和去除被加工材料的能量。其基本要求是输出功率和频率在一定范围内连续可调,最好具有对共振频率自动跟踪和自动微调的功能。此外还要求结构简单、工作可靠、价格便宜和体积小等。

超声波发生器的组成方框图如图2所示,由振荡级、电压放大级、功率放大级及电源等四部分组成。振荡级由电子管或三极晶体管接成电感反馈振荡电路,调节电阻或

图2 超声波发生器的组成方框图

电容量可改变振荡频率,以便调节输出的超声频率。振荡级的输出经耦合至电压放大级放大后,利用变压器倒相输送到末级功率放大管,功率放大管有时用多管并联推挽输出,

经输出变压器输至换能器。

2.2超声波振动系统

超声波振动系统的作用是把超声频电振荡转变为机械振动,使工具端面获得高频率及一定振幅的振动。它是超声波加工机床中最总要的部分,由换能器、振幅扩大棒及工具组成。

1.超声波换能器

换能器的作用是把高频电能转变为机械能,目前实现这种能量转换常采用压电效应和磁致伸缩效应两种方式。

(1)压电效应超声波换能器

有一些物质如石英晶体、钛酸钡以及锆钛酸铅等在受到机械压缩或拉伸变形时,在它们两相对表面上产生一定的电荷,形成一定的电势。反之,在它们的两界面上加一定的电压,则产生一定的机械变形,如图3所示。这一现象称为“压电效

图3 压电效应

应”。具有压电效应的陶瓷材料被称为压电陶瓷。如果两相对表面加上20000HZ 以上的交变电压,则该物质产生相应超声频的伸缩变形,使周围的介质作超声频振动。为了获得最大的超声波强度,应使压电陶瓷处于共振状态。压电陶瓷片厚度应为声波半波长、分倍数或整倍数。

石英晶体的伸缩量极小,300V电压才能产生0.01m

以下的变形。钛酸钡的压电效应比石英晶体大20—30倍,但效率和机械强度不如石英晶体。锆钛酸铅则具有前两者的优点,常用作超声波清洗、探测设备和小功率超声波加工设备的换能器。一般制成圆形薄片,两面镀银,先加高压直流电进行极化,一面为正极,另一面为负极。使用事时常将两片迭在一起,正极在中间,负极在两侧,经

上下端块用螺钉夹紧,在安装在机床主轴头的振幅扩大棒(变形杆)的上端,如图4所示。正极必须与机床主轴绝缘。为方便引线,常用一镍片夹在两压电陶瓷

图4 压电陶瓷换能器

1—上端块;2—压紧螺钉;3—导电镍片;4—压电陶瓷;5—下端块;6—变幅杆

片正极之间作为接线端片。压电陶瓷片的自振频率与其厚度、上下端块质量及夹紧力成反比。

(2)磁致伸缩效应超声波换能器

铁、钴、镍及其合金的长度能随所处磁场强度的变化而伸缩的现象称为磁致伸缩效应,其中镍在磁场中最大缩短量为其长度的%

.0,铁和钴则在磁场中伸长,当

004

磁场消失后又恢复原有尺寸。几种材料的磁致伸缩曲线如图5所示。这些材料杆件的长度在交变磁场中将交变伸缩,其端面将随之作交变振动。

图5 几种材料的磁致伸缩曲线

1--75%镍+25%铁;2--49%钴+2%钒+49%镍;3--6%镍+94%铁;4--29%镍——71%铁;5--退火钴;6—镍

为减少高频涡流损耗,常用纯镍片叠成封闭磁路做成超声波加工装置的换能器。如图6所示,在两芯柱上同向绕以线圈,通入超声频电流可使之伸缩,这种换能器比压电式换能器有较高的机械强度和较大的输出功率,常用于中等功率和大功率的超声波加工。其缺点是镍片的涡流发热损失较大,能量转换效率较低,故加工过程中需用风或水冷却,否则随着温度升高,磁致伸缩效应变小甚至消失,还有可能烧坏线圈的绝缘材料。

镍片的长度也应等于超声波半波长或其整数倍,使其处于共振状态。

2.振幅扩大棒

压电或磁致伸缩的变形量很小(即使在共振条件下振幅也不超过

1.0

01

-),不足以直接用于加工。超声波加工mm

-的振幅,因此必须

.0-

mm

01

.0-

.0

005

通过一个上粗下细的棒杆将振幅加以扩大,此棒杆称为振幅扩大杆,亦称变幅杆,如图7所示。

图6 磁致伸缩换能器 图7 几种变幅杆

变幅杆能扩大振幅,是由于通过它每个截面的振动能量是不变的(略去传播损耗),截面小的地方能量密度大,振幅也大。

为了获得较大的振幅,应使变幅杆的固有振动频率和外激振动频率相等,处于共振状态。为此,在设计、制造变幅杆时,应使其长度L 等于超声振动的半波长或整数倍。 振幅扩大棒可制成锥形的、指数形的或阶梯形的等。锥形的“振幅放大比”较小(5—10倍),但易于制造;指数形的放大比中等(10—20倍),使用中性能稳定,但不易制造;阶梯形的放大比较大(20倍以上),也容易制造,但当它受到负载阻力时振幅易减小,性能不稳定,而且在粗细过渡的地方容易产生应力集中而导致疲劳断裂,为此需加过渡圆弧。实际生产中,加工小孔、深孔常用指数形变幅杆;阶梯形变幅杆因设计、制造容易,也常被采用。

必须注意,超声波加工时并不是整个变幅杆和工具都是在作上下高频振动,它和低频或工频振动的概念完全不一样。超声波在金属棒杆内主要以纵波形式传播,引起杆内个点沿波的前进方向一般按正弦规律在原地作往复振动,并以声速传导到工具端面,使工具端面作超声振动。工具端面的有关参数如下:

瞬时位移量:S=t A ωsin

最大位移量:A S =max

瞬时速度:t A v ωωcos =

最大速度:A v ω=max

瞬时加速度:t A a ωωsin 2=

最大加速度:A a 2max ω=

式中:A--超声的振幅;

ω--超声的角频率,f πω2=;

f --超声频率;

t --时间。

设超声振幅mm A 002.0=,频率Hz f 20000=,则可算出工具端面的最大速度和最大加速度 s mm

fA A v 3.2512max ===πω g s mm A a 3233315828802

2max ===ω 由此可见,工具端面的最大加速度是重力加速度g 的3000余倍(281.9s m g ≈),当振幅A=mm 01.0时,工具端部的最大速度、最大加速度都将增大到上述各值的5倍,最大加速度值将是重力加速度g 的16000余倍。

3.工具

超声波的机械振动经变幅杆放大后传给工具,工具端面推动磨粒和工作液以一定的能量撞击工件。

工具的形状和尺寸由被加工表面的形状和尺寸决定,他们相差一个“加工间隙”(稍大于平均的磨粒直径)。工具盒振幅扩大棒可做成一个整体,亦可将工具用焊条或螺纹连接的方法固定在振幅扩大棒下端。当工具不大时,可以忽略工具对振动的影响,但当工具较重时,会减小共振频率,故工具较长时,应对扩大棒进行修正,使其满足半个波长的共振条件。

超声波振动系统所有的连接部分应接触紧密,否则超声波传递过程中将损失很大能量。为此在螺纹连接处应涂以凡士林油,避免空气间隙的存在,因为超声波通过空气时很快衰减。

2.3机床本体

普通超声波加工机床的结构比较简单,包括支撑超声波振动系统的机架、安装工件的工作台、使工具以一定压力作用在工件上的进给机构以及机身等部分,图8是国产CSJ-2型超声波加工机床简图。超声波振动系统安装在能上下移动的导轨上。导轨由上下两组滚动导轮定位,使导轨能灵活精密的上下移动。工具的向下进给以及对工件施加压力靠超声波振动系统的自重。为了能调节压力大小,在机床后部可加平衡重锤2,亦可采用弹簧进行平衡。

图8 CSJ-2型超声波加工机床

1—支架;2—平衡重锤;3—工作台;4—工具;5—振幅扩大棒;6—换能器;7—导轨;8—标尺2.4磨料工作液及其循环系统

简单的超声波加工装置,磨料要靠人工输送和更换,即在加工前将悬浮磨料的工作液浇注堆积在加工区域,加工过程中需要定时反向抬起工具以补充和更新磨料。较复杂的超声波加工机床则利用小型离心泵将磨料悬浮液搅拌后注入加工间隙。对于较深的加工表面,需要经常将工具定时抬起以利于磨料的更换和补充。

磨料悬浮液中的液体最常用的是水,为了提高表面质量,也可用煤油或机油。磨料常用碳化硼、碳化硅或氧化铝等,其粒度大小需要根据生产率和精度要求选定,颗粒大的生产率高,但加工精度及表面粗糙度较差。

3. 超声波加工速度、加工精度、表面质量及其影响因素

3.1加工速度及其影响因素

加工速度是指单位时间内去除的材料量,单位通常以min g 或min 3

mm 表示。加工

玻璃的最大速度可达2000--4000min 3

mm 。

影响加工速度的主要因素有工具振动频率、振幅、工具作用在工件上的静压力、磨料种类和粒度、磨料悬浮液浓度、供给及循环方式、工具与工件材料、加工面积和加工深度等。

(1) 工具振幅和频率的影响

超声波可传递很强的能量,尤其体现在对其传播方向上的障碍物施加压力(声压),能量越强,则压力也越大。

超声波振动能量的强弱,用能量密度衡量。能量密度是指通过垂直于波的传播方向的单位面积上的能量,用符号J 表示,单位为2cm W

。J 的计算公式为: 2

)(21

A c J ωρ= 式中:ρ--弹性介质的密度,3m kg

c --弹性介质中的波速,s m

A —振动的振幅,mm ;

ω--圆周率,s rad f ,2πω=。

由于超声波频率f 很高,故其能量密度可达1002cm W 以上。采用大的振幅和高

的频率可以获得大的加工能量。但过大的振幅和过高的频率会使工具和变幅杆承受很大的内应力,甚至超过其疲劳强度而降低使用寿命,而且在连接处的耗损也增大,因此一般使振幅在mm 1.001.0--,频率在16000—25000HZ 之间。

(2) 进给压力的影响

在加工时,应使工具对工件保持一个合适的进给压力。压力过小,则工具末端与工件加工表面之间的间隙增大,减小了磨料对工件的撞击力和打击深度;压力过大,会

使工具与工件加工表面之间间隙减小,磨料和工作液不能顺利循环更新,都会导致生产率下降。

在通常情况下,当加工面积小时,可使单位面积最佳静压力较大,反之则较小。例如采用圆形实心工具在玻璃上加工孔时,加工面积在5--152

mm范围内,最佳静压力约为4000kPa;当加工面积在202

mm以上时,最佳静压力在2000--3000kPa之间。(3)磨料种类和粒度的影响

磨料硬度愈高,加工速度愈快。通常加工金刚石和宝石等高硬材料时,必须用金刚石磨料;加工硬质合金、淬火钢等材料时,宜采用硬度较高的碳化硼磨料;加工硬度不太高的硬脆材料时,可采用碳化硅;至于加工玻璃、石英、半导体等材料时,用氧化铝作磨料即可。

另外,磨料粒度愈粗,加工速度愈快,精度和表面粗糙度则愈差。

(4)磨料悬浮液浓度的影响

磨料悬浮液中磨料浓度低,加工间隙内磨粒少,特别在加工面积和深度较大时可能造成加工区局部无磨料的现象,使加工速度大大下降。随着悬浮液中磨料浓度的增加,加工速度也增加。但浓度太高时,磨料在加工区域的循环运动和对工件的撞击运动受到影响,又会导致加工速度降低。通常采用的浓度为磨料对水的重量比约为0.5—1左右。(5)工件材料的影响

材料愈脆,则承受冲击载荷的能力愈低,愈容易加工;反之韧性较好的材料则不易加工。如以玻璃的可加工性为100%,则锗、硅半导体单晶为200%--250%,石英为50%,硬质合金为2%--3%,淬火钢为1%,不淬火钢小于1%。

3.2加工精度及其影响因素

超声波加工的精度,除受机床、夹具精度影响之外,主要与磨料粒度、工具精度及其磨损度、工具在横向振动的大小、加工深度、被加工材料性质等因素有关。加工孔的尺寸精度一般为mm

.0-

±。

-

02

.0

05

1.孔的加工范围

采用通常的加工速度,超声波加工最大孔直径和所需功率的关系见表1。一般超生加工的孔径范围约为mm

-,深径比可达10—20。

90

1.0-

表1:超声波加工功率和最大加工孔径的关系

2.加工孔的尺寸精度

当工具尺寸一定时,加工出的孔径比工具尺寸有所扩大,扩大量约为磨料磨粒直径的两倍,即孔的最小直径min D 约等于工具直径1D 加磨料直径d 的两倍,即

min D =1D +2d

表2是几种磨料粒度及其基本磨粒尺寸范围。

表2磨料粒度及其基本磨粒尺寸范围

超声波加工孔的精度,采用##280240--磨粒时,一般可达mm 05.0±;采用W28—W7时,可达mm 02.0±或更高。

另外,加工圆孔还可能出现椭圆和锥度。出现椭圆与工具横向振动和工具沿圆周磨损不均匀有关。出现锥度与工具磨损有关。如果采用工具或工件旋转的方法,可以提高孔的圆度和生产率。

3.3表面质量及其影响因素

超声波加工具有较好的表面质量,不会产生表面烧伤和表面变质层。超声波加工的表面粗糙度值也较小,一般可达m Ra μ1.01--=。超声波加工的表面粗糙度取决于每颗粒每次撞击工件表面后留下的凹痕大小,它与磨粒的直径、被加工材料的性质、超声波振动的振幅以及磨料悬浮工作液的成分等有关。

当磨粒尺寸较小、工件材料较硬、超声波振幅较小时,加工表面粗糙度R a 值较小,但生产率也随之降低。

磨料悬浮工作液体的性质对表面粗糙度的影响比较复杂。实践表明,用煤油或润

滑油代替水可使表面粗糙度有所改善。

4.超声波加工的应用、发展趋势和未来展望

4.1超声波加工的应用

超声波加工生产率虽比电火花、电解加工低,但其加工精度和表面粗糙度却更好,而且能加工非导体、半导体等脆硬材料,如玻璃、石英、宝石、锗甚至金刚石等。即使是电火花加工后的一些淬火钢、硬质合金冲模、拉丝模、塑料模具,还常采用超声波抛磨法进行光整加工。

4.1.1型孔、型腔加工

超声波加工目前在工业部门中主要用于对脆硬材料加工圆孔、型孔、型腔、套料和细微孔等,如图9所示。

图9 超声波加工的型孔、型腔类型

4.1.2切割加工

用普通机械加工切割脆硬的半导体材料很困难,采用超声波切割则较为有效。图10为用超声波加工切割单晶硅片示意图。用锡焊或铜焊讲工具(薄钢片或磷青铜片)焊接在变幅杆的端部。加工时喷注磨料悬浮液,一次可割10—20片。

图10超声波切割单晶硅片图11成批切槽(块)刀具

1—变幅杆;2—工具;3—磨料液;4—工件 1—变幅杆;2—焊缝;3—铆钉;4—导向片;5—软钢刀片图11所示为成批切块刀具,它采用了一种多刃刀具,即包括一组厚度为mm

.0

127

的软钢刃刀片,间隔mm

.1,铆合在一起,然后焊接在变幅杆上。刀片伸出的高度应

14

足够在磨钝后作几次重磨。最外边的刀片应比其它刀片高出mm

5.0,切割时插入坯料的导向槽中,起定位作用。

加工时喷注磨料悬浮液,将坯料片先切割成1mm宽的长条,然后将刀具转过90°,使导向片插入另一导槽中,进行第二次切割以完成模块的切割加工。图12所示为已切割成的陶瓷模块。

图12切割成的陶瓷模块

4.1.3复合加工

利用超声波加工硬质合金、耐热合金等金属材料时,存在加工速度低、工具损耗大等问题。为了提高加工速度,降低工具损耗,可以把超声波加工与其它加工方法结合

起来,这就是所谓的复合加工。例如采用超声波与电化学或电火花加工结合加工喷油嘴、喷丝板上的小孔或窄缝,能极大的提高加工速度和加工质量。图13为超声波电解复合加工小孔和深孔的示意图。工件5接直流电源6的正极,工具3(钢丝、钨丝或铜丝)接负极,在工件与工具间加6—18V的直流电压,采用20%浓度的硝酸钠等钝化性电解液混加磨料作为电解液。工件被加工表面在电解液中产生阳极溶解,电解产物阳极钝化膜被超声频振动的工具和磨料破坏,由于超声波振动引起的空化作用加速了钝化膜的破坏和磨料电解液的循环更新,从而使加工速度和质量大大提高。

图13超声波电解复合加工小孔抛光原理图

1—换能器;2—变幅杆;3—工具;4—电解液和磨料;5—工件;6—直流电源;7—超声波发生器

在光整加工中,利用导电油石或镶嵌金刚石颗粒的导电工具,对工件表面进行电解超声波复合抛光加工,更有利于改善表面粗糙度。如图14所示,用一套超声波振动系统使工具头产生超声频振动,并在变幅杆上接直流电源阴极,在被加工工件上接直流电源阳极。电解液由外部导管导入工作区,也可以由变幅杆内的导管流入工作区。于是在工具和工件之间产生电解反应,工件表面发生电化学阳极溶解,电解产物和阳极钝化膜不断的被高频振动的工具头刮除并被电解液冲走。这种方法,由于有超声波的作用,使油石的自砺性好,电解液在超声波作用下的空化作用,使工件表面的钝化膜去除加快,增加了金属表面活性,使金属表面凸起部分优先溶解,从而达到表面平整的效果。工件表面的粗糙度Ra值可达到m

μ

-。

.0-

.0

17

15

图14手携式电解超声波复合抛光原理图

1—超声波发生器;2—压电陶瓷换能器;3—变幅杆;4—导电油石;5—电解液喷嘴;6—工具手柄;7—直流电源

4.1.4超声波清洗

超声清洗的原理主要是利用超声频振动在液体中产生的交变冲击液和空化作用。超声波在清洗液(汽油、煤油、酒精、丙醇或水)中传播时,液体分子往复高频振动形成正负交变的冲击波。当声强达到一定数值时,液体中产生微小空化气泡并瞬时强烈闭合,造成的微冲击波使被清洗物表面的污物脱落下来。由于超声波无孔不入,即使污物在被清洗物上的窄缝、细小深孔、弯孔中,也容易被清洗干净。虽然每个微气泡的作用并不大,但每秒钟有上亿个空化气泡作用,仍可获得很好的清洗效果。所以超声波广泛用于对喷油嘴、喷丝板、微型轴承、仪表齿轮、手表整体机芯、印制电路板、集成电路微电子器件的清洗。图15为超声波清洗装置示意图。

图15超声波清洗装置示意图

1—清洗槽;2—硬铅合金;3—压紧螺钉;4—换能器压电陶瓷;5、6—镍片;7—接线螺钉;8—垫圈;9—钢垫块

4.1.5超声波焊接

超声波焊接原理是利用超声频振动作用去除工件表面的氧化膜,暴露出新的本体表面,通过两个工件表面在一定压力下相互剧烈摩擦、发热而亲和粘接在一起。它不仅可以焊接尼龙、塑料以及表面易生成氧化膜的铝制品等,还可以在陶瓷等非金属表面挂锡、挂银、涂覆熔化的金属薄层等。

图16为超声波焊接示意图。表3为可以采用超声波焊接的某些成对金属,有些金属在超声波作用下的可焊接性增大。

此外,利用超声波的定向发射、反射等特性,还可用以测距和探伤等。

图16超声波焊接示意图

1—换能器;2—固定轴;3—变幅杆;4—焊接工具头;5—被焊工件;6—反射体

表3:某些金属的超声波焊接性能

4.2超声波加工的发展趋势和未来展望

超声加工技术已经涉及到许多领域,在各行各业发挥了突出的作用,但有关工艺与设备的相关技术有待于进一步研究开发。

(1)超声振动切削技术

随着传统加工技术和高新技术的发展,超声振动切削技术的应用日益广泛,振动切削研究日益深入,主要表现在以下几个方面。

a.研制和采用新的刀具材料

在现代制造业中,钛合金、纯钨、镍基高温合金等难加工材料所使用的范围越来越大,对机械零件加工质量的要求越来越高。为了更好地发挥刀具的效能,除了选用合适的刀具几何参数外,在振动切削中,人们将更多的注意力转为对刀具材料的开发与研究上,其中天然金刚石、人造金刚石和超细晶粒的硬质合金材料的研究和应用为主要方向。

b.对振动切削机理深入研究

当前和今后一个时期对振动切削机理的研究将主要集中以下几个方面:①在振动切削状态下工件材料是如何与工件分离并形成屑的。②振动切削中刀具与工件相互作

超声波加工的应用

超声波加工的应用及发展前景 摘要:随着生产发展和科学实验的需要,很多工业部门,尤其是国防工业部门,要求尖端科学技术向着高精度、高温、高压、大功率、小型化等方向发展。因此,特种加工作为一个时代强音等上舞台,它就具备了上述特点。超声波加工是利用工具断面的超声振动,通过磨料悬浮液加工脆硬材料的一种成型方法。特别对于一些常规加工方式无法完成的或者加工精度无法达到要求的工件。目前经过几十年的发展,超声波加工技术已逐步成熟,并已在一些要求条件高、加工工艺复杂、精度要求高的领域逐步发展起来,相信随着技术的发展它的应用围及领域会越来越广。 关键词:超声波;研究前沿;应用领域;超声加工的应用 引言:超声波随着技术的发展越来越为人们所应用,他通过自身的一些特性一步步奠定自己在切削、拉丝模、深小孔加工等的地位。特别在现代这个迅猛发展的社会它的地位越来越重要,我们应该加快它的发展速度,为我们所用。 超声波加工(USM)是利用工具端面作超声频振动,通过磨料悬浮液加工硬脆材料的一种加工方法。超声波加工是磨料在超声波振动作用下的机械撞击和抛磨作用与超声波空化作用的综合结果,其中磨料的连续冲击是主要的。加工时在工具头与工件之间加入液体与磨料混合的悬浮液,并在工具头振动方向加上一个不大的压力,超声波发生器产生的超声频电振荡通过换能器转变为超声频的机械振动,变幅杆将振幅放大到0.01~0.15mm,再传给工具,并驱动工具端面作超声振动,迫使悬浮液中的悬浮磨料在工具头的超声振动下以很大速度不断撞击抛磨被加工表面,把加工区域的材料粉碎成很细的微粒,从材料上被打击下来。虽然每次打击下来的材料不多,但由于每秒钟打击16000次以上,所以仍存在一定的加工速度。 与此同时,悬浮液受工具端部的超声振动作用而产生的液压冲击和空化现象促使液体钻入被加工材料的隙裂处,加速了破坏作用,而液压冲击也使悬浮工作液在加工间隙中强迫循环,使变钝的磨料及时得到更新。 一、超声波加工的原理 1.1 超声波概述 “超声波”这个名词术语,用来描述频率高于人耳听觉频率上限的一种振动波,通常是指频率高于16kHz以上的所有频率。超声波的上限频率围主要是取决

超声振动辅助磨削技术的现状与新进展

第31卷第11期2010年11月 兵工学报ACTA ARMAMENTARII Vol.31No.11Nov. 2010 超声振动辅助磨削技术的现状与新进展 梁志强1,2,王西彬1,吴勇波2,栗勇1,赵文祥1,庞思勤 1 (1.北京理工大学先进加工技术国防重点学科实验室,北京100081; 2.秋田県立大学系统科学技术学部,秋田290014,日本) 摘要:如何实现硬脆性材料的高效率、高质量、高精度加工是现代精密制造领域的技术难题,为解决这一难题超声波振动磨削技术被引入到硬脆性材料的加工中。综述了超声振动磨削技术的现状,基于现有的一维振动磨削与二维振动磨削技术,着重分析了不同超声振动施加方式对磨削 力、 加工表面完整性、砂轮磨损等加工特性的影响。作为二维振动磨削技术的最新进展,对垂直型椭圆振动磨削技术的加工原理以及加工特性进行初步介绍。 关键词:机械制造工艺与设备;超声辅助磨削;椭圆振动;硬脆材料;磨削力;粗糙度 中图分类号:TG156文献标志码:A 文章编号:1000- 1093(2010)11-1530-06Status and Progress of Ultrasonic Assisted Grinding Technique LIANG Zhi-qiang 1,2 ,WANG Xi-bin 1,WU Yong-bo 2,LI Yong 1,ZHAO Wen-xiang 1,PANG Si-qin 1 (1.Key Laboratory of Fundamental Science for Advanced Machining ,Beijing Institute of Technology ,Beijing 100081,China ; 2.Faculty of Systems Science and Technology ,Akita Prefectural University ,Akita 290014,Japan ) Abstract :In current precision machining field ,there is a critical problem to achieve high efficiency ,high-quality and high-precision machining for hard brittle material.Based on this background ,the ultra-sonic assisted grinding machining is widely introduced as a promising processing technology.In this pa-per ,the machining characteristics ,especially grinding forces ,ground surface integrality and wheel wear ,of both one-dimensional and two-dimensional ultrasonic assisted grinding techniques are analyzed.As a new progress ,the principle and fundamental characteristics of vertical elliptical ultrasonic assisted grind-ing method are introduced. Key words :machinofacturing technique and equipment ;ultrasonic assisted grinding ;elliptical vibra-tion ;hard brittle material ;grinding force ;surface roughness 收稿日期:2009-11-13 基金项目:国家自然科学基金资助项目(50935001);国防科研资助项目(62301090103)作者简介:梁志强(1984—),男,博士研究生。E-mail :liangdjx@yahoo.com ;王西彬(1958—),男,教授,博士生导师。E- mail :cutting0@bit.edu.cn 随着科技的发展对硬脆性材料、难加工材料和 新型先进材料的需求日益增多,对关键零件的加工效率、加工质量和加工精度提出了更高的要求。传统磨削方法因不可避免的产生较大的磨削力以及磨削热,引起工件表面/亚表面损伤以及砂轮寿命低等一系列问题。尤其在精密与超精密加工领域,这些加工缺陷的存在严重制约着零件加工精度及加工效 率的提高。为解决这些问题,超声振动被引入到磨 削加工中。国内外广泛研究证实超声振动磨削在提高材料去除率、提高加工表面质量与加工精度、降低工件表面损伤以及延长砂轮寿命等方面具有显著优势。 一维超声振动磨削技术较早应用到工业领域,近年在超精密加工领域,日本和中国的学者又

超声波加工技术

超声波加工技术 1.绪论 人耳能感受到的声波频率在20—20000HZ范围内,声波频率超过20000HZ被称为超声波。超声波加工(Ultrasonic Machining简称USM)是近几十年来发展起来的一种加工方法,它是指给工具或工件沿一定方向施加超声频振动进行加工的方法,或利用超声振动的工具在有磨料的液体介质或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀来去除材料,又或利用超声振动使工件相互结合的加工方法。它弥补了电火花加工的电化学加工的不足。电火花加工和电化学加工一般只能加工导电材料,不能加工不导电的非金属材料。而超声波加工不仅能加工硬脆金属材料,而且更适合于加工不导电的硬脆非金属材料,如玻璃、陶瓷、半导体锗和硅片等。同时超声波还可用于清洗、焊接和探伤等。 1.1超声波加工的发展状况 超声波加工是利用超声振动的工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。超声加工系统由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。超声波发生器的作用是将220V或380V的交流电转换成超声频电振荡信号;换能器的作用是将超声频电振荡信号转换为超声频机械振动;变幅杆的作用是将换能器的振动振幅放大;超声波的机械振动经变幅杆放大后传给工具,使工具以一定的能量与工件作用,进行加工。 超声加工技术是超声学的一个重要分支。超声加工技术是伴随着超声学的发展而逐渐发展的。 早在1830年,为探讨人耳究竟能听到多高的频率,F.Savrt曾用一多齿的齿轮,第一次人工产生了2.44 HZ的超声波,1876年加尔顿的气哨实验产生的超声波的频 10

超声医学高新技术现状和发展趋势

超声医学高新技术现状和发展趋势 随着社会经济的发展,人们生活水平有了很大的提升,对于健康的关注程度也不断加强,因此对于医疗服务的要求也更高;另一方面,随着科技的进步,生物科学和医学开始和光学、电子科学等领域的技术融合,超声医学应运而生。由于超声医学的优良的特性,这一技术从诞生之日就被广泛的运用,并随着时代的发展不断的革新,目前我国的超声医学运用技术开始成熟,它在临床运用中的地位十分重要。本文就超声医学中的高新技术进行了阐述,并就未来超声医学的发展趋势进行了分析。 标签:超声医学;高新技术;应用现状;发展趋势 1前言 超声医学是指将影像学、生物科学、电机科学和医学相结合,使高于可听音频的声学技术在医疗中使用的一门学科。超声医学是一门跨领域的复杂学科,由于其对于疾病的诊断和治疗有拥有极高的功效所以在临床的应用十分广泛,在医学技术中拥有重要的地位。超声医学最初建立于上世纪50年代,在70年代时就被广泛的应用了,由超过半个世纪的发展历程来看,超声医学的图像由静态转变为动态,颜色从黑白变为彩色,维度也从二维向三维发展,这些变化一方面是科技发展和时代需要的必然,一方面也是超声医学为现代医学的发展做出了巨大贡献。 2超生医学高新技术现状 2.1心血管超声技术 2.1.1全方位M 型超声心动图技术采用二维灰阶或二维组织多普勒超声心动图引导下通过调节多条直线取样线位置,能够同时对任意角度上的多个对应室壁运动形式进行多角度对应分析,从而可以获取不同位置核方向心脏室壁及其对应位置的心室壁运动时间信息,将有助于判断心脏整体室壁运动的起始和最大位移出现的时间顺序,整体量化评价室壁运动的同步性和协调性。 2.1.2高帧频二维灰阶超声心动图技术目前高频二维灰阶超声心动图技术已经具有其它任何心脏显像技术所不具备的较高帧频显像能力,其理论计算帧频可达到约3200 帧/s,而实际可达到的帧频约为1600 帧/s。较高的图像帧频使二维灰阶超声动图能够更好地表现快速运动的心肌组织结构运动状态和功能情况。 2.1.3实时三维超声心动图超声心动图技术目前采用矩形换能晶片阵列技术同时发射和接收超声波能够准确获取被检测组织器官的解剖结构和血流容积信息。该项技术所采用的信号通道数多达到32000 个,内置于主机的并行计算机能够同时并行处理大量的原始数据并实现实时动态的三维解剖和血流显示。

超声加工技术的概况及其未来发展趋势分析

超声加工技术的概况及其未来发展 趋势分析 梁玉鑫 材料科学与工程学院,1309101班,1130910113 摘要:结合了近年来超声加工技术的发展情况,综述了超声振动系统的研究发展和超声加工技术在深小孔加工、拉丝模及型腔模具研磨抛光、难加工材料的加工、超声振动切削、超声复合加工等方面的最新应用,并阐述了超声加工技术的发展趋势。 关键词:超声加工;超声振动系统;超声复合加工;微细超声加工;超声振动切 超声加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。 几十年来,超声加工技术的发展迅速,在超声振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声复合加工领域均有较广泛的研究和应用,尤其是在难加工材料领域解决了许多关键性的工艺问题,取得了良好的效果。 一、超声振动系统的研究概况及其应用 超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。东南大学研制了一种新型超声振动切削系统。该系统采用压电换能器,由超声波发生器、匹配电路、级联压电晶体、谐振刀杆、支承调节机构及刀具等部分组成。当发生器输出超声电压时,它将使级联晶体产生超声机械伸缩,直接驱动谐振刀杆实现超声振动。该装置的特点是:能量传递环节少,能量泄漏减小,机电转换效率高达90%左右,而且结构简单、体积小,便于操作。 沈阳航空工业学院建立了镗孔用超声扭转振动系统[1],采用磁致伸缩换能器,将超声波发生器在扭转变幅杆的切向作纵向振动时在扭振变幅杆的小端就输出沿圆周方向的扭转振动,镗刀与扭振变幅杆之间采用莫氏锥及螺纹连接,输出功率小于500W,频率为16~23 kH z,具有频率自动跟踪性能。西北工业大学设计了一种可在内圆磨床上加工硬脆材料的超声振动磨削装置。该装置由超声振动系统、冷却循环系统、磨床连接系统和超声波发生器等组成,其超声换能器采用纵向复合式换能器结构,冷却循环系统中使用磨削液作为冷却液;磨床连接系统由辅助支承、制动机构和内圆磨床连接杆等组成。该磨削装置工具头旋转精度由内圆磨床主轴精度保证,结构比专用超声波磨床的主轴系统要简单得多,因此成本低廉,适合于在生产中应用。另一种超声扭转振动系统已在“加工中心”用超声扭转振动装置上应用。主要用作电火花加工后的模具异形(如三角形、多边形)孔和槽底部尖角研磨抛光,以及非导电材料异形孔加工。该振动系统的换能器是采用按圆周方向极化的8块扇形压电陶瓷片构成,产生扭转振动。 二、超声加工技术应用研究

超声医学影像设备行业研究-行业概述及发展趋势

超声医学影像设备行业研究-行业概述、发展趋势 超声医学影像设备概述 (1)超声医学影像设备的基本原理 超声医学影像设备可分为黑白超与全数字彩超(又可称超声脉冲回波成像设备和超声回波多普勒成像设备)。黑白超的基本原理是利用超声波在人体中传播时,不同器官的声阻抗不同而产生不同强度的反射或散射回波,并将这些不同强度的回波转化成不同亮度的灰阶值形成黑白图;全数字彩超则在黑白超声的基础上引入了对血液流动或者组织运动的多普勒效应检测,可以获得血液流动的方向、速度、流量等信息。中高端的全数字彩超根据超声的不同特性还可以具备弹性成像、造影成像、融合成像等功能模块,拓展了超声医学的临床应用边界。

近年来,随着云技术、人工智能技术的发展和应用,超声医学影像设备与新技术逐步融合,远程医学诊断、移动医学诊断、基于人工智能的医学影像辅助诊断功能日益进步和完善,医疗工作者单纯依靠自身临床经验对病患疾病进行诊断的现状有望逐步改善。 (2)超声医学影像设备的临床应用 超声医学影像设备是医院、影像中心等医疗机构内常用的临床诊断仪器,由于具备安全、无创、应用广泛、实时、经济、便携等优点,其应用领域由早期的腹部及妇产科诊断,拓展至心血管、神经、肌肉骨骼等多领域临床诊断,并逐步渗透至超声引导介入等非诊断领域,临床应用范围不断扩大。

(3)与其他医学影像设备的比较 目前临床应用较广的医学影像设备包括X线、CT、磁共振(MRI)、超声等四类,四类设备各有特点,在临床应用上往往针对于不同领域,有时需要综合应用才能更好的诊断病情。这四类医学影像设备由于所采用的技术不同,优缺点和临床应用也有很大差异,具体比较如下:

激光加工与超声波加工技术对比分析

激光加工与超声波加工技术对比分析 赵国帅 摘要:激光加工和超声波加工都属于特种加工,本文主要介绍了激光加工和超声波加工在工作原理,发生装置上存在差异。此外还有他们各自的应用特点,以及实际加工方式都存在着的优缺点。 关键词:激光加工;超声波加工;特点对比;实例分析 Comparative Analysis of Laser Processing and Ultrasonic Machining Technology ZHAO Guo-shuai Abstract:Laser processing and ultrasonic machining belong to the special processing. The contest aim to talk about the difference of laser processing and ultrasonic machining in the working principle and generator, in addition it contains their application characteristics and their advantage and disadvantage in different actually processings. Keywords:Laser processing; Ultrasonic processing; Contrast characteristics; The example analysis

目录 摘要 (1) 前言 (2) 1 定义与原理 (2) 1.1 定义 (2) 1.1.1 激光加工技术 (2) 1.1.2 超声波加工技术 (2) 1.2原理 (2) 1.2.1 激光加工技术 (3) 1.2.2 超声波加工 (3) 1.3 激光加工与超声波加工定义和原理对比分析 (4) 2 应用和特点 (4) 2.1 激光加工与超声波加工应用特点对比分析 (4) 2.1.1 激光加工技术特点 (4) 2.1.2超声波加工技术特点 (5) 3 实例对比分析 (5) 3.1 激光加工和超声波加工焊接对比分析 (5) 3.1.1 原理对比分析 (5) 3.1.2 优缺点对比分析 (6) 3.2 激光加工和超声波加工深孔加工对比分析 (6) 3.3 激光加工和超声波加工切削加工对比分析 (6) 3.3.1 激光加工发展运用 (6) 1.2.2 超声波加工发展运用 (7) 4 结论 (7) 参考文献 (9)

超声加工论文

本科课程论文 题目超声加工的应用及发展 学院工程技术学院 专业机械设计制造及其自动化年级**级 学号*************** 姓名****** 指导教师****** 成绩 2011 年 12 月 14 日

目录 摘要 (2) 关键词 (2) 一、超声加工技术的发展 (2) 二、旋转超声加工的特点及优势 (3) 三、超声加工技术在航空航天制造中的应用潜能 (4) 1 超声加工刀具基体材料选择 (5) 2 超声加工刀具基体结构设计 (6) 3 超声加工刀具磨料层的制备......................................................................... 6. 四结束语.. (7) 参考文献 (7)

超声加工的应用及发展 摘要:陶瓷、光学玻璃、功能晶体、金刚石、宝石和先进复合材料等具有优越的物理、化学和机械性能,在航空、航天、军工、电子、汽车和生物工程等领域正得到越来越广泛的应用,并且其应用还在不断向新的领域扩展。与此同时,人们开始探索特种加工方式来加工这些难加工材料。超声加工技术就是在此背景下发展起来的,实践证明,它是加工上述难加工硬脆材料的高效和经济有效的方法之一。 超声技术在工业中的应用开始于20世纪10~20年代,它是以经典声学理论为基础,同时结合电子技术、计量技术、机械振动和材料学等学科领域的成就发展起来的一门综合技术。超声技术的应用可划分为功率超声和检测超声两大领域。其中,功率超声是利用超声振动形成的能量使物质的一些物理、化学和生物特性或状态发生改变,或者使这种状态改变加快的一门技术。功率超声在机械加工方面的应用,按其加工工艺特征大致分为2类,一类是带磨料的超声磨料加工(包括游离磨料和固结磨料),另一类是采用切削刀具与其他加工方法相结合形成的超声复合加工。 关键词:超生加工发展特点及优势应用潜能 一、超声加工技术的发展 1927年,美国物理学家伍德和卢米斯最早作了超声加工试验,利用超声振动对玻璃板进行雕刻和快速钻孔。但当时超声加工并未应用到工业上,直到大约1940年在文献上第一次出现超声加工(USM-Ultrasonic Machining)工艺技术描述以后,超声加工才吸引了大家的注意,并且逐渐融入到其他的工业领域。1951年,科恩研制了第一台实用的超声加工机,为超声加工技术的发展奠定了基础。 USM提供了比常规机械加工技术更多的优点。例如,导电和非导电材料它都可以加工,并且加工复杂的三维轮廓也可以像简单形状那样快速。此外,超声加工过程不会产生有害的热区域,同时也不会在工件表面带来化学/ 电气变化,而且加工时在工件表面上所产生的有压缩力的残余应力可以增加被加工零件的高周期性疲劳强度。 然而,在USM中必须供给磨料工作液,并且要保证加工过程中能有效清除刀具和工件

CSiC复合材料旋转超声振动辅助铣削实验研究

C/SiC复合材料旋转超声振动辅助铣削实验研究通过碳纤维增强的碳化硅陶瓷基复合材料(C/SiC)是一种耐高温、耐磨损、抗氧化和力学性能出色的航空级复合材料,采用传统的机械加工工艺对其进行加工,因加工性差,精度不高且加工成本高导致无法满足当今航空航天等领域的需求。利用旋转超声振动辅助加工技术,将旋转超声振动引入到C/SiC复合材料的铣削加工中,可有效地降低铣削力、切削热,减小刀具的损耗,提高加工质量。 本文主要完成了以下工作内容:利用压电陶瓷的逆压电效应,根据夹心式压电换能器的设计理论,设计了一款可用于旋转超声铣削加工的纵振型超声振子;采用PZFlex仿真软件对影响超声振子谐振频率的因素进行了仿真分析,结果表明:超声振子的谐振频率随刀具有效长度和过渡圆柱长度的增加而减小,随预紧螺栓长度和后端盖孔深度的增加而增大;依据仿真结果加工了纵振型超声振子,并对其进行阻抗分析,测得纵振型超声振子在有无刀具及夹头螺母两种状态下的谐振频率分别为17.41 kHz、18.71kHz,与仿真结果中模型的谐振频率18.4762 kHz和19.312 kHz,误差率分别为5.7636%和3.1428%;基于超声振子的谐振频率,对有夹头螺母及刀具状态下的超声振子振幅输出进行测量,结果表明:在100 V、140 V和200 V电压激励下振子输出的振幅与电压成正比,且在200 V电压激励时纵向振幅为2.016 um,可以满足旋转超声振动辅助铣削加工的要求,证实了纵振型超声振子设计的可行性,为纵振型超声振子模型的优化设计提供参考。设计纵振型超声振子的夹持装置、桥接盘和机床主轴连接装置,实现超声振子与机床主轴的连接;设计电能传输装置对纵振型超声振子进行供电;设计保护外壳、安装插销等装置,建立起旋转超声振动辅助铣削加工系统;依据该系统采用单因素实验法和正交试验法,研究了传统铣削下不同切削参数对C/SiC复合材料铣槽和铣

超声加工技术的现状及发展趋势

超声加工技术的现状及 发展趋势 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

超声加工技术的现状及发展趋势 前言:超声波加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。超声波加工技术是一种涉及面广且更新快的机械加工技术。结合近年来超声加工技术的发展状况,综述了超声振动系统的研究进展和超声加工技术在深小孔加工、拉丝模及型腔模具研磨抛光、难加工材料的加工、超声振动切削、超声复合加工等方面的最新应用,并阐述了超声加工技术的发展趋势。 关键词:超声波加工、超声振动、声复合加工、应用、发展、 正文: 1、超声振动系统的研究进展及其应用 超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。 日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。日本还研制成一种新型“纵-弯”型振动系

统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。日本金泽工业学院的研究人员研制了加工硬脆材料的超声低频振动组合钻孔系统。将金刚石中心钻的超声振动与工件的低频振动相结合,制造了一台组合振动钻孔设备,该设备能检测钻孔力的变化以及钻孔精度和孔的表面质量,并用该组合设备在不同的振动条件下进行了一系列实验。实验结果表明,将金刚石中心钻的超声振动与工件的低频振动相结合是加工硬脆材料的一种有效方法。 另一种超声扭转振动系统已在“加工中心”用超声扭转振动装置上应用。主要用作电火花加工后的模具异形(如三角形、多边形)孔和槽底部尖角研磨抛光,以及非导电材料异形孔加工。该振动系统的换能器采用按圆周方向极化的8块扇形压电陶瓷片构成,产生扭转振动。 2、超声加工技术应用研究 深小孔加工 众所周知,在相同的要求及加工条件下,加工孔比加工轴要复杂得多。一般来说,孔加工工具的长度总是大于孔的直径,在切削力的作用下易产生变形,从而影响加工质量和加工效率。特别是对难加工材料的深孔钻削来说,会出现很多问题。例如,切削液很难进入切削区,造成切削温度高;刀刃磨损快,产生积屑瘤,使排屑困难,切削力增大等。其结果是加工效率、精度降低,表面粗糙度值增加,工具寿命短。采用超声加工则可有效解决上述问题。

超声波的焊接原理及技术

一.超声波应用原理 我们知道正确的波的物理定义是:振动在物体中的传递形成波。这样波的形成必须有两个条件:一是振动源,二是传播介质。波的分类一般有如下几种:一是根据振动方向和传播方向来分类。当振动方向与传播方向垂直时,称为横波。当振动方向与传播方向一致时,称为纵波。二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。低于这个范围的波叫做次声波,超过这个范围的波叫超声波。 波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。三者之间的关系如下:V=F.λ。波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。 1、超声波在塑料加工中的应用原理: 塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。 2、超声波焊机的组成部分 超声波焊接机主要由如下几个部分组成:发生器、气动部分、程序控制部分,换能器部分。发生器主要作用是将工频50HZ的电源利用电子线路转化成高频(例如20KHZ)的高压电波。 气动部分主要作用是在加工过程中完成加压、保压等压力工作需要。 程序控制部分控制整部机器的工作流程,做到一致的加工效果。 换能器部分是将发生器产生的高压电波转换成机械振动,经过传递、放大、达到加工表面。 3.换能器部分由三部分组成:换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,BOOSTER);焊头(又称焊模,HORN或SONTRODE)。 ①换能器(TRANSDUCER):换能器的作用是将电信号转换成机械振动信号。将电信号转换成机械振动信号有两种物理效应可以应用。A:磁致伸缩效应。B:压电效应的反效应。磁致伸缩效应在早期的超声波应用中较常使用,其优点是可做的功率容量大;缺点是转化效率低,制作难度大,难于大批量工业生产。自从朗之万压电陶瓷换能器的发明,使压电效应反效应的应用得以广泛采纳。压电陶瓷换能器具有转换效率高,大批量生产等优点,缺点是制作的功率容量偏小。现有的超声波机器一般都采用压电陶瓷换能器。压电陶瓷换能器是用两个金属的前后负载块将压电陶瓷夹在中间,通过螺杆紧密连接而制成的。通常的换能器输出的振幅为10μm左右。 ②焊头(HORN):焊头的作用是对于特定的塑料件制作,符合塑料件的形状、加工范围等要求。 换能器、变幅杆、焊头均设计为所工作的超声频率的半波长,所以它们的尺寸和形状均要经过特别的设计;任何的改动均可能引致频率、加工效果的改变,它们需专业制作。耐用根据所采用的材料不同,尺寸也会有所不同。适合做超声波的换能器、变幅杆和焊头的材料有:钛合金、铝合金、合金钢等。由于超声波是不停地以20KHZ左右高频振动的,所以材料的要求非常高,并不是普通的材料所能承受的。 二:超声波工作原理: 热可塑性塑料的超声波加工,是利用工作接面间高频率的摩擦而使分子间急速产生热量,当此热量足够熔化工作时,停止超声波发振,此时工件接面由熔融而固化,完成加工程序。

先进制造——超声研磨技术

超声研磨加工技术 摘要:本文介绍了一种基于新加工原理的先进超精密研磨技术——超声研磨。首先简要介绍了磨削技术的发展现状并通过加工模型简述了其加工原理;然后从加工工艺及加工设备等方面阐述了其加工特点;最后以其在模具行业的应用为例,从加工设备、工艺分析等方面进行了简要分析。 关键词:超声加工;超声研磨;超精密加工;先进制造技术 0、引言 随着汽车、航空航天等行业的发展,陶瓷、玻璃、硬质合金等材料应用日益广泛。这些材料硬度高、零件形状复杂、加工精度高,传统的磨削方式难以满足要求[1]。超声研磨不仅能加工脆硬金属材料,而且能加工玻璃、陶瓷、半导体等不导电的非金属脆硬材料,特别适合电火花加工或铣削加工表面的研磨,对电火花线切割加工表面的软化层和电火花成型加工表面的硬化层均能快速研磨,改善其表面质量。 1、研磨技术现状 相对于传统的研磨技术而言,目前,一些基于机械作用、机械—化学作用的超精密研磨技术以及液面研磨抛光技术的研究应用[2],在超精密磨削方面取得了不错的效果。其中基于机械作用的弹性发射加工(EEM)兼有研磨和抛光的优点具有光明的发展前景。 然而,这些加工方法存在对加工设备及条件有特殊的要求;难以控制加工精度、表面质量等问题,如基于机械作用的弹性发射加工,需要高速高精度回转轴等,所以在实际应用中受到限制,达不到高的技术经济效果。 超声波研磨是功率超声在材料加工方面的一种重要运用,是一种非接触超精密研磨方法,具有加工表面质量高、精度高、切屑易处理、能很好地解决难加工材料、非金属材料、表面质量要求高的零件加工问题等一系列优点,如今已成为一种新型的先进制造加工技术。

2、超声研磨原理 2.1超声研磨理论模型分析 超声研磨是超声加工技术的一种特殊应用[3],其基于传统研磨加工原理,在研磨工具上附加以超声振动,工具与工件间的磨料在结合传统研磨加工运动和超声高频振动共同作用下,不断滑擦、磨削加工表面,以实现材料去除的目的,图1为超声研磨原理模型。 图1 超声研磨原理模型 研磨工具的端面和工件表面保持一固定的间隙,在其间充以微细磨料工作液,当超声振动工具以一定的频率振动时,带动微细磨料冲击工件表面,从而对工件表面进行研磨。当工作台作平面运动或曲面运动,即可对整个工件表面进行加工[4][5]。 超声研磨时,大量的磨料以与超声振动相同的频率、脉动式的冲击被加工表面,除去或改造工件表面原有的损伤层,并在其下面构成新的损伤层(即表面加工层)。如果工艺参数(如超声发生器的功率,磨料的硬度、粒度,磨液浓度,间隙等)选择恰当,则可使新生成的损伤层更薄、更均匀,从而获得较佳的表面质量,实现超精密加工,理想的状况是获得接近无损伤的表面。 2.2超声研磨系统的关键 超声研磨加工技术在加工质量、加工精度、加工效率等方面都较传统研磨加工有很大优势,其关键在于超声研磨振动系统的作用。

超声振动切削加工

超声振动切削加工的研究现状及进展 摘要:简述了超声振动切削技术的发展、优点及应用领域。通过将超声振动切削与普通切削比较以及对振动切削过程特点的描述,探讨了超声振动切削的切削机理。文章还分析了振动切削技术的最新发展, 认为超声振动切削是一项有发展前途的新型技术。 关键词:超声振动切削;难加工材料:切削机理 Research of vibration assisted turning cutting technology and

Its development Abstract:Introduces the history, advantages and application field of the ultrasonic cutting technology(UCT). By compared with ordinary cutting and the characteristics description of the ultrasonic vibration cutting process, explored Ultrasonic vibration cutting of the cutting mechanism. The paper also analyzes an up- to- date vibrating cutting technology and summarizes that the ultrasonic vibration cutting is a promising new technology. Key Words: Ultrasonically vibrating cutting; Difficult - to - machine materials; Cutting Mechanism 0 前言 超声振动切削技术是把超声波振动的力有规律地加在刀具上,使刀具周期性地切削和离开工件的加工技术, 是结合超声波技术和传统切削工艺的一种新型切削技术。在20 世纪60 年代,日本隈部淳一郎先生就对该项技术做了大量的研究工作。

功率超声振动加工技术教案

南通大学 Nan Tong University 功率超声振动加工技术 院系: 专业:自动化 班级: 学号: 姓名:李芸 关键词: 振动加工、换能器发生机理、熔焊、功率超声车削、珩磨技术 引言: 超声加工(ultrasonic machining),起源于20世纪50年代初期,是指给工具或工件沿一定方向施加超声频振动进行振动加工的方法。超声加工系统,由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。在难加工材料和精密加工中,功率超声加工技术具有普通加工无法比拟的工艺效果,具有广泛的应用范围。由于功率超声加工技术具有许多优点,与其他加工技术相比较,常常能大幅度提高加工速度、提高加工质量和完成一般加工方法难以完成的加工工作。因此,在工业、农业、国防和医药卫生、环境保护等部门得到越来越广泛的应用。 正文:

一、超声加工的基本原理 超声加工时,高频电源联接超声换能器,由此将电振荡转换为同一频率、垂直于工件表面的超声机械振动,其根幅仅0.005~0.01mm,再经变幅杆放大至0.05~0.lmm,以驱动工具端面作超声振动。此时,磨料悬浮液(磨料、水或煤油等赃工具的超声振动和一定压力下,高速不停地冲击悬浮液中的磨粒,并作用于加工区,使该处材料变形,直至击碎成微粒和粉末。同时,由于磨料悬浮液的不断搅动,促使磨料高速抛磨工件表面,又由于超声振动产生的空化现象,在工件表面形成液体空腔,促使混合液渗入工件材料的缝隙里,而空腔的瞬时闭合产生强烈的液压冲击,强化了机械抛磨工件材料的作用,并有利于加工区磨料悬浮液的均匀搅拌和加工产物的排除。随着磨料悬浮液不断地循环。磨粒的不断更新。加工产物的不断排除,实现了超声加工的目的。总之,超声加工是磨料悬浮液中 的磨粒,在超声振动下的 冲击、抛磨和空化现象综 合切蚀作用的结果。其中, 以磨粒不断冲击为主。由 此可见,脆硬的材料,受 冲击作用愈容易被破坏, 故尤其适于超声加工。 由超声发生器产生的高频 电振荡(频率一般为16~25千赫,焊接频率可更高)施加于超声换能器上(见图),将高频电振荡转换成超声频振动。超声振动通过变幅杆放大振幅(双振幅为20~80微米),并驱动以一定静压力压在工件表面上的工具产生相应频率的振动。工具端部通过磨料不断地捶击工件,使加工区的工件材料粉碎成很细的微粒,为循环的磨料悬浮液带走,工具便逐渐进入到工件中,加工出与工具相应的形状。 二、特点 ①不受材料是否导电的限制。 ②工具对工件的宏观作用力小、热影响小,因而可加工薄壁、窄缝和薄片工件。 ③被加工材料的脆性越大越容易加工;材料越硬或强度、韧性越大则越难加工。 ④由于工件材料的碎除主要靠磨料的作用,磨料的硬度应比被加工材料的硬度高,而工具的硬度可以低于工件材料。 ⑤可以与其他多种加工方法结合应用,如超声振动切削、超声电火花加工和超 声电解加工等。 超声加工主要用于各种硬脆材料,如玻璃、石英、陶瓷、硅、锗、铁氧体、宝石和玉器等的打孔(包括圆孔、异形孔和弯曲孔等)、切割、开槽、套料、雕刻、成批小型零件去毛刺、模具表面抛光和砂轮修整等方面。超声打孔的孔径范围是0.1~90毫米,加工深度可达100毫米以上,孔的尺寸精度可达 0.02~0.05毫米。表面粗糙度在采用 W40碳化硼磨料加工玻璃时可达Rα 1.25~0.63微米,加工硬质合金时可达Rα0.63~0.32微米。 ⑥切削力大及温度幅度降低,工件寿命大幅度提高。 ⑦大大节省能源,简化机床结构。 ⑧提高已加工表面的耐磨性、耐腐蚀性。

超声波加工论文

超声波加工 摘要:超声波加工是利用工具断面的超声振动,通过磨料悬浮液加工脆硬材料的一种成型方法。它能广泛应用于各个领域,特别对于一些常规加工方式无法完成的或者加工精度无法达到要求的工件。目前经过几十年的发展,超声波加工技术已逐步成熟,并已在一些要求条件高、加工工艺复杂、精度要求高的领域逐步发展起来,相信随着技术的发展它的应用范围及领域会越来越广。 关键词:超声波;研究前沿;应用领域 引言:超声波随着技术的发展越来越为人们所应用,他通过自身的一些特性一步步奠定自己在切削、拉丝模、深小孔加工等的地位。特别在现代这个迅猛发展的社会它的地位越来越重要,我们应该加快它的发展速度,为我们所用。 超声波加工(USM)是利用工具端面作超声频振动,通过磨料悬浮液加工硬脆材料的一种加工方法。超声波加工是磨料在超声波振动作用下的机械撞击和抛磨作用与超声波空化作用的综合结果,其中磨料的连续冲击是主要的。加工时在工具头与工件之间加入液体与磨料混合的悬浮液,并在工具头振动方向加上一个不大的压力,超声波发生器产生的超声频电振荡通过换能器转变为超声频的机械振动,变幅杆将振幅放大到0.01~0.15mm,再传给工具,并驱动工具端面作超声振动,迫使悬浮液中的悬浮磨料在工具头的超声振动下以很大速度不断撞击抛磨被加工表面,把加工区域的材料粉碎成很细的微粒,从材料上被打击下来。虽然每次打击下来的材料不多,但由于每秒钟打击16000次以上,所以仍存在一定的加工速度。 与此同时,悬浮液受工具端部的超声振动作用而产生的液压冲击和空化现象促使液体钻入被加工材料的隙裂处,加速了破坏作用,而液压冲击也使悬浮工作液在加工间隙中强迫循环,使变钝的磨料及时得到更新。 一、超声波加工的原理 1.1 超声波概述 “超声波”这个名词术语,用来描述频率高于人耳听觉频率上限的一种振动波,通常是指频率高于16kHz以上的所有频率。超声波的上限频率范围主要是取决于发生器,实际用的最高频率的界限,是在5000MHz的范围以内。在不同介质中的波长范围非常广阔,例如在固体介质中传播,频率为25kHz的波长约为200mm;而频率为500MHz的波长约为0.008mm。 超声波和声波一样,可以在气体、液体和固体介质中传播。由于超声波频率高、波长短、能量大,所以传播时反射、折射、共振以及损耗等现象更显著。在不同的介质中,超声波传播的速度c亦不同,例如c空气=331m/s;c水=1430m/s;

压电式超声振动系统开发设计

?机械制造?孔华?压电式超声振动系统开发设计 压电式超声振动系统开发设计 孔华 (南京理工大学械工程学院,江苏南京210094) 摘要:针对压电式超声振动系统中换能器和变幅杆的设计公式及步骤复杂的问题,提出利用 软件的二次开发,在UG软件平台上研究振动系统的三维造型的方法。开发结果表明该方法 可以很好的解决压电超声换能器和变幅杆在设计过程中存在的问题,简化了设计过程,缩短了 新产品的开发周期。 关键词:超声加工;振动系统;变幅杆;UG/OpenGRIP 中图分类号:THl2文献标志码:A文章编号:1671—5276(2012)04-0007-03 DevelopmentandDesignofPiezoelectricityTypeUltrasonicVibrationSystem KONGHu8 (SchoolofMechanicalEngineering,NJUST,Nanjing210094,China) Abstract:Forthecomplexissueoftheformulasandstepsindesignoftransducerandamplitudetransformerinpiezoelectricultra-sonicvibrationsystem,thispapermakesuseofthesecondarydevelopmentofsoftwaretostudythethree—dimensionalmodelingapproachofvibrationsystemonUGsoftwareplatform.Theresultsshowthatthedevelopedmethodcansolvetheproblemsexistinginthedesignprocessofpiezoelectricultrasonictransducerandamplitudetransformerandbeusedtosimplifythedesignprocessandshortenthedevelopmentcycleofnewproducts. Keywords:ultrasonicmachining;vibrationsystem;amplitudetransformer;UG/OpenGRIP 0引言 UG/OpenGRIP是UGS公司提供的UG软件包中的一个模块,用于UG二次开发。其与Unigraphics系统紧密集成,利用GRIP程序,可以完成与Unigraphics的各种交互操作。与常见程序语言相同,GRIP语言有完整的语法规则、程序结构、内部函数,以及与其他通用语言程序的相互调用等。GRIP程序要经过编译、链接、生成可执行程序后才能运行¨? 从20世纪末开始,超声振动加工技术与其他加工方式相结合,在深小孔加工、拉斯模型腔模具研磨抛光、超声复合加工等领域广泛应用,解决了许多关键性问题,取得了良好的效果。超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。 压电式超声振动系统的换能器和变幅杆产品形状虽简单,但是设计公式及步骤却很复杂。为提高超声振动系统设计效率,提出软件的二次开发,在UG软件平台上研究振动系统的三维造型方法,应用UG开发工具UG/OpenGRIP开发出超声振动系统CAD模块,挂接在UG用户界面匕,实现UG用户化‘“。 超声振动系统模型设计 超声振动系统一般由超声换能器、变幅杆和加工工具等组成㈦。其总体设计思想是换能器和变幅杆两者参数匹配但分别设计,之后通过装配完成超声振动系统总体设计。 1.1压电换能器模型设计 换能器是利用压电材料在电场作用下产生形变的特性。其主要性能指标包括:工作频率、功率、机械品质因数、机电耦合系数、换能器的阻抗特性、频率特性、方向特性等。4o。将压电材料做成片状,并在两面涂上银层作为电极,同时进行极化处理。当压电片两电极问加上电场时,会产生与交变电场同频率的交变形变,从而使压电片两面向外辐射声波。当外加电场频率与压电片固有频率相同产生谐振时,压电片振动最大,声辐射也最强烈。 压电片厚度方向逆压电效应表达式为 So=do÷(1) to 式中,do为沿厚度方向的压电常数;l。为压电片厚度;S。为沿厚度方向的伸缩应变;U为沿厚度方向所加电压。 后匹配块、两压电陶瓷片、电极三者的厚度之和做成四分之一波长,前匹配块的长度做成A/4或A3/4,以使换能器的总长度为A/2。后匹配块按照以下公式计算: tan”寻[r一等等]㈦ 其中:Zo2PocoSo;zI2PlclSl;≈2P3c3S3;m322;00= z0 2耵flo/co;03=2仰3/c3;T=cotOo—k2/吼 式中,C。为压电陶瓷片波速;C,为后匹配波速;c,为电极 作者简介:孔华(1983一),男,山东济宁人,硕士研究生,研究方向是引信技术与应用。 NlachineBuilding8Automation,Jun2012,41(4):7~9?7?万方数据

相关文档
相关文档 最新文档