文档库 最新最全的文档下载
当前位置:文档库 › (完整版)厦大材料科学基础知识点总结

(完整版)厦大材料科学基础知识点总结

(完整版)厦大材料科学基础知识点总结
(完整版)厦大材料科学基础知识点总结

第一章原子结构和键合

原子中一个电子的空间和能量的描述

(1)主量子数ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数K、L、M、N、O、P、Q

(2)轨道动量量子数li:给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,s,p,d,f

(3)磁量子数mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向

(4)自旋角动量量子数si:表示电子自旋的方向,取值为+1/2 或-1/2

核外电子的排布规律

(1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。而在同一电子层,电子依次按s,p,d,f的次序排列。

(2)Pauli不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。因此,主量子数为n的壳层,最多容纳2n2电子。

(3)Hund原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。

原子间的键(见作业)

第二章固体结构

晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。即存在长程有序。性能上两大特点:(1)固定的熔点;(2)各向异性

空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境

晶胞:代表性的基本单元(最小平行六面体)

选取晶胞的原则:

Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;

Ⅱ)平行六面体内的棱和角相等的数目应最多;

Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;

Ⅳ)在满足上条件,晶胞应具有最小的体积。

晶体结构与空间点阵的区别:

空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14种。

晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。

晶带

所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”。此直线称为晶带轴,所有的这些晶面都称为共带面。晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系

hu+kv+lw=0 ————晶带定律

凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带

配位数:晶体界结构中任一原子周围最近邻且等距离的原子数

致密度:晶体结构中原子体积占总体积的百分比

三种晶体结构中的原子的密排面和密排方向fcc:{1 1 1}<110> ABCABCABC······bcc:{110} <111> hcp: {0001} <1120> ABABABAB······

多晶型性

有些固态金属在不同的温度和压力下具有不同的晶体结构即具有多晶型性,转变的产物称为同素异构体。由于不同晶体结构的致密度不同,当金属由一种晶体结构变为另一种晶体结构时,将伴随有质量体积的跃变即体积的突变

合金相结构

合金: 是指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

组元: 组成合金的基本的独立的物质。组元可以是金属和非金

属元素,也可以是化合物。

相:合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。固溶体:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

影响合金相性质的主要因素:(1)电化学因素;(2)原子尺寸因素;(3)电子浓度因素

置换固溶体:当溶质原子溶人溶剂中形成固溶体时,溶质原子占据溶剂点

阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子

影响溶解度的主要因素

晶体结构:晶体结构相同是组元间形成无限固溶体的必要条件。

原子尺寸因素:原子半径差小于15%,易形成溶解度较大的固溶体。

化学亲和力(电负性):原子间的化学亲和力愈强,易形成化合物,不易形成固溶体。

原子价因素:溶质原子价的影响实质是“电子浓度”所决定的。电子浓度=合金中价电子数目与原子数目的比值。

间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体

中间相:中间相可以是化合物,也可以是以化合物为基的固溶体(第二类固溶体或称二次固溶体)。中间相通常可用化合物的化学分子式表示。大多数中间相中原子间的结合方式属于金属键与其他典型键(如离子键、共价键和分子键)相混合的一种结合方式。因此,它们都具有金属性。分类:

1.正常价化合物

2.电子化合物

3.原子尺寸因素有关的化合物

1. 正常价化合物

在元素周期表中,一些金属与电负性较强得ⅣA、ⅤA、ⅥA族得一些元素按照化学上得原子价规律所形成的化合物

基本类型:A2B(或AB2)、A3B2

正常价化合物与组元间电负性的关系:

电负性差越小,化合物越不稳定,越趋于金属键结合

电负性差越大,化合物越稳定,越趋于离子键结合

2.电子化合物

特点:电子浓度是决定晶体结构的主要因素。相同的电子浓度具有相同的晶体结构类型。

电子浓度为21/12的电子化合物称为ε相,具有密排六方结构

电子浓度为21/13的电子化合物称为γ相,具有复杂立方结构

电子浓度为21/14的电子化合物称为β相,具有体心立方结构

固溶体的性质

和纯金属相比,由于溶质原子的溶入导致固溶体的点阵常数

改变,产生固溶强化及力学性能、物理和化学性能产生了不同

程度的变化

1).具有超导性质的金属间化合物,如Nb3Ge,Nb3Al,Nh3Sn,V3Si,NbN

等;

2).具有特殊电学性质的金属间化合物,如InTe-PbSe,GaAs-ZnSe等在半导

体材料用;

3).具有强磁性的金属间化合物,如稀土元素(Ce,La,Sm,Pr,Y等)和

Co的化合物,具有特别优异的永磁性能;

4).具有奇特吸释氢本领的金属间化合物(常称为贮氢材料),如LaNi5,

FeTi,R2Mg17和R2Ni2Mg15。(R等仅代表稀土La,Ce,Pr,Nd或混合稀

土)是一种很有前途的储能和换能材料;

5).具有耐热特性的金属间化合物,如Ni3Al,NiAl,TiAl,Ti3Al,FeAl,Fe3Al,MoSi2,NbBe12。ZrBe12等不仅具有很好的高温强度,并且,在高温下具有比较好的塑性;

6).耐蚀的金属间化合物,如某些金属的碳化物,硼化物、氨化物和氧化物等在侵蚀介质中仍很耐蚀,若通过表面涂覆方法,可大大提高被涂覆件的耐蚀性能;

7).具有形状记忆效应、超弹性和消震性的金属间化合物,如TiNi,CuZn,CuSi,MnCu,Cu3Al等已在工业上得到应用

离子晶体的结构规则

1.负离子配位多面体规则,离子晶体中,正离子的配位数通常为4和6,但也有少数为3,8,12

2.电价规则,在一个稳定的离子晶体结构中,每个负离子的电价Z-等于或接近等于与之相邻接的各正离子静电强度S 的总和。这就是鲍林第二规则,也称电价规则

3.负离子多面体共用顶、棱和面的规则,鲍林第三规则指出:“在一配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性

4.不同种类正离子配位多面体间连接规则,鲍林第四规则认为:"在含有一种以上正负离子的离子晶体中,一些电价较高,配位数较低的正离子配位多面体之间,有尽量互不结合的趋势。“

5.节约规则鲍林第五规则指出:"在同一晶体中,同种正离子与同种负离子的结合方式应最大限度地趋于一致。"因为在一个均匀的结构中,不同形状的配位多面体很难有效堆积在一起。

离子晶体按其化学组成分为二元化合物和多元化合物

硅酸盐的晶体结构

硅酸盐晶体是构成地壳的主要矿物,它们也是制造水泥、陶瓷、玻璃、耐火材料的主要原料。硅酸盐的成分复杂,结构形式多种多样。但硅酸盐的结构主要由三部分组成,一部分是由硅和氧按不同比例组成的各种负离子团,称为硅氧骨干,这是硅酸盐的基本结构单元,另外两部分为硅氧骨于以外的正离子和负离子

1、孤岛状硅酸盐

2、组群状硅酸盐晶体结构

3、链状硅酸盐

4、层状结构硅酸盐

5、架状硅酸盐

共价晶体结构

元素周期表中Ⅳ,Ⅴ,Ⅵ族元素、许多无机非金属材料和聚合物都是共价键结合。共价晶体的共同特点是配位数服从8-N法则小为原子的价电子数,这就是说结构中每个原子都有8-N个最近邻的原子

第三章晶体缺陷

缺陷形成的原因:在实际晶体中,由于原子(或离子、分子)的热运动,以及晶体的形成条件、冷热加工过程和其他辐射、杂质等因素的影响,实际晶体中原子的排列不可能那样规则、完整,常存在各种偏离理想结构的情况,即晶体缺陷。晶体缺陷对晶体的性能,特别是对那些结构敏感的性能,如屈服强度、断裂强度、塑性、电阻率、磁导率等有很大的影响。

点缺陷的平衡浓度:(1)造成点阵畸变,内能升高,热力学不稳定。

(2)熵值增大,增加热力学稳定性。

点缺陷的运动:

复合:在一定温度下,晶体中达到统计平衡的空位和间隙原子的数目是一定的,而且晶体中的点缺陷并不是固定不动的,而是处于不断的运动过程中。在运动过程中,当间隙原子与一个空位相遇时,它将落人该空位,而使两者都消失

晶体中的原子正是由于空位和间隙原子不断地产生与复合才不停地由一处向另一处作无规则的布朗运动,这就是晶体中原子的自扩散,是固态相变、表面化学热处理、蠕变、烧结等物理化学过程的基础

位错

刃型位错的特征

1刃型位错有一个额外的半原子面。

2 刃型位错可理解为晶体中已滑移区与未滑移区的边界线。它不一定是直线,也可以是折线或曲线,但它必与滑移方向相垂直,也垂直于滑移矢量。

3 滑移面必定是同时包含有位错线和滑移矢量的平面,在其他面上不能滑移。由于在刃型位错中,位错线与滑移矢量互相垂直,因此,由它们所构成的平面只有一个。

4 晶体中存在刃型位错之后,位错周围的点阵发生弹性畸变,既有切应变,又有正应变。就正刃型位错而言,滑移面上方点阵受到压应力,下方点阵受到拉应力;负刃型位错与此相反。

5 在位错线周围的过渡区(畸变区)每个原子具有较大的平均能量。但该区只有几个原子间距宽,畸变区是狭长的管道,所以刃型位错是线缺陷。

螺型位错

螺型位错的特征

1螺型位错无额外半原子面,原子错排是对称的。

2 根据位错线附近呈螺旋形排列的原子的旋转方向不同,螺型位错可以分为右旋和左旋螺型位错。

3 螺型位错线与滑移矢量平行,因此一定是直线,而且位错线的移动方向与晶体滑移方向互相垂直。

4 纯螺型位错的滑移面不是唯一的。凡是包含螺型位错线的平面都可以作为它的滑移面。

但实际上,滑移通常是在那些原子密排面上进行的。

5 螺型位错线周围的点阵也发生了弹性畸变,但是,只有平行于位错线的切应变而无正应变,即不会引起体积膨胀和收缩,且在垂直于位错线的平面投影上,看不到原子的位移,看不出有缺陷。

6 螺型位错周围的点阵畸变随离位错线距离的增加而急剧减少,包含几个原子宽度的线缺陷。

柏氏矢量的特性:

1柏氏矢量的方向表示位错的性质和位错的取向,即位错运动导致晶体滑移的方向;矢量的模表示了畸变的程度,即位错的强度

2位错与回路的起点及其途径无关,只要不和其他位错线相遇,不论回路怎么扩大、缩小、或任意移动,由此回路确定的柏氏矢量是唯一的,即柏氏矢量的守恒性

3位错有唯一的柏氏矢量

4位错可以分解,但必须符合变化前后柏氏矢量不变,强度不能大于分解前的强度

5位错可以结成环,终止于其他位错,界面,但不能终止于晶体内部

位错的运动

滑移:

位错在滑移时是通过位错线或位错附近的原子逐个移动很小的距离完成的

滑移的位错类型:刃型位错、螺型位错、混合位错

位错的滑移特点

(1)刃位错滑移方向与外力τ及柏氏矢量b平行,但与位错线垂直。滑移限于单一的滑移面。

(2)螺位错滑移方向与外力τ、位错线及柏氏矢量b垂直。对于螺型位错,由于位错线与柏氏矢量平行,它的滑移不限于单一的滑移面。

(3)混合位错滑移方向与外力τ及柏氏矢量b成一定角度(即沿位错线法线方向滑移)。(4)位错线运动方向的右手法则:以拇指表示移动的那部分晶体,食指表示位错线方向,则中指就表示位错线移动方向。

攀移

位错的攀移指在热缺陷或外力作用下,位错线在垂直其滑移面方向上的运动,结果导致晶体中空位或间隙质点的增殖或减少。刃位错除了滑移外,还可进行攀移运动。攀移的实质是多余半原子面的伸长或缩短。螺位错没有多余半原子面,故无攀移运动。

运动位错的交割

当一位错在某一滑移面上运动时,会与滑移面的其他位错交割。

位错交割时会发生相互作用,这对材料的强化、点缺陷的产生有重要意义

位错的滑移运动过程中,很难同时实现全长的运动,因此位错运动时,在受到阻碍的情况下,可能通过其中一部分线段先滑移

刃型位错的攀移是通过空位或原子的扩散来实现的,而原子或空位并不是在一瞬间就能一起扩散到整条位错线上,而是逐步迁移到位错线上,这样位错已攀移段与未攀移段之间就会产生一个台阶,于是在位错线上形成了割阶。有时位错的攀移可以理解成割阶沿位错线逐步推移,而使位错线上升或下降,因而攀移过程与割阶的形成能核移动速度有关

位错交割后的特性:位错交割后,每根位错线上都可能产生一扭折或割阶,其大小和方向取决于另一个位错的柏氏矢量,但是具有原位错的柏氏矢量

所有的割阶都是刃型位错,而扭折可以是刃型,也可以是螺型

扭折与原位错线位于同一滑移面上,可随主位错一起运动,几乎不产生阻力,而且扭折在线张力作用下易于消失

割阶与原位错不在同一滑移面上,除非发生攀移,否则就不能和主位错线一道运动,成为位错运动的障碍,通常成为割阶硬化

位错的弹性性质

位错的应力场:位错在晶体中的存在使其周围原子偏离平衡位置而导致点阵畸变和弹性应力场的产生

位错的能量分为两部分:

位错中心的畸变能+位错应力场引起的弹性应变能

位错中心畸变能占总应变能的1/10左右,可以忽略

位错的应变能:位错使其周围点阵畸变,点阵能量增加,点阵所增加的能量即为位错的应变能。

位错的线张力:位错总应变能与位错线的长度成正比。为了降低能量,位错线有力求缩短的倾向,故在位错线上存在一种使其变直的线张力T。

实际晶体中位错的柏氏矢量

柏氏矢量等于单位点阵矢量的位错称为单位位错

柏氏矢量等于点阵矢量或其整数倍的位错称为“全位错”,故全位错滑移后晶体原子排列不变;

把柏氏矢量不等于点阵矢量整数倍的位错称为"不全位错“

柏氏矢量小于点阵矢量的位错称为"部分位错"

b越小越稳定,即单位位错应该是最稳定的位错。

堆垛层错:实际晶体中,密排面顺序遭到破坏和错排

形成层错时几乎不产生点阵畸变,但它破坏了晶体的完整性和正常周期性,使电子发生反常的衍射效应,故使晶体的能量有所增加,这部分增加的能量称“堆垛层错能”

从能量角度看,晶体中出现层错的几率与层错能有关

层错能高,出现的几率就小

不全位错:若堆垛层错不是发生在晶体的整个原子面上而只是部分区域存在,那么,在层错与完整晶体的交界处就存在柏氏矢量b不等于点阵矢量的不全位错

a.肖克莱不全位错

位错的柏氏矢量为a/6[1-21]=b它与位错线相互垂直,故系刃型不全位错

肖克莱不全位错可以是刃型、螺型和混合型位错。

b.弗兰克(Frank)不全位错

抽去型称负弗兰克不全位错

插入型称正弗兰克不全位错

它们都属于a/3<111>且都垂直于层错面{111}

弗兰克位错属于纯刃型位错,不能在滑移面上滑移,但可以通过点缺陷的运动沿层错面攀移弗兰克不全位错又称为不滑动位错或固定位错,而肖克莱不全位错属于可动位错不全位错也由柏氏矢量表示,但不全位错的回路的起始点必须从层错上出发

密排六方和面心立方都可以形成这肖克莱或弗兰克不全位错

对于体心立方在{112}面出现堆垛层错时,在层错边界也会出现不全位错

界面包括外表面(自由表面)和内界面

表面是指固体材料与气体或液体的分界面,它与摩擦、磨损、氧化、腐蚀、偏析、催化、吸

附现象,以及光学、微电子学等均密切相关;

内界面可分为晶粒边界和晶内的亚晶界、孪晶界、层错及相界面等。

在晶体表面上,原子排列情况与晶内不同,表面原子会偏离其正常的平衡位置,并影响到邻近的几层原子,造成表层的点阵畸变,使它们的能量比内部原子高,这几层高能量的原子层称为表面

多数晶体物质是由许多晶粒所组成,属于同一固相但位向不同的晶粒之间的界面称为晶界,它是一种内界面;而每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。

小角度晶界的结构

晶界的结构和性质与相邻晶粒的取向差有关,当取向差θ小于10度时,称为小角度晶界

分为倾斜晶界、扭转晶界和重合晶界

多晶体材料中各晶粒之间的晶界通常为大角度晶界。

纯金属中大角度晶界的宽度不超过3个原子间距。

晶界能定义为形成单位面积界面时,系统的自由能变化(dF/dA),它等于界面区单位面积的能量减去无界面时该区单位面积的能量。

晶界的特性

晶界处点阵畸变大,存在着晶界能。

晶界处原子排列不规则,因此,晶界的存在会对位错的运动有阻碍作用,变形抗力、强度和硬度提高。

晶界处的原子的扩散比晶内快的多。

晶界的能量较高且原子活动能力大,新相在晶界处优先形成。

晶界熔点较低

晶界处腐蚀较快

孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为"孪晶"

错配度

式中aα和aβ分别表示相界面两侧的α相和β相的点阵常数,且aα>aβ

玻璃的析晶(失透)问题分析

玻璃失透的含义:玻璃是均质体,若出现析晶将破坏玻璃的均一性,是玻璃的一种严重缺陷。玻璃中失透的影响:玻璃的透光性,玻璃的机械强度和玻璃的热稳定性等。

实验结果表明:

熔体析晶能力由大到小排列:初晶区熔体> 界线上熔体> 共熔点处熔体

原因:不同晶体结构之间的相互干扰。

如何抑制玻璃析晶?

选择适当的配料点。

原料应混合均匀。

析晶的温度范围内短停留。

同时用多种氧化物来代替纯组元

第四章固体中原子及分子的运动

扩散(diffusion): 在一个相内因分子或原子的热激活运动导致成分混合或均匀化的分子动力学过程

菲克定律描述了固体中存在浓度梯度时发生的扩散,称为化学扩散

当扩散不依赖于浓度梯度,仅由热振动而引起时,则称为自扩散

置换型固溶体中的扩散

原因:两种原子扩散速率的差异

从热力学分析可知,扩散的驱动力并不是浓度梯度,而应是化学势梯度,由此不仅能解释通常的扩散现象,也能解释“上坡扩散”等反常现象。决定组元扩散的基本因素是化学势梯度,不管是上坡扩散还是下坡扩散,其结果总是导致扩散组元化学势梯度的减小,直至化学势梯度为零

引起上坡扩散还可能有以下一些情况:1).弹性应力的作用。晶体中存在弹性应力梯度时,它促使较大半径的原子跑向点阵伸长部分,较小半径原子跑向受压部分,造成固溶体中溶质原子的不均匀分布。2).晶界的内吸附。晶界能量比晶内高,原子规则排列较晶内差,如果溶质原子位于晶界上可降低体系总能量,它们会优先向晶界扩散,富集于晶界上,此时溶质在晶界上的浓度就高于在晶内的浓度。3).大的电场或温度场也促使晶体中原子按一定方向扩散,造成扩散原子的不均匀性。

“短路“扩散:由于晶界、表面及位错等都可视为晶体中的缺陷,缺陷产生的畸变使原子迁移比完整晶体内容易,导致这些缺陷中的扩散速率大于完整晶体内的扩散速率。

影响扩散的因素

1.温度

温度是影响扩散速率的最主要因素。温度越高,原子热激活能量越大,越易发生迁移,扩散系数越大

2.固溶体类型

不同类型的固溶体,原子的扩散机制是不同的。间隙固溶体的扩散激活能一般均较小。

例如,C,N等溶质原子在铁中的间隙扩散激活能比Cr,Al等溶质原子在铁中的置换扩散激活能要小得多,因此,钢件表面热处理在获得同样渗层浓度时,渗C,N比渗Cr或Al 等金属的周期短。

3.晶体结构

同素异构转变:例如铁在912℃时发生γ-Fe?α-Fe转变,α-Fe的自扩散系数大约是γ-Fe的240倍

合金元素在不同结构的固溶体中:例如900℃时,在置换固溶体中,镍在α-Fe比在γ-Fe 中的扩散系数高1400倍

晶体致密度:所有元素在α-Fe中的扩散系数都比在γ-Fe中大

结构不同固溶体中扩散元素溶解度不同而造成的浓度梯度:例如渗碳时,碳在γ-Fe中的溶解度远远大于在α-Fe中的溶解度,使碳在奥氏体中形成较大的浓度梯度而有利于加速碳的扩散

各向异性:晶体的对称性越低,扩散各向异性越显著。对高对称的立方晶体中没有发现D 有各向异性,而对称性低的菱方结构的铋,沿不同晶向的D值差距很大,最高近1000倍4.晶体缺陷

多晶材料扩散:晶内扩散<晶界扩散<表面扩散

5.化学成分

不同金属的自扩散激活能与其点阵的原子间结合力有关,因而与表征原子间结合力的宏观参量相关,熔点高的金属的自扩散激活能必然大。

扩散系数大小除了与上述的组元特性有关外,还与溶质的浓度有关,无论是置换固溶体还是间隙固溶体均是如此。

6.应力的作用

如果合金内部存在着应力梯度,那么,即使溶质分布是均匀的,但也可能出现化学扩散现象

反应扩散当某种元素通过扩散,自金属表面向内部渗透时,若该扩散元素的含量超过基体金属的溶解度,则随着扩散的进行会在金属表层形成中间相(也可能是另一种固溶体),这种通过扩散形成新相的现象称为反应扩散或相变扩散。

离子导体:当高温时离子比紧束缚的电子更容易活动,电导是由离子的定向扩散而实现的。

第五章形变和再结晶

弹性变形是指外力去除后能够完全恢复的那部分变形,可从原子间结合力的角度来了解它的物理本质

弹性变形的主要特征是:

(1)理想的弹性变形是可逆变形,加载时变形,卸载时变形消失并恢复原状

(2)金属、陶瓷和部分高分子材料不论是加载或卸载时,只要在弹性变形范围内,其应力与应变之间都保持单值线性函数关系,即服从虎克(Hooke)定律:

在正应力下,σ= Eε,在切应力下,τ=Gγ,

式中,σ,分别为正应力和切应力;ε,γ分别为正应变和切应变;E,G分别为弹性模量(杨氏模量)和切变模量

弹性模量与切变弹性模量之间的关系为:

式中,v为材料泊松比,表示侧向收缩能力。一般金属材料的泊松比在0.25~0.35之间,高分子材料则相对较大些

弹性模量代表着使原子离开平衡位置的难易程度,是表征晶体中原子间结合力强弱的物理量。金刚石一类的共价键晶体由于其原子间结合力很大,故其弹性模量很高;金属和离子晶体的则相对较低;而分子键的固体如塑料、橡胶等的键合力更弱,故其弹性模量更低,通常比金属材料的低几个数量级。

弹性的不完整性

多数工程上应用的材料为多晶体甚至为非晶态或者是两者皆有的物质,其内部存在各种类型的缺陷,弹性变形时,可能出现加载线与卸载线不重合、应变的发展跟不上应力的变化等有别于理想弹性变形特点的现象,称之为弹性的不完整性。

1.包申格效应

材料经预先加载产生少量塑性变形(小于4%),而后同向加载则σe升高,反向加载则σe 下降。此现象称之为包申格效应。它是多晶体金属材料的普遍现象。

2.弹性后效

一些实际晶体,在加载或卸载时,应变不是瞬时达到其平衡值,而是通过一种弛豫过程来完成其变化的。这种在弹性极限se范围内,应变滞后于外加应力,并和时间有关的现象称为弹性后效或滞弹性

3.弹性滞后

由于应变落后于应力,在σ-ε曲线上使加载线与卸载线不重合而形成一封闭回线,称之为弹性滞后

粘弹性

变形形式除了弹性变形、塑性变形外还有一种粘性流动。

所谓粘性流动是指非晶态固体和液体在很小外力作用下便会发生没有确定形状的流变,并且在外力去除后,形变不能回复。

一些非晶体,有时甚至多晶体,在比较小的应力时可以同时表现出弹性和粘性,这就是粘弹性现象粘弹性变形的特点是应变落后于应力。当加上周期应力时,应力—应变曲线就成一回线,所包含的面积即为应力循环一周所损耗的能量,即内耗

一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系

在其他条件相同时,晶体中的滑移系愈多,滑移过程可能采取的空间取向便愈多,滑移容易进行,它的塑性便愈好

面心立方晶体的滑移系共有{111}4<110>3=12个;

体心立方晶体,可同时沿{110}{112}{123}晶面滑移,故滑移系共有{110}6<111>2+{112}12<111>1+{123}24<111>1=48个;

而密好六方晶体的滑移系仅有(0001)1<11-20>3=3个。

由于滑移系数目太少,hcp多晶体的塑性不如fcc或bcc的好。

滑移的临界分切应力晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力

滑移的临界分切应力是一个真实反映单晶体受力起始屈服的物理量。其数值与晶体的类型、纯度,以及温度等因素有关,还与该晶体的加工和处理状态、变形速度,以及滑移系类型等因素有关

当Ф=90°或λ=90°时σs均为无限大

这说明当滑移面与外力方向平行,或垂直时不可能产生滑移

当Ф=45°时,σs最小,即产生滑移的最小分切应力

通常称取向因子大的为软取向,取向因子小的为硬取向

单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动,对于只有一组滑移面的hcp,这种现象尤为明显

多系滑移对于具有多组滑移系的晶体,滑移首先在取向最有利的滑移系(其分切应力最大)中进行,但由于变形时晶面转动的结果,另一组滑移面上的分切应力也可能逐渐增加到足以发生滑移的临界值以上,于是晶体的滑移就可能在两组或更多的滑移面上同时进行或交替地进行,从而产生多系滑移

孪生切变并未使晶体的点阵类型发生变化,但它却使均匀切变区中的晶体取向发生变更,变为与未切变区晶体呈镜面对称的取向,这一变形过程称为孪生

孪生的特点

(1)孪生变形也是在切应力作用下发生的,并通常出现于滑移受阻而引起的应力集中区,因此,孪生所需的临界切应力要比滑移时大得多。

(2)孪生是一种均匀切变,即切变区内与孪晶面平行的每一层原子面均相对于其毗邻晶面沿孪生方向位移了一定的距离,且每一层原子相对于孪生面的切变量跟它与孪生面的距离成正比

(3)孪晶的两部分晶体形成镜面对称的位向关系

孪晶形成的三种方式:

“变形孪晶”通过机械变形而产生的孪晶,也称为“机械孪晶”,它的特征通常呈透镜状或片状

“生长孪晶”它包括晶体自气态(如气相沉积)、液态(液相凝固)或固体中长大时形成的孪晶

“退火孪晶”,变形金属在其再结晶退火过程中形成的孪晶,它往往以相互平行的孪晶面为界横贯整个晶粒,是在再结晶过程中通过堆垛层错的生长形成的

当应力增加到一定值时出现反复变化的情况,主要是由孪晶造成的

一段后又呈光滑曲线,由于孪晶造成了晶体方位的变化,使某些滑移系处于有利的位向,于是开始滑移变形

对称性低、滑移系少的晶体容易发生孪生

密排六方金属:孪生面为{ 1 0 1 2 } 孪生方向为< 1 0 1 1 >

体心立方金属:孪生面为{ 1 1 2 } 孪生方向为< 1 1 1 >

面心立方金属:孪生面为{ 1 1 1 } 孪生方向为< 1 1 2 >

由于孪生变形时,整个孪晶区发生均匀切变,其各层晶面的相对位移是借助一个不全位错(肖克莱不全位错)运动而造成的

扭折

为了使晶体的形状与外力相适应,当外力超过某一临界值时晶体将会产生局部弯曲,这种变形方式称为扭折

扭折变形与孪生不同,它使扭折区晶体的取向发生了不对称性的变化。扭折是一种协调性变形,它能引起应力松弛,使晶体不致断裂

多晶体的塑性变形

1.晶粒取向的影响

多晶体的塑性变形就与晶体的结构类型有关:滑移系甚多的面心立方和体心立方晶体能满足这个条件,故它们的多晶体具有很好的塑性;相反,密排六方晶体由于滑移系少,晶粒之间的应变协调性很差,所以其多晶体的塑性变形能力可低

2.晶界的影响

晶界上原子排列不规则,点阵畸变严重,何况晶界两侧的晶粒取向不同,滑移方向和滑移面彼此不一致,因此,滑移要从一个晶粒直接延续到下一个晶粒是极其困难的,在室温下晶界对滑移具有阻碍效应

由于晶界数量直接决定于晶粒的大小,因此,晶界对多晶体起始塑变抗力的影响可通过晶粒大小直接体现。实践证明,多晶体的强度随其晶粒细化而提高。多晶体的屈服强度σs与晶粒平均直径d的关系可用著名的霍尔—佩奇(Hall-Petch)公式表示

式中,σ0反映晶内对变形的阻力,相当于极大单晶的屈服强度;K反映晶界对变形的影响系数,与晶界结构有关

固溶强化

随溶质含量的增加,固溶体的合金的强度、硬度提高,而朔性有所下降的现象

影响固溶强化的主要因素有:

(1)溶质原子的原子数分数越高,强化作用也越大,特别是当原子数分数很低时的强化效应更为显著

(2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。

(3)间隙型溶质原子比置换原子具有较大的固溶强化效果

(4)溶质原子与基体金属的价电子数相差越大,固溶强化作用越显著。

固溶强化的原因:溶质原子与位错的弹性交互作用、化学交互作用和静电交互作用等

屈服现象与应变时效

当应力达到上屈服点时,首先在试样的应力集中处开始塑性变形,并在试样表面产生一个与拉伸轴约成45°交角的变形带一吕德斯(Lüders)带

与此同时,应力降到下屈服点。随后这种变形带沿试样长度方向不断形成与扩展,从而产生拉伸曲线平台的屈服伸长

当屈服扩展到整个试样标距范围时,屈服延伸阶段就告结束

应力的每一次微小波动,即对应一个新变形带的形成

屈服现象的物理本质

1.Cottrell气团理论

通常认为在固溶体合金中,溶质原子或杂质原子可以与位错交互作用而形成溶质原子气团,即所谓的Cottrell气团

间隙型溶质原子和位错的交互作用很强,位错被牢固地钉扎住。位错要运动,必须在更大的应力作用下才能挣脱Cottrell气团的钉扎而移动,这就形成了上屈服点;而一旦挣脱之后位错的运动就比较容易,因此有应力降落,出现下屈服点和水平台

2.位错增殖理论

与低碳钢屈服现象相关连的还存在一种应变时效行为

当退火状态低碳钢试样拉伸到超过屈服点发生少量塑性变形后(a)卸载,然后立即重新加载拉伸,则可见其拉伸曲线不再出现屈服点(b),此时试样不发生屈服现象。

如果是将预变形试样在常温下放置几天或经200℃左右短时加热后再行拉伸,则屈服现象又复出现,且屈服应力进一步提高(c),此现象通常称为应变时效

a-预塑性变形;b-去载后立即再行加载;c-去载后放置一段时间或在200℃加热后再加载Cottrell气团理论能很好地解释低碳钢的应变时效。当卸载后立即重新加载,由于位错已经挣脱出气团的钉扎,故不出现屈服点;

如果卸载后放置较长时间或经时效则溶质原子已经通过扩散而重新聚集到位错周围形成了气团,故屈服现象又复出现

弥散分布型合金的塑性变形

当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。第二相粒子的强化作用是通过其对位错运动的阻碍作用而表现出来的。

根据位错理论,迫使位错线弯曲到曲率半径为R时所需切应力为

此时由于R=λ/2,所以位错线弯曲到该状态所需切应力为

塑性变形对材料组织与性能的影响

1.显微组织的变化

每个晶粒内部出现大量的滑移带或孪晶带;随着变形度的增加,原来的等轴晶粒将逐渐沿其变形方向伸长;当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,称为纤维组织。纤维的分布方向即是材料流变伸展的方向

2.亚结构的变化

晶体的塑性变形是借助位错在应力作用下运动和不断增殖。随着变形度的增大,晶体中的位错密度迅速提高,经严重冷变形后,位错密度可从原先退火态的

经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结。

进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。其中,高密度的缠结位错主要集中于胞的周围,构成胞壁,而胞内的位错密度很低

3.性能的变化

材料在塑性变形过程中,随着内部组织与结构的变化,其力学、物理和化学性能均发生明显的改变

a.加工硬化

金属材料经冷加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象.对那些不能通过热处理强化的材料如纯金属,以及某些合金,如奥氏体不锈钢等,主要是借冷加工实现强化的

单晶体的切应力一应变曲线显示塑性变形的三个阶段

Ι阶段——易滑移阶段:当τ达到晶体的τc后,应力增加不多,便能产生相当大的变形

Ⅱ阶段——线性硬化阶段:随着应变量增加,应力线性增长,此段也呈直线,且斜率较大,加工硬化十分显著

Ⅲ阶段——抛物线型硬化阶段:随应变增加,应力上升缓慢,呈抛物线型,θⅢ逐渐下降b.其他性能的变化

经塑性变形后的金属材料,由于点阵畸变,空位和位错等结构缺陷的增加,使其物理性能和化学性能也发生一定的变化。如塑性变形通常可使金属的电阻率增高,增加的程度与形变量

成正比。另外,塑性变形后,金属的电阻温度系数下降,磁导率下降,热导率也有所降低,铁磁材料的磁滞损耗及矫顽力增大

由于塑性变形使得金属中的结构缺陷增多,自由焓升高,因而导致金属中的扩散过程加速,金属的化学活性增大,腐蚀速度加快

4.形变织构

在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向,这种组织状态则称为形变织构

形变织构随加工变形方式不同主要有两种类型:1、拔丝时形成的织构称为丝织构,其主要特征为各晶粒的某一晶向大致与拔丝方向相平行;2、轧板时形成的织构称为板织构,其主要特征为各晶粒的某一晶面和晶向分别趋于同轧面与轧向相平行。

5.残余应力

储存能:塑性变形中外力所作的功除大部分转化成热之外,还有一小部分以畸变能的形式储存在形变材料内部

储存能的具体表现方式为:

宏观残余应力、微观残余应力及点阵畸变

回复和再结晶

回复:指新的无畸变晶粒出现之前所产生的亚结构和性

能变化的阶段;

再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒

的过程;

晶粒长大:指再结晶结束之后晶粒的继续长大

在两个不同的恒定温度产生同样程度的再结晶时,可得

这样,若已知某温度的再结晶激活能及此晶体在某温度完成再结晶所需的等温退火时间,就可计算出它再另一温度退火时完成再结晶所需的时间

再结晶温度

定义:冷变形金属开始进行再结晶的最低温度

测定方法:金相法或硬度法测定

标准:显微镜中出现第一颗新晶粒时的温度或以硬度下降

50%所对应的温度

工业生产中,通常以经过大变形量(约70%以上)的冷变形金属,经过1h退火能完成再结晶所对应的温度定义为再结晶温度

再结晶织构与退火孪晶

再结晶织构

通常具有变形织构的金属经再结晶后的新晶粒若仍具有择优取向,称为再结晶织构

退火孪晶

某些面心立方金属和合金如铜及铜合金,镍及镍合金和奥氏体不锈钢等冷变形后经再结晶退火后,其晶粒中会出现退火孪晶

第六章单组元相图及纯晶体的凝固

相:体系中具有相同物理与化学性质的,且与其他部分以界面分开的均匀部分

δ-Fe和α–Fe是体心立方结构

γ–Fe是面心立方结构

液态结构的最重要特征是原子排列为长程无序,短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏

成分过冷在合金的凝固过程中,由于液相中溶质分布发生变化而改变了凝固温度,这可由相图中的液相线来确定,因此,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷

K<1二元相图一角及所选合金成分;b)液-固界面前沿液体的实际温度分布;c)液体中完全不混合时液-固界面前沿溶质浓度的分布情况;d)溶质对应的凝固温度曲线;e)b与d 叠加后的过冷区

由于成分过冷,可使合金在正的温度梯度下凝固得到树枝状组织,而在纯金属凝固中,要得到树枝状组织必须在特殊获得的负温度梯度下,因此,成分过冷是合金凝固有别于纯金属凝固的主要特征.

最新材料科学基础总结

材料科学基础复习总结填空 1.过冷奥氏体发生的马氏体转变属于(非扩散型相变)。 2.碳钢淬火要得到马氏体组织,其冷却速度要(大于)临界冷却速度(vk)。 3.珠光体型的组织是由铁素体和渗碳体组成的(机械混合物)。 4.工件淬火后需立即回火处理,随着回火温度的提高,材料的硬度(越低)。 5.共析成分的液态铁碳合金缓慢冷却得到的平衡组织是P(铁碳相图) 6.表征材料表面局部区域内抵抗变形能力的指标为(硬度)。 7.下列原子结合键既具有方向性又具有饱和性的是(共价键)。 8.下面哪个不属于大多数金属具有的晶体结构(面心立方、体心立方、密排六方)。 9.面心立方结构晶胞中原子数个数是( 4 )。 10.如图1所示的位错环中,属于刃型位错的是()。 11.A为右螺旋位错,B为左螺旋位 错,C为正刃位错,D为负刃位错, E为混合位错。 判断方法是根据柏氏矢量与位错线 所形成的角度,图中位错环所标的 方向为位错线的规定方向,柏氏矢 量垂直于位错的是刃型位错,然后 将柏氏矢量按顺时针方向旋转90°,与位错方向相同的为正,相反的为负,叫做顺正逆负。柏氏矢量与位错方向平行的是螺型位错,方向相同的为右螺,方向相反为左螺,这叫做顺右逆左。除ABCD四点之外位错环上其他任意一点均是混合位错。 12.固体材料中物质传输的方式为(扩散)。液态是对流。 13.纯铁在室温下的晶体结构为(面心立方)。 14.由一种成分的液相同时凝固生成两种不同成分固相的过程称为(共晶)。 15.共析包晶 16.碳原子溶于α-Fe中形成的固溶体为(铁素体)。 17.钢铁材料的热加工通常需要加热到(奥氏体)相区。 18.成分三角形中标出了O材料的成分点( )。三元相图 19.白铜是以(镍)为主要合金元素的铜合金。 20.45钢和40Cr钢比较,45钢的(淬透性低(合金),淬硬性高(含碳量))。 21.金属塑性变形方式的是(滑移)。孪生 22.高分子大分子链的柔顺性决定了高分子材料独特的性能。 23.在置换型固溶体中,两组元原子扩散速率的差异引起的标记面漂移现象称为柯肯达耳效应。 24.为减少铸造缺陷,铸造合金需要熔点低、流动性好,因此一般选择共晶点附近的合金。 25.根据相律,对于三元合金,最大的平衡相数为4个。 26.调质处理是淬火+高温回火的复合热处理工艺。 27.材料塑性常用断后伸长率和断后收缩率两个指标表示。

(完整版)厦大材料科学基础知识点总结

第一章原子结构和键合 原子中一个电子的空间和能量的描述 (1)主量子数ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数K、L、M、N、O、P、Q (2)轨道动量量子数li:给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,s,p,d,f (3)磁量子数mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向 (4)自旋角动量量子数si:表示电子自旋的方向,取值为+1/2 或-1/2 核外电子的排布规律 (1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。而在同一电子层,电子依次按s,p,d,f的次序排列。 (2)Pauli不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。因此,主量子数为n的壳层,最多容纳2n2电子。 (3)Hund原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。 原子间的键(见作业) 第二章固体结构 晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。即存在长程有序。性能上两大特点:(1)固定的熔点;(2)各向异性 空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境 晶胞:代表性的基本单元(最小平行六面体) 选取晶胞的原则: Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性; Ⅱ)平行六面体内的棱和角相等的数目应最多; Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多; Ⅳ)在满足上条件,晶胞应具有最小的体积。 晶体结构与空间点阵的区别: 空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14种。 晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。 晶带 所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”。此直线称为晶带轴,所有的这些晶面都称为共带面。晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系 hu+kv+lw=0 ————晶带定律 凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带

2020年个人教学工作总结范文总结

个人教学工作总结范文总结 一、班主任工作:担任班主任这么多年了,工作之中充满欢乐,但又有难言的苦衷,对于我们汝州市体育中学的学生,班主任工作真是不轻松,在面对他们调皮和聪明并存的双重情况下,我只有审慎选择合理的方法, 我的小结分以下几部分: 1、对学生情况的掌握: ①学生底子差、基础特别薄弱; ②没有良好的学习习惯(课前不预习,课后不复习); ③任性、自我缺乏集体主义精神; ④思维活跃,反映灵敏,对新生事物接受比较快,对外界的变化反映灵敏; ⑤没有良好的习惯,前五天花钱花个够,后五天饥一顿,饱一顿,要请假。

2、对班风情况的掌握: ①学生在对事物的认同上容易达成共识; ②学生活跃,乐于参加学校的各项政治活动; ③学生中也有较强的自我组织活动能力; ④思想浮动,没有形成良好的学风。 3、我的工作方法: ①腿勤、口勤、手勤,以身作则,有条有理; ②以学习为中心,形成学生动手、动脑的良好学风; ③作好班干部的培养工作; ④随时同学生谈心,及时找出缺点,使学生加以改正。 ⑤在班上树立正气,对不良苗头及时制止。

4、我的工作思路: ①教会学生做人。在班级管理中,要求每一位学生认真对照自己的行为习惯,反思自己,提升自我的人格魅力,学会堂堂正正做人,踏踏实实做事, ②正确看待基础和发展的关系。针对我们学生基础差、底子薄的情况,首先端正自己的态度,恰当地看待基础和发展的关系。不放弃每一位学生,只要他们有一点进步就表扬鼓励他们。增加学生的学习信心、勇气和坚韧不拔的毅力。这半学期我班学生的学习情绪不断高涨,学风有所进步,班风有正气,学生基本上没有因班主任的工作失误而流失。 ③教育应用针对性。在班上设立了严厉的奖罚制度,对表现好的学生进行表扬,对差生进行个别谈心、家访等工作,使差生迎头赶上。 二、教学工作:今年我教的科目是七年级教学,学生基础差,对老师的教学水平要求更高。我从个个环节做起,一个环节也不放松。 ①备课。备课是教学环节第一步,决定这些课的成功与失败。虽然按我的教龄可能简备,提纲式的备课,但 ___这样做。还是一节一节地认真详细的备课。细心琢磨 ___使学生接受的更快。

材料科学基础总结

材料基础 一、名词解释 1、塑形变形: 2、滑移:晶体一部分相对另一部分沿着特定的晶面和晶向发生的平移滑动。滑移后再晶体表面留下滑移台阶,且晶体滑移是不均匀的。 3、滑移带:单晶体进行塑性变形后,在光学显微镜下,发现抛光表面有许多线条,称为滑移带。 4、滑移线:组成滑移带的相互平行的小台阶。 5、滑移系:一个滑移面和其上的一个滑移方向组成一个滑移系,表示晶体滑移是可能采取的一个空间方向。滑移系越多,晶体的塑形越好。 6、单滑移:当只有一组滑移系处于最有利的取向时,分切应力最大,便进行单系滑移。 7、多滑移:至少有两组滑移系的分切应力同时达到临界值,同时或交替进行滑移的过程。 8、交滑移:至少两个滑移面沿着某个共同的滑移方向同时或交替滑移,这种滑移叫交滑移。(会出现曲折或波纹状滑移带\最易发生交滑移的是体心立方晶体\纯螺旋位错) 9、孪生变形:在切应力作用下,晶体的一部分沿一定晶面和一定的晶向相对于另一部分作均匀的切变所产生的变形。(相邻晶面的相对位移量相等) 10、孪晶:孪生后,均匀切变区的取向发生改变,与未切变区构成镜面对称,形成孪晶。 11、晶体的孪晶面和孪生方向:体心,{112}【111】,面心立方{111}【112-】,密排六方{101-2} 【1-011】。 12、软取向,硬取向:分切应力最大时次取向是软取向;当外力与滑移面平行或垂直时,晶体无法滑移,这种取向称为硬取向。 13、几何软化、硬化:在拉伸时,随着晶体的取向的变化,滑移面的法向与外力轴的夹角越来越远离45度时滑移变得困难的这种现象是几个硬化;当夹角越来愈接近45度,使滑移越来越容易进行的现象叫做几何软化。 14、细晶强化:晶体中,用细化晶粒来提高材料强度的方法为细晶强化。也能改善晶体的塑形和韧性。 15、固熔强化:当合金由单相固熔体构成时,随熔质原子含量的增加,其塑性变形抗力大大提高,表现为强度,硬度的不断增加,塑性、韧性的不断下降,的这种现象称为固熔强化。(单相) 16、(多相)沉淀强化、时效强化:相变热处理 17、(多相)弥散强化:粉末冶金 18、纤维组织:随变形量的增加,晶粒沿变形方向被拉长扁平晶粒,变形量很大时,各晶粒一不能分辨而成为一片如纤维状的条纹称为纤维组织。 19、带状组织:当金属中组织不均匀,如有枝晶偏析或夹杂物时,塑性变形会使这些区域伸长,在热加工后或随后的热处理中会出现带状组织。 20、变形织构:多晶体材料中,岁变形度的增加,多晶体中原先取向的各个晶粒发生转动,从而使取向趋于一致,形成择优取向。丝织构【***】平行于线轴,板织构{***}【***】平行于扎制方向。 21、制耳:用有织构的扎制板材深冲成型零件时,将会因为板材各方向变形能不同,使深冲出来工件边缘不齐,壁厚不均的现象。 22、应变硬化、加工硬化:金属塑性变形过程中,随着变形量的增加,金属强度,硬度上升,塑性、韧性下降的现象。作用:变形均匀,均衡负载,增加安全性,提高强度 23、冷拉:试样在拉断前卸载,或因试样因被拉断二自动卸载,则拉伸中产生的大变形除少量可恢复外,大部分变形将保留下来的过程。

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

上交材料科学基础习题与解答

各章例题、习题以及解答 第1章原子结构与键合 1.何谓同位素?为什么元素的相对原子质量不总为正整数? 答案:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 2.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? 答案:原子数=个 价电子数=4×原子数=4×2.144×1024=8.576×1024个 a) b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以 3.有一共聚物ABS(A-丙烯腈,B-丁二烯,S-苯乙烯),每一种单体的质量分数均相同,求各单体的摩尔分数。 答案:丙烯腈(-C2H3CN-)单体相对分子质量为53; 丁二烯(-C2H3C2H3-) 单体相对分子质量为54; 苯乙烯(-C2H3C6H5-) 单体相对分子质量为104; 设三者各为1g,则丙烯腈有1/53mol,丁二烯有1/54mol,苯乙烯有1/104mol。 故各单体的摩尔分数为

1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?答案 2. 在多电子的原子中,核外电子的排布应遵循哪些原则?答案 3. 在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答案 4. 何谓同位素?为什么元素的相对原子质量不总为正整数?答案 5. 铬的原子序数为24,它共有四种同位素:4.31%的Cr 原子含有26个中子,83.76%含有28个中子,9.55%含有29个中子,且2.38%含有30个中子。试求铬的相对原子质量。答案 6. 铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu 63和Cu 65,试求两种铜的同位素之含量百分比。答案 7. 锡的原子序数为50,除了4f 亚层之外其它内部电子亚层均已填满。试从原子结构角度来确定锡的价电子数。答案 8. 铂的原子序数为78,它在5d 亚层中只有9个电子,并且在5f 层中没有电子,请问在Pt 的6s 亚层中有几个电子?答案 9. 已知某元素原子序数为32,根据原子的电子结构知识,试指出它属于哪个周期?哪个族?并判断其金属性强弱。答案 10. 原子间的结合键共有几种?各自特点如何?答案 11. 图1-1绘出三类材料—金属、离子晶体和高分子材料之能量与距离关系曲线,试指出它们各代表何种材料。答案 12. 已知Si 的相对原子质量为28.09,若100g 的Si 中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占 价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?答案 13. S 的化学行为有时象6价的元素,而有时却象4价元素。试解释S 这种行为的原因。答案 14. A 和B 元素之间键合中离子特性所占的百分比可近似的用下式表示: [ ] 1001%2 )(25.0?-=--B A x x e IC 这里x A 和x B 分别为A 和B 元素的电负性值。已知Ti 、O 、In 和Sb 的电负性分别为1.5,3.5,1.7和1.9,试计算TiO 2和InSb 的IC%。答案 15. Al 2O 3的密度为3.8g/cm 3,试计算a)1mm 3中存在多少原子?b)1g 中含有多少原子?答案

2020年教师个人工作总结范文大全

2020年教师个人工作总结范文大全 【篇一】2020年教师个人工作总结范文 一年来,在教育教学工作中,我始终坚持党的教育方针,面向全 体学生,教书育人,为人师表,确立“以学生为主体”,“以培养学 生主动发展”为中心的教学思想,重视学生的个性发展,重视激发学 生的创造水平,培养学生德、智、体、美、劳全面发展。 在这年里,我在思想上严于律己,热爱教育事业。时时以一个团 员的身份来约束自己,鞭策自己。对自己要求严格,力争在思想上、 工作上在同事、学生的心目中树立起榜样的作用。我还积极参加各类 政治业务学习,努力提升自己的政治水平和业务水平。服从学校的工 作安排,配合领导和老师们做好校内外的各项工作。 一、增强学习,持续提升思想业务素质。 这个学期,在教育教学工作中,我始终坚持党的教育方针,面向 全体学生,教书育人,为人师表,确立“以学生为主体”,“以培养 学生主动发展”为中心的教学思想,重视学生的个性发展,重视激发 学生的创造水平,培养学生德、智、体、美、劳全面发展。我在思想 上严于律己,热爱教育事业。时时以一个好教师的身份来约束自己, 鞭策自己,力争在思想上、工作上取得进步,得到提升,使自己能顺 应社会发展的需要,适合岗位竞聘的需要。 一学期来,我还积极参加各类学习,深刻剖析自己工作中的不足,找出自己与其他教师间的差别,写出心得体会,努力提升自己的政治 水平和理论修养。同时,服从学校的工作安排,配合领导和老师们做 好校内外的各项工作。“学海无涯,教无止境”,作为一名教师,只 有持续充电,才能维持教学的青春和活力。随着社会的发展,知识的 更新,也催促着我持续学习。所以,本学期,除了积极参加政治理论 学习外,我还积极实行业务学习,提升自己的工作水平和业务素养,

材料科学基础总结

材料科学基础总结 铸造C081 张云龙 一、名词解释 1、空间点阵:由周围环境相同的阵点在空间排列的三维列阵称为空间点阵。 2、晶体结构:由实际原子、离子、分子或各种原子集团,按一定规律的具体排列方式称为 晶体结构,或称为晶体点阵。 3、晶格常数:(为了便于分析晶体中的粒子排列,可以从晶体的点阵中取一个具有代表性 的基本单元作为点阵的基本单元,称为晶胞。)晶格常数就是指晶胞的边长。 4、晶向指数:(在晶格中,穿过两个以上结点的任一直线,都代表晶体中一个原子阵列在 空间的位向,称为晶向。)为了确定晶向在晶体中的相对取向,需要一种符号,这种符号称为晶向指数。 5、晶面指数:(在晶格中,由结点组成的任一平面都代表晶体的原子平面,称为晶面)为 了确定晶面在晶体中的相对取向,需要一种符号,这种符号称为晶面指数。 6、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。 7、配位数:每个原子周围最近邻且等距离的原子的数目称为配位数。 8、致密度:计算单位晶胞中原子所占体积与晶胞体积之比,比值称为致密度。 9、各向异性:晶体的某些物理和力学性能在不同方向上具有不同的数值,此为晶体的各向 异性。 10、晶体缺陷:通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。 11、点缺陷:在三维方向上尺寸都有很小的缺陷。 12、线缺陷:在两个方向上尺寸很小、令一个尺寸上尺寸较大的缺陷。(指各种类型的位错, 是晶体中某处一列或若干列原子发生了有规律的错排现象) 13、面缺陷:在一个方向上尺寸很小,令两个方向上尺寸较大的缺陷。 14、刃型位错:位错线与滑移方向垂直的位错。 15、螺型位错:位错线与滑移方向平行的位错。 16、混合型位错:位错线与滑移方向既不垂直也不平行而成任意角度的位错。 17、位错的滑移:在切应力的作用下,位错沿滑移面的运动称为位错的滑移。 18、位错的攀移:刃型位错在正应力的作用下,位错垂直于滑移面的运动。 19、单位位错:柏氏矢量的模等于该晶向上原子的间距的位错则为单位位错。 20、部分位错:柏氏矢量的模小于该晶向上原子的间距的位错则为部分位错。 21、扩展位错:两个肖克莱部分位错中间夹一层错,这样的位错组态称为扩展位错。 22、肖克莱部分位错:层错区与完整晶体区的交线。 23、弗克莱部分位错:层错区与右半部分完整晶体之间的边界。 24、上坡扩散:扩散由低浓度向高浓度进行而导致成分偏析或形成第二相的扩散。 25、下坡扩散:扩散由高浓度向低浓度进行而导致成分均匀的扩散。 26、原子扩散:扩散中只形成固溶体而无其它新相形成的扩散。 27、反应扩散:扩散中有新相形成的扩散。 28、自扩散:在均匀的固溶体或纯金属中原子的扩散,此种扩散不伴有浓度的变化。 29、互扩散:在不均匀的固溶体中异类原子的相对扩散,此种扩散伴有浓度的变化。 30、体扩散:通过均匀介质的扩散。 31、扩散能量:单位时间内通过垂直于扩散方向的单位面积的扩散物质流量。

上交材料科学基础各章例题、习题与及解答

各章例题、习题与及解答 第1章原子结构与键合 1.何谓同位素?为什么元素的相对原子质量不总为正整数? ????答案:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同 位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 ????2.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? ????答案:原子数=个 ????价电子数=4×原子数=4×2.144×1024=8.576×1024个 ????a) ????b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以 ????3.有一共聚物ABS(A-丙烯腈,B-丁二烯,S-苯乙烯),每一种单体的质量分数均相同,求各单体的摩尔分数。 ????答案:丙烯腈(-C2H3CN-)单体相对分子质量为53; ????丁二烯(-C2H3C2H3-) 单体相对分子质量为54; ????苯乙烯(-C2H3C6H5-) 单体相对分子质量为104; ????设三者各为1g,则丙烯腈有1/53mol,丁二烯有1/54mol,苯乙烯有1/104mol。 ????故各单体的摩尔分数为 1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?答案 2.在多电子的原子中,核外电子的排布应遵循哪些原则?答案 3.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什 么区别?性质如何递变?答案 4.何谓同位素?为什么元素的相对原子质量不总为正整数?答案 5.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含有28个中子,9.55% 含有29个中子,且2.38%含有30个中子。试求铬的相对原子质量。答案 6.铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量 百分比。答案

2020年度小学教师工作总结范文

2020年度小学教师工作总结范文 时间如流水,一学年的教学工作已接近尾声,回顾一年的工作, 想说的真是太多太多。这个年,既忙碌,又充实,在校领导和同事们 的协助下,我顺利的完成了各方面的工作。现将本学年的工作做一个 小结,借以促动提升。一、思想工作方面 本人思想端正,热情努力,服从领导的工作安排,办事认真负责。并在各方面严格要求自己,努力地提升自己,以便使自己更快地适合 社会发展的形势。热爱教育事业,把自己的精力、水平全部用于学校 的教学过程中,并能自觉遵守职业道德,在学生中树立了良好的教师 形象。能够主动与同事研究业务,互相学习,配合默契,教学水平共 同提升,能够顾全大局,团结协作。作为老师我更明白,只有持续充 电,才能维持教学的活力。这学期有幸有外出学习的机会,通过 学习活动,持续充实了自己、丰富了自己的知识和见识、为自己更好 的教学实践作好了准备。 二、教育教学方面 教育教学是我们教师工作的首要任务。教育是爱心事业,为培养 高素质的下一代。今年上半年本人担任初三(8)班班主任及数学教学工作,同时兼带初一一个班的数学教学。备课量大,任务繁重自不必多言。虽然很消耗脑力,每天要转换角色,转换思路上两节不同的数学课, 但是却使自己更快的再次熟悉教材,知识量也飞速增加,并融会贯通. 这对提升教学水平有很大的协助!痛并收获着,快乐着!我想,这种跨头 的独特经历今后不会在有了! 下半年本人担任初一(7)班的班主任,担任初一4、7两个班的数学 教学工作.在班级管理和课堂教学中,本人仍以培养学生自学水平为主,提升学生的素质为目标。通过教育,让学生深切的感受到拥有知识能够 提升生活和工作的质量,使自己成为一个睿智和有品位的人!本人深切 的明白,教育不是灌输,而是点燃火焰!班级作为学校教学活动的基础单

材料科学基础要背知识总结

2010级材料科学基础复习参考材料 一、名词解释 第二章 2-1 Crystalline and Non-crystalline 结晶态与非晶态 Crystalline: The state of a solid material characterized by a periodic and repeating three-dimensional array of atoms,ions,or molecules. Non-crystalline:The solid state wherein there is no long-range atomic order.sometimes the terms amorphous,glassy,and vitreous are used synonymously. 2-2 Single crystalline materials and polycrystalline materials 单晶与多晶材料 Single crystalline materials:A crystalline solid for which the periodic and repeated atomic pattern extends throughout its entirety without interruption. polycrystalline materials:Referring to crystalline materials that are composed of more than one crystal or grain. 2-3 Crystal structure, point lattice and unit cell 晶体结构、空间点阵、单位晶胞 Crystal structure:For crystalline materials,the manner in which atoms or ions are arrayed in space.It is defined in terms of the unit cell geometry and the atom positions within the unite cell. point lattice:The regular geometrical arrangement of points in crystal space. unit cell:The basic structural unit of a crystal structure.It is generally defined in terms of atom(or ion) positions within a parallelepiped volume. 2-4点群与空间群 点群:是指宏观晶体中对称要素的集合。它包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系。 空间群:晶体内部结构中全部对称要素的集合。 2-5 Direction indices and plane indices 晶向指数与晶面指数 晶向指数:晶体点阵在任何方向上分解为相互平行的结点直线组,质点等距离地分布在直线上。位于一条直线上的质点构成一个晶向。用表示,其中u v w是晶向矢量在参考坐标系X Y Z轴上的矢量分量等比例化简而得到。 晶面指数:可将晶体点阵在任何方向上分解为相互平行的结点平面,即晶面,用表示,h l k是晶面在三个坐标轴(晶轴)上截距倒数的互质整数比。 2-6 Coordination number and coordination polyhedron配位数与配位多面体 配位数:一个原子(或离子)周围同种原子(或异号离子)的数目为原子或离子的配位数 配位多面体:由原子(或离子)与其配位原子(或异号离子)组成的多面体结构为配位多面体。

上海交通大学材料科学基础试题真题

2005年上海交通大学材料科学基础考博试卷[回忆版] 材料科学基础: 8选5。每题两问,每问10分,我当10个题说吧,好多我也记不清是那个题下的小问了。 1。填空。你同学应该买那本材料科学基础习题了吧,看好那本此题就没多大问题,因为重复性很强。 2。论述刃位错和螺位错的异同点 3。画晶面和晶向,立方密排六方一定要会,不仅是低指数;三种晶型的一些参数象原子数配位数之类的 4。计算螺位错的应力。那本习题也有类似的,本题连续考了两年,让你同学注意下此题 5。置换固熔体、间隙固熔体的概念,并说明间隙固熔体、间隙相、间隙化合物的区别。那本习题上有答案、 6。扩散系数定义,及对他的影响因素 7。伪共晶定义,还有个相关的什么共晶吧,区分下。根据这概念好像有个类似计算的题,这我没做,不太记得了,总之就是共晶后面有点内容看下 8。关于固熔的题,好像是不同晶型影响固熔程度的题,我就记得当时我画了个铁碳相图举例说明了下还有两个关于高分子的题,我没做也没看是啥题 总之,我觉得复习材科把握课本及习题,习题很重要,有原题,而且我发现交大考试重基础,基本概念要搞清楚,就没问题。 上海交通大学2012年材料科学基础考博试卷[回忆版] 5 个大题,每个大题20分。下面列出的是材料科学基础的前五个大题,其中第一大题有几个想不起来了,暂列9个。 其实后边还有三道大题,一道是关于高分子的,一道是关于配位多面体的,还有最后一个是作为一个材料工作者结合经验谈谈对材料科学特别是对材料强韧化的看法和建议,我都没敢选。

一填空(20分,每空1分) 1 密排六方晶体有()个八面体间隙,()个四面体间隙 2 晶体可能存在的空间群有(230)种,可能存在的点群有(32)种。 3 离子晶体中,正负离子间的平衡距离取决于(),而正离子的配位数则取决于()。(鲍林第一规则) 4 共价晶体的配位数服从()法则。 5 固溶体按溶解度分为有限固溶体和无限固溶体,那么()固溶体永远属于有限固溶体。 6 空位浓度的计算公式:()。 7 菲克第一定律描述的是()扩散过程,菲克第二定律描述的是()扩散过程。 8 原子扩散的动力是(),物质由低浓度区域向高浓度区域的扩散过程称为()。9 一次再结晶的动力是(),而二次再结晶的动力是()。 二在立方晶体和密排六方晶体中画出下列M勒指数的晶面和晶向。(20分,每个2分)各有三个晶面、两个晶向,别的不记得了,就记得一个在密排六方中画[2 2 -4 3]晶向。 三简答 1 写出霍尔佩奇公式,并指出各参数的意义。(8分) 2 说明什么是屈服和应变失效,解释其机理。(12分) 四简答 1 忘了。。。(8分) 2 刃型位错和螺型位错的异同点(12分) 五相图题(20分)这个就是个送分题,Pb-Sn相图,分析w(Sn)%=50%的平衡凝固过程,并用杠杆定律计算室温下α相的含量。(见交大第三版材科第268、270页) 感言:可以看出,上交今年的材科题目比较简单,偏重于基础知识。这次考材科感觉像是上当了,复习的方向完全不对,那么多计算公式一个也没用到,像是一拳打出去扑了个空,而空间群有多少种、共价晶体配位数服从的8—N法则这种基础知识却没看到!所以以后要考的同学们一定要注意,课本要细细看一遍那,太难的题目基本不用做的。

教师个人年度工作总结范文5篇

教师个人年度工作总结范文5篇 工作总结对于我们的工作来说有不可替代的作用,通过工作总结,能寻找出工作中不足和优势,下面是小编搜集整理的教师个人年度 工作总结范文5篇,欢迎阅读。 (一)思想政治方面 我在师德上首先严格要求自己、与时俱进、爱岗敬业、为人师表、热爱学生、尊重学生。作为一名教师,自身的师表形象要时刻注意,在工作中我积极、主动、勤恳、责任心强,乐于接受学校布置的各 项工作;任劳任怨。在不断地学习中,努力使自己的思想觉悟、理论 水平、业务能力都得到较快的提高。对待学校分配的工作,在思想上 不敢有半点懈怠,积极认真的去完成,向优秀的同志看齐,用更高的标 准要求自己,不甘于平淡,不流于平庸.在与人相处中,做到谦虚谨慎,与 人为善,遵守工作纪律,不迟到,不早退。 (二)教育教学工作 根据学校的课堂教学常规严格做好备课、上课、听课、评课,及时批改作业、讲评作业,做好课后 辅导工作。追求扎实有效的课堂教学。根据学生的实际情况进行集体辅导和个人辅导,热情辅导中下生,重视对学生的知识考查, 做好学生的补漏工作。把堂上获取知识的主动权交给学生,让学生 成为信息的主动摄取者和加工者,充分发掘学生自己的潜能。使学 生从被动接受的“要我学”转化为主动的“我要学”,变“学会”为“会学”。班级工作: (1)本学期进行家访28次,主动电访80余次。10月获得班主任 之星。 (2)家长对班级整体工作和班主任工作的满意率比上期有一些提高,师生关系融洽。(3)班级五项评比、寝室生活两项工作呈上升的

趋势。班主任工作连续3个月为一等奖(4)庆祝国庆比赛获学校三等奖, (5)关注班级整体工作教学质量的提高,积极协助各科任老师对 班级教育教学4、语文教研方面 以上汇报,还有许多不足,恳请领导和教师的监督、关心、帮助,更好地发挥自己的一份力量,为学校增光添彩,愿和全校教职工携 手并进,共创美好明天 在教学工作上,根据学校的工作目标和教材的内容,了解学生的实际情况通过钻研教材、研究具体教学方法,制定了切实可行的学 期工作计划,为整个学期的**教学工作定下目标和方向,保证了整 个学期的教学工作顺利完成.在教学的过程中,学生是主体,让学生 学好知识是老师的职责。因此,在教学之前,认真贯彻《九年义务 教育**教学大纲》的精神,认真细致地研究教材,研究学生掌握知 识的方法。通过钻研教学大纲和教材,不断探索,尝试各种教学的 方法,以如何培养中学生创造能力教学实验专题。积极进行教学改革。积极参加市教研室、及学校组织的教研活动,通过参观学习, 外出听课,等教学活动,吸取相关的教学经验,提高自身的教学水平。通过利用网络资源、各类相关专业的书报杂志了解现代教育的 动向,开拓教学视野和思维。艺术需要个性,没有个性就无所谓艺术。在教学中尊重孩子的不同兴趣爱好,不同的生活感受和不同的 表现形式,方法等等,使他们形成自己不同的风格,不强求一律。 艺术的魅力就在于审美个性的独特性,越有个性的艺术就越美,越 能发现独特的美的人就越有审美能力,越有创造力。所以,在中学 **教育中,有意识地以学生为主体,教师为主导,通过各种游戏、 比赛等教学手段,充分调动他们的学习兴趣及学习积极性。让他们 的天性和个性得以自由健康的发挥。让学生在视、听、触觉中培养 了创造性思维方式,在进行艺术创作时充分得以自由地运用。四、 其它工作 除了日常的教学工作之外,能够积极参加学校组织的各项活动. 加强''师德师风''的学习.工作上不计酬劳,任劳任怨,通过和同事们 的共同努力,按时保质地完成了工作,取得一定的成绩。但在教学工

关于新教师年度工作总结范文八篇

关于新教师年度工作总结范文八篇 总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此十分有必须要写一份总结哦。那么总结有什么格式呢?下面是小编整理的新教师年度工作总结8篇,欢迎阅读与收藏。 转眼间,来到xx中学工作已将近一年的时间了。一年对于整个历史长河来说,只不过是沧海一粟,对于人的整个生命来说也只不过是几十分之一。但是,一年对于我这个刚刚走入社会的学生来说都可以用意义非凡来概括。在这近一年里我深刻体会到了做老师的艰辛和快乐,我把自己的青春倾注于我所钟爱的教育事业上,倾注于每一个学生身上。以下是我对一年工作的总结 一、师德方面 我始终认为作为一名教师应把“师德”放在一个极其重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。 二、教学方面 在教学准备上,新老师面临的问题是不熟悉教材,不了解重、难

点,也不知道应该怎样上课。对此,工作之初,我的心里十分着急,生怕因为课上得不好而影响了学生对知识的掌握以及对这门课的兴趣。但是,我也坚信“万事开头难”。所以,我每次都很认真的备课,查阅资料把自己的教案写好,因为写好教案是上好课德前提。 我有幸能得到一位教学经验非常丰富老师梁义红老师的指导,他在教学方面给我提出很多宝贵的建议,从他身上我学到了很多有用的东西。由于自己教学经验不足,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。这些使我个人应付和处理课堂各式各样问题的能力大大增强。为了把自己的教学水平提高,还经常网上找一些优秀的教案课件学习,还争取机会多出外听课,从中学习别人的长处,领悟其中的教学艺术。 在从教学理论方面。我在课余时间阅读了教育学理论的教学参考,而且还借阅大量有关中学数学教学方法的书籍,博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。 三、考勤方面 我在做好各项教育教学工作的同时,严格遵守学校的各项规章制度。处理好学校工作与个人之间的关系,晚上也尽量到校,为学生解决学习上的问题。“路漫漫其修远兮,吾将上下求索”。作为新教师,我唯有以最充分的准备、的努力去迎接新的挑战。 20xx即将过去,作为一个老师,肩负教书育人的职责,行为上要

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料 1、名词解释 (1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 (2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称 为共晶转变。 (3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。即HJB---包晶转变线,LB+δH→rJ (4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。 (5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析 (6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。 (7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。 (9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。 (10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线 通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。 (11)加工硬化:随着冷变形程度的增加,金属材料强度和硬 度指标都有所提高,但塑性、韧性有所下降。 (12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。 (13)能量起伏:能量起伏是指体系中每个微小体积所实际具 有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 (14)垂直长大:对于粗糙界面,由于界面上约有一半的原子 位置空着,故液相的原子可以进入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种长大方式为垂直生长。 (15)滑移临界分切应力:晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

相关文档
相关文档 最新文档