文档库 最新最全的文档下载
当前位置:文档库 › 无辨识自适应控制预估算法及应用

无辨识自适应控制预估算法及应用

无辨识自适应控制预估算法及应用
无辨识自适应控制预估算法及应用

自适应控制算法的实现

题目:自适应控制算法的实现 利用FOXBORO控制模块PIDA、FBTUNE、FFTUNE可以构成自适应和自整定控制算法。在电站应用中,这种算法可以用来克服过热、再热系统的纯滞后,实现磨煤系统的模糊控制,在其它行业的先进控制应用中也很具优势。 其基本组态方法如下: 1。建立PIDA模块。 MODOPT ≥ 4。 2。建立FBTUNE 和 FFTUNE 模块,分别将 PIDA.BLKSTA 参数连至 FBTUNE和 FFTUNE的PIDBLK。 3。将扰动量连至 FFTUNE 的LOAD_n (n=1~4)。 说明: 1。使用FBTUNE可以实现对PIDA中 PBAND(比例带)、INT(积分时间)、DERIV (微分时间)、DTIME(纯延迟时间)、SPLLAG(设定值超前-滞后系数)、FILTER (用于克服过程滞后与控制器滞后间不匹配的因子)的自整定。 2。当PIDA在PI或PID方式下,若FBTUNE的DFCT不大于1,如果此时FBTUNE的 PR_FL=0,可以实现控制对象不确定的模糊控制。这种方式不需要预整定。 3。当FBTUNE的 DFCT>1,或 PIDA 在 NIPID、PI_TAU、PID_TAU方式下,或 FBTUNE 的 PR_FL=1,需作预整定。预整定时,PIDA应处于手动状态,在 FBTUNE 的详细画面上置位 PTNREQ。预整定完毕,能确定 FBTUNE 的 PR_TYP (过程类型)、DFCT 及 PIDA 的 PBAND、INT、DERIV、DTIME、 SPPLLAG。 4。在FBTUNE的详细画面上置位STNREQ,若PIDA在自动状态下,FBTUNE将 进入自整定状态。建议将预整定的P、I、D参数或经验的P、I、D参数填入 FBTUNE详细画面的PM、IM、DM中。这样,在自整定不能很好满足控制要 求时,可以在FBTUNE的详细画面上置位 FB_HOLD,并 TOGGLE PIDRCL, 于是 FBTUNE 会将保留在 PM、IM、DM 中的整定参数装入PIDA中。复位 FB_HOLD,FBTUNE仍回到自整定状态。

自适应控制中PID控制方法

自适应PID 控制方法 1、自适应控制的理论概述 设某被控对象可用以下非线性微分方程来描述: '()((),(),,) ()((),(),,)x t f x t u t t y t h x t u t t θθ== (1-1) 其中x(t),u(t),y(t)分别为n,p,m 维列向量。假设上述方程能线性化、离散化,并可得出在扰动与噪音影响下的方程: (1)(,)()(,)()()()(,)()() X k k X k k U k k Y k H k X k V k θρθωθ+=Φ++=+ (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n,n,p,m,m 维列向量;(,)k θΦ、(,)k ρθ、(,)H k θ分别为n ×n 系统矩阵、n ×p 控制矩阵、m ×n 输出矩阵。那么自适应控制就就是研究:在矩阵(,)k θΦ,(,)k ρθ,(,)H k θ中的参数向量,随机 {()k ω},{v(k)}的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就就是说自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优与保持最优。 自适应控制就是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象与在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。 (3)自适应控制就是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统" 1、1模型参考自适应控制系统 模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点就是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总就是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论与Popov超稳定性理论的设计方法。 1、2自校正调节器 自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点就是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点就是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点就是参数适应快,缺点就是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

自适应控制算法

自适应控制算法综述 定时器Timer0中断服务子程序在整个控制过程中处于最核心地位。振动数据的采样频率就是通过定时器Timer0的中断周期来实现的,实际中中断周期为0.1ms 。程序每隔0.1ms 读取一次A/D 采集并平滑过的数据,调用单点数据的LMS 自适应处理子程序,计算完成后通过D/A 输出控制信号,经功放放大后作用于压电作动器。即实现了在采样频率10KHz 下,智能结构振动控制的实时处理。 参考自适应对消原理图,自适应对消的目的在于利用0v (n)和1v (n)的相关性,使y(n)成为0v (n)的估计值,则e(n)逼近s(n)的估计值。由图可得 e(n)=d(n)-y(n) 又有: d(n)=s(n)+ 0v (n) 所以: e(n)=s(n)+ 0v (n)-y(n) )]()()[(2)]()([)()(02022n y n v n s n y n v n s n e -+-+= 由于)(n y 是)(0n v 的估计值,又)(n s 与)(0n v 不相关,所以有E{2s(n)[v0(n)-y(n)]}为0,即有 E[)(2n e ]=E[)(2n s ]+E[(v0(n)-y(n))2] 显然,当y(n)趋于v0(n)时,有 )]([2n e E 取得最小值。 各信号的对应关系如下: s(n)-实验中振动对象自身所带的噪声信号。

v0(n)-实验中激振器激励振动对象的振动信号。 d(n)-实验中未对振动对象进行振动主动控制时的振动信号。 v1(n)-实验中激振器激励振动对象同时提供的激励参考信号。 y(n)-实验中控制器根据自适应控制算法提供的控制信号。 e(n)-实验中已对振动对象进行振动主动控制后的振动信号。 设自适应滤波器的长度m=64,收敛因子mu=0.005,信号长度n=512。m=64; mu=0.005; n=512; x=zeros(1,n+1); w=zeros(1,m*3); d=zeros(1,n+1); inputsignal=zeros(1,n+1); designsignal=zeros(1,n+1); outputsignal=zeros(1,n+1); errorsignal=zeros(1,n+1); e=0; y=0; for i=1:n ds=sin(2*pi*0.02(i-1))+0.2*WGN(1,1,1,’real’); xs=sin(2*pi*0.02(i-1)); for ii=2:m x(ii-1)=x(ii); end x(m)=xs; y=0; for ii=1:m y=y+x(ii)*w(ii); end e=ds-y;

自适应控制的相关算法

智能跑步机平台的运动控制 摘要:这个智能跑步机是一个促动平台,在虚拟现实的探索中允许步行用户不受约束的运动,该平台由通过球阵列地毯覆盖和安装在转盘的线性跑步机,及配备有用于线性和角运动两个致动装置。这个平台的主要控制任务是让步行者始终在平台的中心,同时抵消他任意走动 然后满足感知的约束。这个平台的控制问题也不小,由于运动系统中是不完全约束的。文章的第一部分是描述智能平台的运动控制装备的设计,线性运动和角运动平台的速度的控制输入和反馈是基于步行者通过外部视觉跟踪系统测量而获得。通常,基于观察者的干扰和步行者的随意速度,我们结合了反馈和前反馈,提出全球稳定控制项目。我们同样讨论了加速度和动力影响步行者的运动控制。文章的第二部分是致力于全面系统的实际运用上。作为最终全面平台的概念证明,机器的设计和智能跑步机的一个小规模实现原型的呈现,以及通过使用的全方位相机来获得人的助行器的平台上的位置的视觉定位方法。为了得到有效的运动控制设计建议,一系列的运动任务演示实验结果是报告和讨论使用了一个很小的运动跟踪器来呈现。 关键词:观察者的干扰,输入输出反馈,线性,原地运动平台,运动控制,不完整的系统,虚拟现实,视觉跟踪。 1、介绍 全向运动平台使用在虚拟现实上的探索,最终的目标是在虚拟现实场景中使用者完全沉浸于其中,我们头戴式显示器,很自然的速度自由行走任何方向,当我们保持着身体的平台运动范围和不需要任何穿戴的限制装备。比如追踪步行者位置和步调特征。用这种方式支持当地运动,这个平台抵消步行者的任意运动,以保持步伐一致。所以,联系观察者对步行者的影响,考虑输入指令的限制,避免使用者沉浸时的干扰。这就是欧洲探寻只能跑步机工作的主要任务。 不同的运动允许人们行走在虚拟环境中界面存在。很多情况,运动限制在1D线性跑步机上,有点像运输平台,用户由一个线束约束应用稳定特性和其他虚拟特效。为了适应微小缓慢的方向改变,这个跑步机将安装在转换平台上。另一种不同的方法是采取环形通道,这些活跃的移动转随着脚移动。再者,这些步行者需要避免快速的转换和高速度。对于在2D 无限制的平台上行走,全向跑步机上回使用两个垂直的方向带和很大的环形,而实施圆环状带排列在圆环跑步机。由于控制系统的缺陷,两种机构系统都需要允许限制速度。更多的是机械的实现受到限制是由于大量的运动片段。这种问题是不存在想智能领域的无源器件。然而,步行者的自然性是由球形地板内曲率的限定。过去常常使用二者选一的原则,这个输送带和旋转平台输送的运动通过球阵列板来认识2D平面跑步机。在球形列放置在一个凹面上不动,但是有传感器仪器检测角接触。

自适应控制实验

k c t t 实验一 一、 可增益Lyapunov-MRAC 算法 1.1 步骤: 已知: N (s ) D (s ) 第一步:选择参考模型,即Gm (s ); 第二步:选择输入信号 y r (t )和自适应增益γ; 第三步:采样当前参考模型输出 y m (t )和系统实际输出 y p (t ); 第四步:利用公式 & ( )= γe (t ) y r (t ) 和公式 u ( )= k c (t ) y r (t ) ; 第五步:t t+h ,返回第三步,继续循环。 1.2 考虑如下被控方对象模型: G p (s )= 选择参考模型为: k p (s + 1) s 2 + 5s + 1 , k p 未知(仿真时取 k p =1) G m (s )= k m (s + 1) s 2 + 5s + 1 , k m =1 因为 G P (s )、 G m (s )均为严格正实函数。取自适应增益γ=0.2,输入 y r 为 方波信号,幅值r=1,采用可调增益Lyapunov-MRAC 算法,仿真程序以及仿真结 果如下。 二、仿真程序 %可调增益Lyapunov-MRAC clear all ;close all ; h=0.1;L=100/h;%数值积分步长和仿真步数 num=[1 1];den=[1 5 1];n=length(den)-1; kp=1;[Ap,Bp,Cp,Dp]=tf2ss(kp*num,den); km=1;[Am,Bm,Cm,Dm]=tf2ss(km*num,den); gamma=0.2; yr0=0;u0=0;e0=0; xp0=zeros(n,1);xm0=zeros(n,1); kc0=0; r=1;yr=r*[ones(1,L/4) -ones(1,L/4) ones(1,L/4) -ones(1,L/4)]; for k=1:L; time(k)=k*h;

自适应控制中PID控制方法

自适应控制中P I D控 制方法 -CAL-FENGHAI.-(YICAI)-Company One1

自适应PID 控制方法 1、自适应控制的理论概述 设某被控对象可用以下非线性微分方程来描述: '()((),(),,) ()((),(),,)x t f x t u t t y t h x t u t t θθ== (1-1) 其中x(t),u(t),y(t)分别为n,p,m 维列向量。假设上述方程能线性化、离散化,并可得出在扰动和噪音影响下的方程: (1)(,)()(,)()()()(,)()() X k k X k k U k k Y k H k X k V k θρθωθ+=Φ++=+ (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n ,n ,p ,m ,m 维列向量;(,)k θΦ、(,)k ρθ、(,)H k θ分别为n ×n 系统矩阵、n ×p 控制矩阵、m ×n 输出矩阵。那么自适应控制就是研究:在矩阵(,)k θΦ,(,)k ρθ,(,)H k θ中的参数向量,随机{()k ω},{v(k)}的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就是说自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优和保持最优。 自适应控制是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。 (3)自适应控制是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统" 模型参考自适应控制系统 模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论和Popov超稳定性理论的设计方法。 自校正调节器 自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点是参数适应快,缺点是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

系统辨识与自适应控制硕士研究生必修课程考核

《系统辨识与自适应控制》硕士研究生必修课程考核(检测技术与自动化装置专业)2003.5. 22 可下载自https://www.wendangku.net/doc/0517980386.html,/xuan/leader/mrj/ 学生姓名:考核成绩: 一、笔试部分 (占课程成绩的 80% ) 考试形式:笔试开卷 答卷要求:笔答,可以参阅书籍,要求简明扼要,不得大段抄教材,不得相互抄袭 试题: 1 简述系统辨识的基本概念(概念、定义和主要步骤)(10分) 2 简述相关辨识的基本原理和基于二进制伪随机序列的相关辩识方法(原理、 框图、特点)。(10分) 3 简述离散线性动态(SI / SO)过程参数估计最小二乘方法(LS法)的主要 内容和优缺点。带遗忘因子递推最小二乘估计(RLS法)的计算步骤和主要递推算式的物理意义(10分) 4 简述什么是时间序列?时间序列建模如何消除恒定趋势、线性趋势和季节性 的影响?(10分) 5 何谓闭环系统的可辨识性问题,它有那些主要结论?(10分) 6 何谓时间离散动态分数时滞过程?“分数时滞”对过程模型的零点和极点有 什么影响?(10分) 7 简述什么是自适应控制,什么是模型参考自适应控制(MRAC)?,试举一例说明MRAC的设计方法(10分)。 8 请设计以下过程( yr = 0 ) y(k) -1.6y(k-1)+0.8y(k-2) = u(k-2)- 0.5u(k-3)+ε(k)+1.5ε(k-1)+0.9ε(k-2) 的最小方差控制器(MVC)和广义最小方差控制器(GMVC), 并分析他们的主要性能。(10分) 二、上机报告RLS仿真(占课程成绩的 20%) 交卷时间:6月9日下午

PID自适应控制学习与Matlab仿真

PID自适应控制学习与Matlab仿真 0 引言 在P ID控制中,一个关键的问题便是P I D参数整定。传统的方法是在获取对象数学模型的基础上,根据某一整定原则来确定PID参数。然而实际的工业过程往往难以用简单的一阶或二阶系统来描述,且由于噪声、负载扰动等因素的干扰,还可以引起对象模型参数的变化甚至模型结构的政变。这就要求在P I D 控制中。不仅PID参数的整定不依赖于对象数学模型,而PID参数能在线阐整,以满足实时控制的要求。 1 自适应控制的概念及分类 控制系统在设计和实现中普通存在着不确定性,主要表现在:①系统数学模型与实际系统间总是存在着差别,即所谓系统具有末建模的动态特性;②系统本身结构和参数是未知的或时变的;③作用在系统上的扰动往往是随机的,且不可量测;④系统运行中,控制对象的特性随时间或工作环境改变而变化,且变化规律往往难以事先知晓。 为了解决控制对象参数在大范围变化时,一般反馈控制、一般优控制和采用经典校正方法不能解决的控制问题。参照在日常生活中生物能够遏过自觉调整本身参数改变自己的习性,以适应新的环境特性。为此,提出自适应控制思想。 自适应控制的概念 所谓自适应控制是指对于控制对象的动态信息了解得不够充分对周围环境变化尚掌握不够明确的情况下控制系统对控制器的参数进行积极的自动调节。 自适应控制方法应该做到:在系统远行中,依靠不断采集控制过程信息,确定被控对象的当前实际工作状态,优化性能准则,产生自适应控制规律,从而实时地调整控制器结构或参数,使系统始终自动地工作在最优或次最优的运行状态下。 作为较完善的自适应控制应该具有以下三方面功能: (1)系统本身可以不断地检测和处理理信息,了解系统当前状态。 (2)进行性能准则优化,产生自适应校制规律。 (3)调整可调环节(控制器),使整个系统始终自动运行在最优或次最优工作状态。 自适应控制是现代控制的重要组成部分,它同一般反馈控制相比较有如下突出特点: (1) 一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。 (2) 一般反馈控制具有强烈抗干扰能力,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而能消除状态扰动引起的系统误差,而且还能消除系统结构扰动引起的系统误差。 (3) 一般反馈控制系统的设计必须事先掌握描述系统特性的数学模型及其环境变化状况,而自适应控制系统设计则很少依赖数学模型全部,仅需要较少的验前知识,但必须设计一套自适应算法,因而将更多地依靠计算机技术实现。 (4) 自适应控制是更复杂的反馈控制,它在一般反调控制的基础上增加了自适应控制机构或辨识器,还附加一个可调系统。 自适应控制系统的基本结构与分类 通常,自适应控制系统的基本结构有两种形式,即前馈自适应控制和反馈自适应控制。 1.2.1 前馈自适应控制结构 前馈自适应控制亦称开环自适应控制,它借助对作用于过程信号的测量。并通过自适应机构按照这些测量信号改变控制器的状态,从而达到改变系统特性的目的。没有“内”闭

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

系统辨识及自适应控制实验..

Harbin Institute of Technology 系统辨识与自适应控制 实验报告 题目:渐消记忆最小二乘法、MIT方案 与卫星振动抑制仿真实验 专业:控制科学与工程 姓名: 学号: 15S004001 指导老师: 日期: 2015.12.06 哈尔滨工业大学 2015年11月

本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用; 第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响; 第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。 一、系统辨识 1. 最小二乘法的引出 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。设单输入-单输出线性定长系统的差分方程为: ()()()()()101123n n x k a x k a k n b u k b u x k n k +-+?+-=+?+-=,,,, (1.1) 错误!未找到引用源。 式中:()u k 错误!未找到引用源。为控制量;错误!未找到引用源。为理论上的输出值。错误!未找到引用源。只有通过观测才能得到,在观测过程中往往附加有随机干扰。错误!未找到引用源。的观测值错误!未找到引用源。可表示为: 错误!未找到引用源。 (1.2) 式中:()n k 为随机干扰。由式(1.2)得 错误!未找到引用源。 ()()()x k y k n k =- (1.3) 将式(1.3)带入式(1.1)得 ()()()()()()()101111()n n n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+?+-=+-+?+ -++-∑ (1.4) 我们可能不知道()n k 错误!未找到引用源。的统计特性,在这种情况下,往往把()n k 看做均值为0的白噪声。 设 错误!未找到引用源。 (1.5)

自适应控制的分类_自适应控制的主要类型

自适应控制的分类_自适应控制的主要类型 什么是自适应控制1、自适应控制所讨论的对象,一般是指对象的结构已知,仅仅是参数未知,而且采用的控制方法仍是基于数学模型的方法。 2、但实践中我们还会遇到结构和参数都未知的对象,比如一些运行机理特别复杂,目前尚未被人们充分理解的对象,不可能建立有效的数学模型,因而无法沿用基于数学模型的方法解决其控制问题,这时需要借助人工智能学科,也就是智能控制。 3、自适应控制与常规的控制与最优控制一样,是一种基于数学模型的控制方法。 4、自适应控制所依据的关于模型的和扰动的先验知识比较少,需要在系统的运行过程中不断提取有关模型的信息,使模型愈来愈准确。 5、常规的反馈控制具有一定的鲁棒性,但是由于控制器参数是固定的,当不确定性很大时,系统的性能会大幅下降,甚至失稳。 自适应控制的原理框图 自适应控制的分类自从50年代末由美国麻省理工学院提出第一个自适应控制系统以来,先后出现过许多不同形式的自适应控制系统。比较成熟的自适应控制系统有下述几大类。(1)可变增益自适应控制系统 这类自适应控制系统结构简单,响应迅速,在许多方面都有应用。其结构如图1所示,调节器按被控过程的参数的变化规律进行设计,也就是当被控对象(或控制过程)的参数因工作状态或环境情况的变化而变化时,通过能够测量到的某些变量,经过计算而按规定的程序来改变调节器的增益,以使系统保持较好的运行性能。另外在某些具有非线性校正装置和变结构系统中,由于调节器本身对系统参数变化不灵敏。采用此种自适应控制方案往往能去的较满意的效果。 (2)模型参考自适应控制系统(Model Reference Adaptive System,简称MRAS) 模型参考自适应控制系统由以下几部分组成,即参考模型、被控对象、反馈控制器和调整控制器参数的自适应机构等部分组成,如图2所示

自适应控制中PID控制方法

自适应PID控制方法 1、自适应控制的理论概述 设某被控对象可用以下非线性微分方程来描述: (1-1) 其中x(t),u(t),y(t)分别为n,p,m维列向量。假设上述方程能线性化、离散化,并可得出在扰动和噪音影响下的方程: (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n,n,p,m,m n×n系统矩阵、n×p控制矩阵、m×n输出矩阵。那么自适应控 制就是研究:随机 的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就是说 自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优和保持最优。 自适应控制是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要 研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。 (3)自适应控制是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统" 1.1模型参考自适应控制系统 模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论和Popov超稳定性理论的设计方法。 1.2自校正调节器 自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点是参数适应快,缺点是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

自适应控制习题(系统辨识)

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社, 2007) 【2-1】 设某物理量丫与XI 、X2、X3的关系如下:丫=0 1X1 + 0 2X2+0 3X3 由试验获得的数据如下表。试用最小二乘法确定模型参数 0 1、0 2和0 3 X1:0.620.4 0.420.820.660.720.380.520.450.690.550.36 X2:12.014.214.612.110.88.2013.010.58.8017.014.212.8 X3:5.206.100.328.305.107.904.208.003.905.503.806.20 Y: 51.649.948.550.649.748.842.645.937.864.853.445.3 【2-3】 考虑如下模型 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(入 =0.95)和递推最小二乘法 估计模型参数(限定数据长度 N 为某一数值,如N=150或其它数值),并将结果加以比 较。 【2-4】 对于如下模型 (1 _0.8z 1 0.15z 2 )y(k) 一(z 2 0.5z 3 )u(k) - (1 - 0.65z 1 - 0.1z 2 )w(k) 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB^的函数“ randn ”产生)。 【3-1】 设有不稳定系统: (1z 1)y(k) - z ^(10.9z 1)u(k) 期望传递函数的分母多项式为 Amz z m r 且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2} 设有被控过程:一 - _ (1 1.7z 1 0.6z 2)y(k)z 2(11.2z 1 )u(k) 一 ~ - 一 - -1.3z 0.5z u(t)w(t) I 0.3z 2 1 - - T ()(10.5 ),期望输出y 跟踪参考输入y , y(t)

自适应控制课程总结及实验

自适应控制 一、课程综述 1. 引言 传统的控制理论中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论是采用频域方法还是状态空间方法对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确的描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。因此,在工程中,要成功设计一个良好的控制系统,不论是通常的反馈控制系统或是最优控制系统,都需要掌握好被控系统的数学模型。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的。对于这些事先难以确定数学模型的系统,通过事先鉴定好控制器参数的常规控制难以应付。 面对这些系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就是自适应控制所要解决的问题。 2. 自适应控制的原理 自适应控制的定义:(1)不论外界发生巨大变化或系统产生不确定性,控制系统能自行调整参数或产生控制作用,使系统仍能按某一性能指标运行在最佳状态的一种控制方法。(2)采用自动方法改变或影响控制参数,以改善控制系统性能的控制。 ; 自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断的测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而做出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。 按这种思想建立起来的控制系统就称为自适应控制系统。自适应控制是主动去适应这些系统或环境的变化,而其他控制方法是被动地、以不变应万变地靠系统本身设计时所考虑的稳定裕度或鲁棒性克服或降低这些变化所带来的对系统稳定性和性能指标的影响。好的自适应控制方法能在一定程度上适应被控系统的参数大范围的变化,使控制系统不仅能稳定运行,而且保持某种意义下的最优或接近最优。 自适应控制也是一种基于模型的方法,与基于完全模型的控制方法相比,它所以来的关于模型和扰动的先验知识比较少,自适应控制策略可以在运行过程中不断提取有关模型的信息,自动地使模型逐渐完善。 3. 自适应控制的现状

相关文档
相关文档 最新文档