文档库 最新最全的文档下载
当前位置:文档库 › 正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理
正弦定理和余弦定理

04—正弦定理和余弦定理

利用正弦定理解三角形

(2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况.

[例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1

2

b ,且

a >

b ,则B =( ) A.π6 B.π3 C.2π3 D.5π

6

(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π

6,则b =________.

[解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos

A =12b 中,得2R sin A ·sin

B cos

C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A

+C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6

.

(2)在△ABC 中,∵sin B =12,0

6,

∴A =π-π6-π6=2π

3.∵a sin A =b sin B ,∴b =a sin B sin A

=1.[答案] (1)A (2)1

[易错提醒]

(1)应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍. (2)求角时易忽略角的范围而导致错误,需要根据大边对大角,大角对大边的规则,画图帮助判断.

利用余弦定理解三角形

(2)已知三边,求三个内角.

[例2] (1)在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,则这个三角形的最大边等于( ) A .4 B .14 C .4或14 D .24

(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C +3

2

c =b ,则A =________.

[解析] (1)因为a -b =4,所以b =a -4且a >b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°.

由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·????-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B.

(2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3

2

c =b ,化简

整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π

6

利用正、余弦定理解三角形

[例3] 设△ABC 1,A =2B .

(1)求a 的值;(2)求sin ???

?A +π

4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2

2ac .因为b

=3,c =1,所以a 2=12,a =2 3.

(2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-1

3

.因为0

1-cos 2A =

1-1

9

223.故sin ????A +π4=sin A cos π4+cos A sin π4=4-26

. [方法技巧]

正、余弦定理的运用技巧

解三角形时,一般是根据正弦定理求边或列等式,若式子中含有角的正弦或边的一次式时,则考虑用正弦定理;余弦定

理揭示的是三角形的三条边与其中一个角之间的关系,若式子中含有角的余弦或边的二次式,则考虑用余弦定理;若以上特征都不明显,则要考虑两个定理都有可能用到.

突破点(二) 利用正、余弦定理判断三角形的形状

1.应用余弦定理判断三角形形状的方法:在△ABC 中,c 是最大的边,若c 2a 2+b 2,则△ABC 是钝角三角形.

2.判断三角形形状的常用技巧:若已知条件中既有边又有角,则:(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三

利用正、余弦定理判断三角形的形状

[典例] (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c

b

(2)(2017·锦州模拟)在△ABC 中,cos 2B 2=a +c

2c

(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状

为( )

A .等边三角形

B .直角三角形

C .等腰三角形或直角三角形

D .等腰直角三角形

[解析] (1)已知c b

sin B

A ,即sin

B ·cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,则B 为钝角,所以△AB

C 是钝角三角形.

(2)∵cos 2

B 2=a +c 2c ,∴1+cos B 2=a +c 2c ,即1+cos B =a +c c .由余弦定理得1+a 2+c 2-b 22ac

=a +c c .整理得c 2

=a 2+b 2,即△ABC 为直角三角形.[答案] (1)A (2)B

[易错提醒]

在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.

三角形面积问题

练掌握三角形面积公式,具体的题型及解题策略为:(1)利用正弦定理、余弦定理解三角形,求出三角形的有关元素之后,直接求三角形的面积,或求出两边之积及夹角正弦,再求解.(2)把面积作为已知条件之一,与正弦定理、余弦定理结合求出三角形的其他各量.面积公式中涉及面积、两边及两边夹角正弦四个量,结合已知条件列方程求解.

[例1] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(2b -c )cos A =a cos C . (1)求角A 的大小;(2)若a =3,b =2c ,求△ABC 的面积.

[解] (1)根据正弦定理,由(2b -c )cos A =a cos C ,得2sin B cos A =sin A cos C +sin C cos A , 即2sin B cos A =sin(A +C ),所以2sin B cos A =sin B ,因为0

所以cos A =12,因为0

3

.

(2)因为a =3,b =2c ,由(1)得A =π

3,所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12

解得c =3,所以b =2 3.所以S △ABC =12bc sin A =12×23×3×32=33

2

.

[方法技巧]

三角形面积公式的应用原则

(1)对于面积公式S =12ab sin C =12ac sin B =1

2bc sin A ,一般是已知哪一个角就使用哪一个公式.

(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.

三角形中的范围问题

解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将

原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.

[例2] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.

(1)证明:B -A =π

2

;(2)求sin A +sin C 的取值范围.

[解] (1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A

sin B

,所以sin B =cos A ,即sin B =sin ????π2+A . 因为B 为钝角,所以A 为锐角,所以π2+A ∈????π2,π,则B =π2+A ,即B -A =π2

. (2)由(1)知,C =π-(A +B )=π-????2A +π2=π2-2A >0,所以A ∈???

?0,π

4.于是sin A +sin C =sin A +sin ????π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2????sin A -142+98.因为0

, 因此22<-2????sin A -142+98≤98.由此可知sin A +sin C 的取值范围是???

?22,9

8. [易错提醒]

涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.

正、余弦定理在平面几何中的应用

在平面几何图形中考查正弦定理、余弦定理是近几年高考的热点,解决这类问题既要抓住平面图形的几何性质,也要灵活选择正弦定理、余弦定理、三角恒等变换公式.

此类题目求解时,一般有如下思路:

(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.

做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.

[例3] (2017·广东茂名模拟)如图,已知在△ABC 中,角A ,B ,C 所对的边分别

为a ,b ,c .若B =π

3

,b =7,c =2,D 为BC 的中点.

(1)求cos ∠BAC 的值;(2)求AD 的值.

[解] (1)法一:由正弦定理得sin C =c b sin B =27×32=3

7

.又∵在△ABC 中,b >c ,

∴C

3

∴cos C =1-sin 2C = 1-37=2

7

,∴cos ∠BAC =cos(π-B -C )=-cos(B +C )

=-(cos B cos C -sin B sin C )=sin B sin C -cos B cos C =32×37-12×27=7

14

.

法二:在△ABC 中,由余弦定理得b 2=c 2+a 2-2c ·a cos B ,∴7=4+a 2-2×2×a ×1

2

即(a -3)(a +1)=0,解得a =3(a =-1舍去),∴cos ∠BAC =c 2+b 2-a 22cb =4+7-92×2×7=7

14.

(2)法一:在△ABC 中,由余弦定理得a 2=c 2+b 2-2c ·b cos ∠BAC =4+7-2×2×7×7

14

=9. ∴a =3,∴BD =3

2

.

在△ABD 中,由余弦定理得AD 2=AB 2+BD 2-2AB ·BD ·cos B =4+94-2×2×32×12=134.∴AD =13

2.

法二:如图,取AC 的中点E ,连接DE ,

则DE =1

2AB =1,AE =12AC =7

2

,cos ∠AED =-cos ∠BAC .

在△ADE 中,由余弦定理得AD 2=AE 2+DE 2-2AE ·DE ·cos ∠AED =74+1-2×

7

2

×1×????-

714=134

. ∴AD =13

2

.

[检验高考能力]

一、选择题

1.在△ABC 中,若sin C sin A =3,b 2-a 2=5

2

ac ,则cos B 的值为( )

A.13

B.12

C.15

D.14

解析:选D 由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac =9a 2-152a 2

6a 2

=1

4

. 2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2

,则cos A 等于( )

A.45 B .-45 C.1517 D .-1517

解析:选D 由S +a 2=(b +c )2,得a 2=b 2+c 2-2bc (14sin A -1),由余弦定理可得1

4

sin A -1=cos A ,

结合sin 2A +cos 2A =1,可得cos A =-15

17

或cos A =-1(舍去).

3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定

解析:选C 由正弦定理得b sin B =c sin C ,∴sin B =b sin C

c =40×

3220

=3>1.

∴角B 不存在,即满足条件的三角形不存在.

4.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π

3

,b =2a cos B ,c =1,则△ABC

的面积等于( )

A.32

B.34

C.36

D.38

解析:选B 由正弦定理得sin B =2sin A cos B ,

故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π

3

又A =π

3

=B ,则△ABC 是正三角形,

所以S △ABC =12bc sin A =12×1×1×32=3

4

.

5.(2017·渭南模拟)在△ABC 中,若a 2-b 2=3bc 且

sin (A +B )

sin B

=23,则A =( )

A.π6

B.π3

C.2π3

D.5π6

解析:选A 因为sin (A +B )sin B =23,故sin C

sin B =23,即c =23b ,则cos A =b 2+c 2-a 22bc =12b 2-3bc 43b 2

6b 243b

2=32,所以A =π

6. 6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin A

sin C +sin B

,则B =( ) A.π6 B.π4 C.π3 D.3π4

解析:选C 根据正弦定理a sin A =b sin B =c sin C =2R ,得c -b c -a =sin A sin C +sin B =a c +b ,即a 2+c 2-b 2=

ac ,所以cos B =a 2+c 2-b 22ac =12,故B =π

3

.

二、填空题

7.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =3

5

,则b =________.

解析:因为cos A =3

5

,所以sin A =1-cos 2A =1-????352=45,所以sin C =sin [180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =1

72

10

×sin

45°=57.答案:57

8.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则三角形外接圆的半径为________.

解析:由面积公式,得S =1

2

bc sin A ,代入数据得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =22+22

-2×2×2cos 120°=12,故a =23,由正弦定理,得2R =a sin A =23

3

2

,解得R =2.答案:2

9.在△ABC 中,a =4,b =5,c =6,则sin 2A

sin C

=________.

解析:由正弦定理得sin A sin C =a c ,由余弦定理得cos A =b 2+c 2-a 22bc ,∵a =4,b =5,c =6,∴sin 2A

sin C

2sin A cos A sin C =2·sin A sin C ·cos A =2×a c ×b 2+c 2-a 22bc =2×46×52+62-4

2

2×5×6

=1.

答案:1

10.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.

解析:如图,在△ABD 中,由正弦定理,得AD sin B =AB

sin ∠ADB

∴sin ∠ADB =

22

. 由题意知0°<∠ADB <60°,

∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.

∴∠BAC =30°,C =30°,∴BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BC

sin ∠BAC ,∴AC = 6.

答案: 6

三、解答题

11.(2017·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ????A +π3. (1)求A ;(2)若△ABC 的面积S =34

c 2

,求sin C 的值. 解:(1)∵a sin B =-b sin ???

?A +π

3, ∴由正弦定理得sin A sin B =-sin B sin ????A +π3,则sin A =-sin ????A +π3,即sin A =-12sin A -32

cos A ,化简得tan A =-33,∵A ∈(0,π),∴A =5π

6.

(2)∵A =5π6,∴sin A =12,由S =12bc sin A =14bc =3

4

c 2,得b =3c ,

∴a 2=b 2+c 2-2bc cos A =7c 2,则a =7c ,由正弦定理得sin C =c sin A a =7

14

.

12.(2017·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ????π3+C ·sin ???

?π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.

解:(1)由已知得2sin 2A -2sin 2C =2(34cos 2C -14sin 2C ),化简得sin A =32,故A =π3或2π

3

.

(2)由题知,若b ≥a ,则A =π

3,又a =3,

所以由正弦定理可得b sin B =c sin C =a

sin A

=2,得b =2sin B ,c =2sin C ,

故2b -c =4sin B -2sin C =4sin B -2sin ????2π3-B =3sin B -3cos B =23sin ???

?B -π6. 因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π

2,

所以23sin ???

?B -π

6∈[3,23).即2b -c 的取值范围为[3,23).

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

正弦定理和余弦定理

04—正弦定理和余弦定理 利用正弦定理解三角形 (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. [例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2 b ,且 a > b ,则B =( ) A.π6 B.π3 C.2π3 D.5π 6 (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6,则b =________. [解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos A =12b 中,得2R sin A ·sin B cos C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6 . (2)在△ABC 中,∵sin B =12,0b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°. 由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·????-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B. (2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3 2 c =b ,化简 整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π 6 利用正、余弦定理解三角形 [例3] 设△ABC 1,A =2B . (1)求a 的值;(2)求sin ??? ?A +π 4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2 2ac .因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-1 3 .因为0

(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导; 2.利用正、余弦定理判断三角形的形状和解三角形; 3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.

学习要领 1.理解正弦定理、余弦定理的意义和作用; 2.通 过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识梳理 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可 以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦 定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab .

3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半 径),并可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解 [难点正本 疑点清源] 1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A

正弦定理余弦定理

第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a km D .2a km 解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦 定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×? ?? ??-12=3a 2, ∴AB =3a . 答案B 2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km

C .3 3 km D .2 3 km 解析 如图,由条件知AB =24×15 60=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =AB sin45°sin30°=3 2. 答案B 3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里 D .70海里 解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120° = 502+302-2×50×30cos120°=70. 答案D 4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

正弦定理、余弦定理单元测试及答案

正弦定理、余弦定理 一、选择题 1.在△ABC 中,已知,30,10,25?===A c a 则B= ( ) (A )105° (B )60° (C )15° (D )105°或15° 2.在△ABC 中,已知a=6,b=4,C=120°,则sinB 的值是 ( ) (A ) 7 21 (B ) 19 57 (C ) 383 (D )19 57- 3.在△ABC 中,有a=2b ,且C=30°,则这个三角形一定是 ( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )以上都有可能 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是 ( ) (A )一解 (B )二解 (C )无解 (D )无法确定 5.在△ABC 中,中,若2 cos sin sin 2 A C B =,则△ABC 是 ( ) (A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形 6.在△ABC 中,已知13 5 cos ,53sin == B A ,则 C cos 等于 ( ) (A ) 6556 (B ) 65 16 (C ) 6516或65 56 (D ) 65 33 7.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值是 ( )

(A )2 (B )1 (C ) 2 2 (D )12- 8.若△ABC 的三边长为a ,b ,c ,且,)()(2 2 2 2 2 2 c x a c b x b x f +-++=则f (x )的图 象是 ( ) (A )在x 轴的上方 (B )在x 轴的下方 (C )与x 轴相切 (D )与x 轴交于两点 二、填空题 9.在△ABC 中,∠C=60°,c=22,周长为),321(2++则∠A= . 10.三角形中有∠A=60°,b ∶c=8∶5,这个三角形内切圆的面积为12π,则这个三角形 面积为 . 11.平行四边形ABCD 中,∠B=120°,AB=6,BC=4,则两条对角线的长分别是 . 12.在60°角内有一点P ,到两边的距离分别为1cm 和2cm ,则P 到角顶点的距离为 . 三、解答题 13.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,A <B <C ,B=60°,且满足 ).13(2 1 )2cos 1)(2cos 1(-= ++C A 求:(1)A 、B 、C 的大小; (2)c b a 2+的值.

正弦定理与余弦定理

第28讲 正弦定理与余弦定理 1.在△ABC 中,a 2=b 2+c 2+bc ,则角A 等于(C) A .60° B .45° C .120° D .30° 因为cos A =b 2+c 2-a 22bc =-12, 又因为0°

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

正弦定理和余弦定理测试题

正弦定理和余弦定理测试题 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.4 3 B .8-4 3 C .1 D.2 3 2.(文)在△ABC 中,已知A =60°,b =43,为使此三角形只有一解,a 满足的条件是( ) A .0

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

正弦定理和余弦定理

正弦定理和余弦定理 【知识梳理】 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三: 形式四: 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 222 2cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二: 【典型例题】 111sin sin sin 222ABC S ab C bc A ac B ?===::sin :sin :sin a b c A B C =sin ,sin ,sin 222a b c A B C R R R ===222cos 2b c a A bc +-=222cos 2a c b B ac +-=222 cos 2a b c C ab +-=

题型一:利用正弦定理解三角形 1.在ABC ?中,若5b =,4B π∠=,1sin 3A =,则a = . 2.在△ABC 中,已知a = 3,b =2,B=45°,求A 、C 和c . 题型二:利用余弦定理解三角形 1.设ABC ?的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,4 1cos = C . (Ⅰ)求ABC ?的周长;(Ⅱ)求()C A -cos 的值. 2. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.

正弦定理余弦定理练习题及答案

正弦定理、余弦定理练习题 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ 一、选择题(共20题,题分合计100分) 已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为 1.A.- B. C.- D.λλ则满足此==中,在△ABCa,b,°=45A,2.条件的三角形的个数是 D.无数个A.0B. 1 C.2,则三角形为a cos Bb在△ABC中,cos A=3. D.C.锐角三角形等边三角形等腰三角形. A.直角三角形 B 22,则最大角为x2x+1(>1)x已知三角形的三边长分别为+1,+xx和-14.° C.60 D.75° 120B A.150° .° 在△ABC中,=1,5.,=2. +((·)+ )则=5+2边等于|| A. 5-2.B.

C. D.,b°BABC在△中,已知=30,=50=150c,6.那么这个三角形是

等腰三角形或直角等边三角形 B. 直角三角形 C.D. 等腰三角形A.三角形2222C+c, 则此三角形为sin B=2bc cos B cos C在△ABC中,若b sin7.等腰直角三角形 C.D.等边三角形 A. 直角三角形 B.等腰三角形 正弦定理适应的范围是8. D.任意△钝角△ A.Rt△B.锐角△ C.= =45°,则c°a已知△ABC中,=10,B=60,C9.B. 10 A.10+ C. )-1(. (+1 )D.10A sin<a<b,则此三角形有ABC在△中,b10.无解 C. 两解 D.不确定. A.一解B 5和3,它们夹角的余弦是方程5x-7x-6=0的根,则三角形的另一11.边 2三角形的两边分别为 长为

正弦定理、余弦定理检测题

正弦定理、余弦定理检测题 、 知识点摘要 1. 正弦定理公式: 2. S?ABC 的面积公式: 3. 余弦定理公式:① ;② 4. 解三角形的两种思想:① :② _ 、 选择题 1 在?ABC 中,若..3a 2bsinA ,则 B =() 2 5 A. - B . — C .—或 D 或工 3 6 3 3 6 6 2 .在?ABC 中,已知b J2c 1,B 45o ,则 a=() A 拆 <2 . B .恵 4 C . <2 1 D . 3 42 2 2 3. ?ABC 中,已知 A B 2, AC 3, AB ? AC 3,则 A ( ) A . 60 0 B . 1200 C . 300 D . 1500 4.在?ABC 中, / B=30°,AB=2 J3,AC=2,则厶 ABC 的面积为( ) A . 2 . 3 B . ,3 C . 2,3 或 4.3 D . 3 或 2 . 3 5.在?ABC 中,2cosBsinA=sinC ,贝U ?ABC 形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 2 39 V39 .39 4厢 A.- B. C. D. 3 3 3 7.海面上有 A,B 两个小岛相距 10nmile ,从A 岛望 B 岛和 C 岛都成60o 的视角,从B 岛望A 岛和C 岛成 75o 的视角, 则B,C 间的距离是 ( ) A. 5、2nmile B. 5 6nmile C. 10 . 3nmile c 106 D. n mile 3 8. 在?ABC 中,已知a=x,b=2,B=45 如果利用正弦定理解三角形时有两解,则 x 的取值范围是( ) A. 2 x 2、2 B. 2 x 2 . 2 C. x>2 D.x<2 2 2 2 9. 在厶 ABC 中,a -c +b =ab,则/ C=() A.60o B.45 或 135o C.120 D.30 10. 在锐角△ ABC 中,若a=1,b=2,则边c 的取值范围是( ) A. (0,、一5) B. (1, ■■ 5) C. ( - 3, 一5) D.(1,3) 6.在?ABC 中,A = 60o , b=1 ,S △ AB K 3,则 a b c sin A sin B sin C

正弦定理和余弦定理

正弦定理和余弦定理 正弦定理、余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )r (r 是三角形内切圆半径),并可由此计算R 、r 选择题 在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 解析 ∵b sin A =6×2 2=3,∴b sin A

A .x >2 B .x <2 C .2<x <2 2 D .2<x <2 3 解析 若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2<1,可得x <22,∴x 的取值范围是2<x <2 2. 已知锐角三角形的边长分别为1,3,x ,则x 的取值范围是( ) A .(8,10) B .(22,10) C .(22,10) D .(10,8) 解析 因为3>1,所以只需使边长为3及x 的对角都为锐角即可,故??? 12+x 2>32, 12+32>x 2 , 即80,所以220,于是有cos B <0,B 为钝角,所以△ABC 是钝角三角形. 在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c 2c ,∴(1+cos B )·c =a +c , ∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形. 在△ABC 中,已知b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin C c =40×3 2 20=3>1. ∴角B 不存在,即满足条件的三角形不存在. 若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形

相关文档 最新文档