文档库 最新最全的文档下载
当前位置:文档库 › 高一数学数列人教版知识精讲

高一数学数列人教版知识精讲

高一数学数列人教版知识精讲
高一数学数列人教版知识精讲

高一数学数列人教版

【同步教育信息】

一. 本周教学内容:

数列

二. 知识讲解: 1. 数列的概念

按一定顺序排列的一列数,它可以看成一个序号集合到另一个数的集合的映射。 2. 数列的表示法

(1)解析法:有通项公式和递推公式法。

(2)图象法:在直角坐标系内作出一列弧立点。 (3)列举法:一一列举出来。 3. 数列的分类

(1)按项数是否有限分可分为:有穷数列和无穷数列 (2)按项的大小分可分为:有齐数列和无齐数列 (3)按项与项的关系分可分为:

递增数列、递减数列、常数列和摆动数列 4. 数列}{n a 的前n 项和n S

??

?=≥-=-)1()

2(1

1n S n S S a n n n 当11S a =满足1--=n n n S S a (2≥n )时,1--=n n n S S a 才是数列}{n a 的通项公式,

本节重点是求给定数列的通项公式。

【典型例题】

[例1] 根据下面各数列的前几项,写出数列的一个通项公式。 (1)0,3,8,15,24,…… (2)3,5,9,17,33,……

(3)1,3

2-

5

4,7

8

-

,……

(4)34,156,358,6310,99

12,……

(5)0,1,0,1,…… (6)6,2,6,2,…… 解:

(1)联想数列1,4,9,16,25,……可知,12

-=n a n

(2)联想数列2,4,8,16,32,……则可知12+=n

n a

(3)原数列即

1

20,3

21-

5

22,7

23-

,……则可知1

22)

1(11

--=-+n a n n n

(4)分子为偶数)1(2+n ,分母)12)(12(+-n n ,故)

12)(12()

1(2+-+=

n n n a n

(5)联想到1-,1,1-,1,……的通项为n

)1(-,故此数列的通项为2)1(1n

n a -+=

(6)给定数列可写作4+2,4-2,4+2,4-2,……故它的通项2)1(41

?-+=+n n a

[例2] 数列}{n a 满足211=a ,n n a n S ?=2

,求通项n a 。

解:由n n a n S 2=,则12

1)1(---=n n a n S

当2≥n 时,1--=n n n S S a ,故12

2)1(---=n n n a n a n a

122

1

)1(---=n n a n n a 即111+-=-n n a a n n

112211a a a a a a a a n n n n n ???=--- 13

1211a n n n n ?-?+-= n n a n n )1(1)1(21+=+=

又当1=n 时,2

1

1=a ,故n n a n )1(1+=为给定数列}{n a 的通项公式。

[例3] 若数列}{n a 中11=a ,121-+=-n a a n n (2≥n ),求n a 。

解:由121-+=-n a a n n ,则121-=--n a a n n ,故312=-a a 523=-a a 734=-a a ……

121-=--n a a n n 以上各式相加,得:127531-++++=-n a a n ,即

121-=-n a a n ,又11=a 2

n a n =

[例4] 设函数2log log )(2x x x f -=(10<

2)2(=(*

N n ∈)。

(1)求}{n a 的通项公式。

(2)研究}{n a 的单调性并判断数列}{n a 的类型。 解:

(1)由已知,有n f n a

?=2)2(,即n n a n

a 22log 2log 22=-

n a a n

n 21=-

0122

=--n n

na a 12+±=n n a n 由10<

0<

a ,故0

1122++-=+-=n n n n a n (*

N n ∈)

(2))1(1)1()1(2

2

1+--++-+=-+n n n n a a n n 1

)1(11)1(111)1(112

2

222

2++++-+-++

=++-++

=n n n n n n

1

)1(11

21)1(12

2

22++++--++++=

n n n n n 1

)1(112)1(2

2

++++--++>

n n n n n

0=

故n n a a >+1,}{n a 为无穷有界递增数列。 [例5] 设数列}{n a 为21250lg ?,3

2250

lg ?,……)1(250log +n n ,判断该数列类型并求这个数列

的前几项和为最大。

解:由)1(250lg +=n n a n ,则)1(250lg )2)(1(250lg 1+-++=-+n n n n a a n n 2

lg

+=n n

01lg )2

2

1lg(=<+-=n

故n n a a <+1,数列}{n a 为无穷有界递减数列

令0)

1(250

lg

<+n n ,得15>n 又由0)

115(15250

lg

15≠+?=a ,故}{n a 从第16项开始出现负值,且第15项又不等于0,所以数列}{n a 的前15项之和为最大。

【模拟试题】

一. 选择题:

1. 已知数列}{n a 满足n a

n a 3log 21=+,11=a ,则5a 等于( )

A. 3log 42

B. 3log 52

C. 4

2)3(log D. 5

2)3(log

2. 已知数列}{n a 的通项公式为n a n 351-=,则数列}{n a 的前n 项和n S 达到最大时,n 的值等于( )

A. 15

B. 18

C. 16或17

D. 19

3. 已知}{n a 的通项公式为)2(log )1(+=+n a n n ,*

N n ∈,则这个数列的前30项的乘积

为( ) A. 5 B.

51 C. 6 D. 6

1 4. 数列}{n a 满足11=a ,52=a ,n n n a a a -=++12,*

N n ∈,则2000a 的值等于( )

A. 5

B. 4

C. 5-

D. 4-

二. 填空题:

1. 已知数列}{n a 满足11=a ,1

11--+

=n n n a a a (2≥n ),则=5a 。

2. 已知数列}{n a 的通项公式为2)3(log 2

2-+=n a n ,则3log 2是该数列的第

项。

3. 数列1,1,2,2,3,3,4,4,……的一个通项公式为 。

4. 已知数列}{n a 的前n 项和满足关系式)()1lg(*

N n n S n ∈=-,则}{n a 的通项公式为

三. 解答题:

1. 已知数列)2)(1(3

2n n a a n --=(1±≠a )是递增数列,试确定a 的取值范围。

2. 已知数列}{n a 中,11=a ,数列}{n b 中,01=b ,当2≥n 时,)2(3

1

11--+=

n n n b a a ,)2(3

1

11--+=n n n b a b ,求n a ,n b 。

【试题答案】

一. 选择题:

1. C

2. C

3. A

4. A

二. 填空题:

1. 290941

2. 3

3. ])1(12[411

+-++n n 4. ???≥?==-)2(10

9)1(111

n n a n n

三. 解答题:

1. 解:0)133)(1(2

21>-+-=-+n n a a a n n

)1,(),1(012--∞∞+∈?>-? a a

2. 解:n n n n n n n n n n b a b a b a b a b a +?+=+++=+------111111)2(3

1

)2(31

11111=+==+=--b a b a n n

又由)()31()(3111111b a b a b a b a n n n n n n n -=-?-=----1

)31(-=n

故)311(211-+=n n a ,)3

1

1(211--=n n b

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

高一数学数列人教版知识精讲

高一数学数列人教版 【同步教育信息】 一. 本周教学内容: 数列 二. 知识讲解: 1. 数列的概念 按一定顺序排列的一列数,它可以看成一个序号集合到另一个数的集合的映射。 2. 数列的表示法 (1)解析法:有通项公式和递推公式法。 (2)图象法:在直角坐标系内作出一列弧立点。 (3)列举法:一一列举出来。 3. 数列的分类 (1)按项数是否有限分可分为:有穷数列和无穷数列 (2)按项的大小分可分为:有齐数列和无齐数列 (3)按项与项的关系分可分为: 递增数列、递减数列、常数列和摆动数列 4. 数列}{n a 的前n 项和n S ?? ?=≥-=-)1() 2(1 1n S n S S a n n n 当11S a =满足1--=n n n S S a (2≥n )时,1--=n n n S S a 才是数列}{n a 的通项公式, 本节重点是求给定数列的通项公式。 【典型例题】 [例1] 根据下面各数列的前几项,写出数列的一个通项公式。 (1)0,3,8,15,24,…… (2)3,5,9,17,33,…… (3)1,3 2- , 5 4,7 8 - ,…… (4)34,156,358,6310,99 12,…… (5)0,1,0,1,…… (6)6,2,6,2,…… 解: (1)联想数列1,4,9,16,25,……可知,12 -=n a n (2)联想数列2,4,8,16,32,……则可知12+=n n a (3)原数列即 1 20,3 21- , 5 22,7 23- ,……则可知1 22) 1(11 --=-+n a n n n (4)分子为偶数)1(2+n ,分母)12)(12(+-n n ,故) 12)(12() 1(2+-+= n n n a n

高中数列知识点总结

高中数列知识点总结 Written by Peter at 2021 in January

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1 ()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次 函数图像的分点表示形式。 四 性质结论 或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =- 1+=n n a a S S 偶 奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设 12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -=

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高一数学下册《数列》知识点复习人教版

高一数学下册《数列》知识点复习人教版高一数学下册《数列》知识点复习人教版 1.数列的定义 按一定次序排列的一列数叫做数列,数列中的每一个数 都叫做数列的项. (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不 是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的 1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于 f(n),而项数是指这个数在数列中的位置序号,它是自 变量的值,相当于f(n)中的n. (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同 的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同

一个集合. 2.数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按一定次序排列的一列数,其内涵的本质属性是 确定这一列数的规律,这个规律通常是用式子f(n)来表 示的, 这两个通项公式形式上虽然不同,但表示同一个数列, 正像每个函数关系不都能用解析式表达出来一样,也不 是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个 数列前面的有限项,无其他说明,数列是不能确定的, 通项公式更非唯一.如:数列1,2,3,4,…, 由公式写出的后续项就不一样了,因此,通项公式的归 纳不仅要看它的前几项,更要依据数列的构成规律,多 观察分析,真正找到数列的内在规律,由数列前几项写

高一数学必修五数列知识点

高一数学必修五数列知识点 1.数列的函数理解: ①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的 观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解 析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。 ③函数不一定有解析式,同样数列也并非都有通项公式。 2.通项公式:数列的第N项an与项的序数n之间的关系可以用 一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。 数列通项公式的特点: (1)有些数列的通项公式可以有不同形式,即不唯一。 (2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。 3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。 数列递推公式特点: (1)有些数列的递推公式可以有不同形式,即不唯一。 (2)有些数列没有递推公式。 有递推公式不一定有通项公式。 注:数列中的项必须是数,它可以是实数,也可以是复数。 1、ABC的三边a,b,c既成等比数列又成等差数列,则三角 形的形状是()

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形 2、在等比数列{an}中,a6a5a7a548,则S10等于() A.1023 B.1024 C.511 D.512 3、三个数成等比数列,其积为1728,其和为38,则此三数为() A.3,12,48 B.4,16,27 C.8,12,18 D.4,12,36 4、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于() A.0 B.15 C.30 D.60 5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是()a4 A.1 B.2 C.3 D.4 6、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是() A.29% B.30% C.31% D.32% 7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

高中数学专项训练(数列提升版)

高中数学专项训练(数列提升版) (含详细解答) 1.已知等差数列{a n}前9项的和为27,a10=8,则a100=() A. 100 B. 99 C. 98 D. 97 2.记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为() A. 1 B. 2 C. 4 D. 8 3.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的 和为() A. ?24 B. ?3 C. 3 D. 8 4.设等比数列{a n}的前n项和为S n,若S2=3,S4=15,则S6=() A. 31 B. 32 C. 63 D. 64 5.已知等差数列{a n}的前n项和为S n,且,,则使得S n取最小 值时的n为() A. 1 B. 6 C. 7 D. 6或7 6.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+?+ log3a10=() A. 12 B. 10 C. 8 D. 7.已知等比数列{a n}满足a1+a3=10,a2+a4=5,则a5=() A. 1 B. 1 2C. 1 4 D. 4 8.设各项均为正的等比数列{a n}满足a4a8=3a7,则log3(a1a2…a9)等于() A. 38 B. 39 C. 9 D. 7 9.已知等比数列{a n}为递增数列,S n是其前n项和.若a1+a5=17 2 ,a2a4=4,则S6=() A. 27 16B. 27 8 C. 63 4 D. 63 2 10.在等差数列{a n}中,若a3+a4+a5=3,a8=8,则a12的值是() A. 15 B. 30 C. 31 D. 64 11.等差数列{a n}中,已知S15=90,那么a8=() A. 12 B. 4 C. 3 D. 6 12.正项等比数列{a n}中,存在两项a m、a n使得√a m?a n=2a1,且a6=a5+2a4,则 1 m +4 n 的最小值是() A. 3 2B. 2 C. 7 3 D. 9 4 13.等差数列{a n},{b n}的前n项和分别为S n,T n,且S n T n =3n+1 n+3 ,则 a2+a20 b7+b15 =______ . 14.若数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N?),令,则 _________. 15.若数列{a n}满足a1=12,a1+2a2+3a3+?+na n=n2a n,则a2017=______ . 16.设{a n}是等差数列,若a4+a5+a6=21,则S9=______.

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结 知识网络

二、知识梳理 ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) 三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值

的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项. (2)利用公式法求数列的通项:①???≥-==-) 2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式. (3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+ (4)造等差、等比数列求通项: ① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12. 第一节通项公式常用方法 题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:???≥-==-) 2() 1(11n S S n S a n n n 若1a 适 合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ?=+“;⑵迭加法、迭乘法公式: ① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 11 22332211a a a a a a a a a a a a n n n n n n n ??????= ----- . 题型3 构造等比数列求通项 例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式. 总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

高一数学数列部分经典习题及答案

. 数 列 一.数列的概念: (1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125 ); (2)数列}{n a 的通项为1+= bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 设{}n a 是等差数列,求证:以b n =n a a a n +++Λ21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 (1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833 d <≤) 3.等差数列的前n 和:1()2n n n a a S +=,1(1)2 n n n S na d -=+。 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152 n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和 211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

人教版高中数学全套教案数列

第三章 数列 第一教时 教材:数列、数列的通项公式 目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给 出一些数列能够写出其通项公式,已知通项公式能够求数列的项。 过程: 一、从实例引入(P110) 1. 堆放的钢管 4,5,6,7,8,9,10 2. 正整数的倒数 5 1,41,31,21,1 3. ,,,,的不足近似值,,精确到414.141.14.11001.01.012 4. -1的正整数次幂:-1,1,-1,1,… 5. 无穷多个数排成一列数:1,1,1,1,… 二、提出课题:数列 1. 数列的定义:按一定次序排列的一列数(数列的有序性) 2. 名称:项,序号,一般公式n a a a ,,,21 ,表示法{}n a 3. 通项公式:n a 与n 之间的函数关系式 如 数列1: 3+=n a n 数列2:n a n 1= 数列4:*,)1(N n a n n ∈-= 4. 分类:递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。 5. 实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n })的函数,当自变量从小到大依 次取值时对应的一列函数值,通项公式即相应的函数解析式。 6. 用图象表示:— 是一群孤立的点 例一 (P111 例一 略) 三、关于数列的通项公式 1. 不是每一个数列都能写出其通项公式 (如数列3) 2. 数列的通项公式不唯一 如 数列4可写成 n n a )1(-=和

???-=1 1n a *,2*,12N k k n N k k n ∈=∈-= 3. 已知通项公式可写出数列的任一项,因此通项公式十分重要 例二 (P111 例二)略 四、补充例题:写出下面数列的一个通项公式,使它的前n 项分别是下列 各数: 1.1,0,1, 0 *,2 )1(11 N n a n n ∈-+=+ 2.32-,83,154-,24 5,356- 1)1(1)1(2-++?-=n n a n n 3.7,77,777,7777 )110(9 7-?=n n a 4.-1,7,-13,19,-25,31 )56()1(--=n a n n 5.23,45,169,25617 122 12-+=n n n a 五、小结: 1. 数列的有关概念 2. 观察法求数列的通项公式 六、作业: 练习 P112 习题 3.1(P114)1、2 《课课练》中例题推荐2 练习 7、8 第二教时 教材:数列的递推关系 目的:要求学生进一步熟悉数列及其通项公式的概念;了解数列递推公式的意义, 会根据给出的递推公式写出数列的前n 项。 过程: 一、复习:数列的定义,数列的通项公式的意义(从函数观点出发去刻划) 二、例一:若记数列{}n a 的前n 项之和为S n 试证明:???-=-1 1S S S a n n n )1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时 n n a a a S +++= 21

高一数学数列章节测试题

高一数学章节测试题——数列

10.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则 使得n S 达到最大值的n 是( ) A.21 B.20 C.19 D. 18 11.已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a ( ) A.1 B.9 C.10 D.55 12.已知等比数列{}n a 满足0,1,2, n a n >=,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=( ) A. (21)n n - B. 2 (1)n + C. 2 n D. 2 (1)n - 选择题答题卡: 二、填空题(本大题共4小题,每小题5分,共20分.) 13. 设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式 =n a _____________. 15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________. 16. 设{}n a 为公比1>q 的等比数列,若2004a 和2006a 是方程03842 =+-x x 的两根,则 =+20072006a a _____________. 三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤) 17.已知{}n a 为等比数列,3 20 ,2423=+=a a a ,求{}n a 的通项公式.

高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形 3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法

人教版高一数学下册数列知识点

人教版高一数学下册数列知识点 1.数列的定义 按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于 f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

人教版高一数学必修5--第二章数列总结

人教版高一数学必修5第二章数列总结 1、数列的基本概念 (1)定义:按照一定的次序排列的一列数叫做数列. (2)通项公式:如果数列{an}的第n 项an 与n之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式. (3)递推公式:如果已知数列{an}的第一项(或前几项),且任何一项an 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 通项公式与递推公式,是给出一个数列的两种主要方法. 2、主要公式 (1)通项公式a n 与前n 项和公式S n 间的关系: a n =错误!. (2)等差数列 a n =a 1+(n-1)d =a m +(n -m )d . S n =\f(1,2)n (a1+an ),S n =na 1+1 2n(n -1)d . A =错误!(等差中项). (3)等比数列 a n =a 1qn- 1,an =am ·q n -m . S n =错误!. G =±错误!(等比中项). 3.主要性质 (1)若m+n =p +q (m、n 、p 、q ∈N*), 在等差数列{an}中有:am +a n=ap+a q; 在等比数列{a n }中有:a m ·a n =a p·a q . (2)等差(比)数列依次k 项之和仍然成等差(比). 专题一 数列的通项公式的求法 1.观察法根据下面数列的前几项,写出数列的一个通项公式. (1)1,1,错误!,错误!,错误!,…; 2.定义法 等差数列{a n }是递增数列,前n 项和为S n ,且a 1,a 3,a 9成等比数列,S 5=a错误!.求数列{a n}的通项公式. 3.前n项和法 (1)已知数列{a n }的前n 项和S n =n 2+3n +1,求通项a n ; (2)已知数列{a n }的前n 项和S n =2n +2,求通项a n . 4.累加法 已知{a n}中,a 1=1,且a n +1-a n=3n (n∈N*),求通项a n . 5.累乘法 已知数列{a n },a 1=错误!,前n项和S n 与an 的关系是Sn =n (2n -1)a n ,求通项an . 6.辅助数列法 已知数列{a n }满足a 1=1,an +1=3a n+2(n ∈N* ).求数列{a n}的通项公式.

相关文档
相关文档 最新文档