文档库 最新最全的文档下载
当前位置:文档库 › 轧制变形与工艺基础分析

轧制变形与工艺基础分析

轧制变形与工艺基础分析
轧制变形与工艺基础分析

第一节轧制变形基本原理

1、金属的塑性变形与弹性变形

1.1 影响金属热塑性变形的主要因素

影响金属热塑性变形的因素,有金属本身内部因素和加热等外部条件。

1)钢中存在碳及其他合金元素,使钢的高温组织,除有奥氏体外,还有其他过剩相。这些过剩相降低钢的塑性。钢中的杂质也是影响金属热塑性变形的内在因素,钢中的硫能使钢产生热脆。

2)影响热轧时塑性变形的外部条件有加热介质和加热工艺,对碳钢而言,当变形条件相同时,变形金属的化学成分及组织结构不同,温度对塑性的影响也不同,如图1-2-1。图中I、II、III、IV表示塑性降低区域(凹谷);1、2、3表示塑性增高区域(凸峰)。I区中钢的塑性很低;II区(200-400℃)——“蓝脆”区中,钢的强度高而塑性低;III区(850-950℃)——相变温度区又称“热脆”区,钢通常一个相塑性好,另一个相塑性较差;IV区接近于钢的熔化温度,钢在该区加热时易发生过热或过烧,这时钢塑性最低。所以,碳素钢热加工时的最有利的温度范围是

1000-1250℃。对合金钢而言,加

热介质尤为重要。镍含量达2-3%

以上的合金钢,在含硫气氛中加热

时,硫会扩散到金属中,并在晶界

上形成低熔点的Ni3S2化合物,因

而降低了金属的塑性。含铜超过

0.6%的钢,有时甚至是含铜

0.2-0.3%的钢,如在强氧化气氛中

图1-2-1 碳素钢塑性曲线

较长时间的高温加热时,由于选择

性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富铜合金,这层合金在1100℃时熔化并侵蚀钢的表面层,使钢在热轧加工时开裂。

3)热轧温度选择不合适,也会给金属带来不良的影响。当终轧温度过高时,往往会造成金属的晶粒粗大;若终轧温度过低时,又会造成晶粒沿加工方向伸长的组织,并有一定的加工硬化。在这两种情况下,金属的性能都会变坏。所以,合理控制金属的热轧温度范围,对获得所需要的金属组织和性能,具有重要意义。

1.2 金属的弹性变形

金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。

2、轧制过程

2.1 轧制过程基本概念

轧制过程是轧件由摩擦力拉进

旋转轧辊之间,受到压缩进行弹性

变形的过程,通过轧制使金属具有

一定的尺寸、形状和性能。

2.2 咬入条件

轧制过程的咬入条件为摩擦角

β大于咬入角α。

如图1-2-2所示,轧制时轧件与

轧辊表面接触的弧线叫咬入弧。咬

入弧所对的圆心角称作咬入角。咬

入角由压下量决定。在实际生产中

不同条件下允许的最大咬入角不

同,咬入角的大小与轧辊表面状态、

轧制温度以及轧辊转速等因素有

关,即与轧辊、轧件间的摩擦系数

有关。当咬入角大于允许的最大咬入角时,轧件不能咬入。当咬入角小于或等于允许最大咬入角时轧件才能咬入。当轧件线速度为1.5-2.5m/s 时,其允许的最大咬入角为15o-24o。

1)轧件咬入与摩擦力的关系

当轧件与轧辊接触时,轧件以力P

作用在轧辊上,而每个轧辊以大小相等,

方向相反的力P 作用于金属上。同时,

由于轧件与轧辊运动时相互接触,所以

在轧件与轧辊之间产生摩擦力F 。F 在水

平方向有一分力F x ,靠水平分力F x 将轧

件拉入轧辊(如图1-2-3),称F x 为拉入

力。轧辊对轧件的压力P 的水平分力为

P x ,其方向与F x 相反,阻碍轧件进入轧

辊,称P x 为推入力。当拉入力F x 等于或

小于推出力P x 时,即F x ≤P x 时,轧件不

能进入轧辊。只有在拉入力F x 大于推出

力P x 的条件下,轧件才能被拉入轧辊,

实现正常咬入。由上可知,轧件与轧辊

的接触摩擦力的大小决定了轧件能否咬入轧辊。

摩擦系数f 为: P F f = βtan =f

图1-2-2 轧件在轧辊间的变形图 1—轧辊;2—轧件;3—接触弧;4—咬入角

图1-2-3 轧辊咬入轧件 1—轧辊;2—轧件

式中 β——轧辊与轧件的摩擦角。

上式两式说明,只有当轧辊与轧件之间的摩擦系数大于摩擦角的正切值,或摩擦角大于咬入角(β>α)时,轧件才能被轧辊咬入。

2)咬入角的计算计算公式:

)1(cos 1D

h ?--=α 式中 α——咬入角;

Δh ——压下量,mm ;

D ——轧辊工作直径,mm 。

也可用近似公式计算:

式中 R ——轧辊工作半径,mm 。

2)摩擦角的计算

f=tan β

式中 β——摩擦角;

f ——摩擦系数,T

F f =,式中:F 为摩擦力,N ;P 为正压力,N 。 摩擦系数的大小与轧制温度、轧辊材质和轧辊表面状态等因素有关。轧钢生产中的摩擦系数一般根据下面的经验公式计算:

对钢轧辊:f=1.05-0.0005t 轧-0.056ν

对铁轧辊:f=0.94-0.0005t 轧-0.056ν

式中 f ——摩擦系数;

t 轧——轧制温度,℃;

ν——轧制速度,m/s 。

计算出摩擦系数后,查三角函数表便可求得摩擦角。

2.3 改善咬入条件的措施

咬入角和摩擦系数是影响轧辊咬入轧件的两个因素。当摩擦系数一定时,为了使轧件易于咬入,必须减少咬入角。减少咬入角的方法有以下两种:

1)当压下量一定时,增加轧辊直径;

2)当轧辊直径一定时,减小压下量。但是轧机确定后,轧辊直径一般改变不大,而减少压下量又对提高生产率不利,为了解决这一矛盾,常采用以下几种措施:

a) 降低咬入时的轧制速度,增加摩擦系数。

R h R h ?=?=32.57180πα

b) 增加轧辊粗糙度,从而增

加摩擦系数。

c) 利用冲击力改善咬入条

2.4 变形区的主要参数

2.4. 变形区长度

轧制时从轧件与轧辊接触开

始至轧件离开轧辊的一段区域称

为变形区。如图 所以,下接触

面abcd 与上接触面ABCD 之间的区

域称为变形区。接触面ABCD

(abcd )水平投影的长度称为变形

区长度。如图1-2-4。

变形区长度计算公式: 42h h R l ?-?= 如果忽略42h ?,则 h R l ?≈ 式中 l ——变形区长度;

R ——工作辊半径;

Δh ——绝对压下量。

2.4.2 绝对变形量

h H h -=?

H h L L L -=?

H h B B B -=?

式中:Δh 、ΔL 、ΔB ——绝对压下量、延伸量、宽展量;

h 、H ——轧件轧后、轧前高度;

h L 、H L ——轧件轧后、轧前长度;

h B 、H B ——轧件轧后、轧前宽度。

2.4.3 相对压下量

H

h H ε-= 式中:ε——相对压下率;

H ——轧前厚度;

H ——轧后高度。

图1-2-4 轧制变形区示意图

a —轧制时纵向变形示意图;

b —轧制时横向变形示意图

1—轧辊;2—轧件;ABCD —上接触面积;abcd —下接触面积;

l —变形区长度;Ⅰ、Ⅱ、Ⅲ、Ⅳ—变形区内金属流动方向

2.4.4 延伸系数

轧制后的轧件长度与轧制前的轧件长度之比叫延伸系数。

L

l =μ 式中 μ——延伸系数。

延伸系数也可以用轧制前、后轧件的横截面面积之比表示,有时把这个面积之比叫做压

缩比,用它来衡量轧件的变形程度。

式中 0S ——轧制前轧件的断面面积;

1S ——轧制后轧件的断面面积。

当轧件宽带材和板材时,宽展量可略去不计,即轧制前后轧件的宽度相等(B=b ),这时的延伸系数就等于轧制前后轧件高度的比值(压下系数): h

H =μ 总延伸系数计算公式:

L l x =总μ 式中 总μ——总延伸系数计算公式;

x l ——轧件最终长度,mm ;

0L ——轧件原始长度,mm 。

总延伸系数等于各道次延伸系数的乘积,即

x μμμμμ......321=总

式中 x μμμμ......321——各相应道次的延伸系数。

2.4.5 变形速度

变形速度以轧件通过变形区单位时间的相对压下量来表示,其计算公式为:

变l h H h )(2+?=

υμ 式中 μ——变形速度,1/s ;

△h ——变形量,mm ;

υ——轧制速度,mm/s ;

H ——轧前厚度,mm ;

h ——轧后厚度,mm ;

变l ——变形区长度,mm 。

10S S =

μ

变形速度对金属的变形抗力及塑性都有影响。当变形程度一定时,在热加工温度范围内,随着变形速度的增加,变形抗力有比较明显的增加。

2.5 轧制过程中的宽展

2.5.1 宽展的概念

轧制时轧件的高度减小,被压下的金属在长度方向上延伸外,还有一部分金属沿横向流动,使轧件的宽度发生变化,这种横向变形叫宽展。轧件在轧制前后的宽度差叫宽展量。

2.5.1 宽展的种类

1)自由宽展 在平辊上或在沿宽度方向上有很大富裕空间的扁平孔型内轧制矩形或扁平形断面轧件时,在宽度方向上金属流动不受孔型侧壁限制,可以自由地宽展,此时轧件宽度的增加叫自由宽度。

2)限制宽展 当轧件在孔型内轧制时,轧件不能自由地展宽,宽展量比自由宽展少。宽展量甚至可以变成负数(即轧后宽度比轧前宽度小)。这类宽展叫限制宽展。

3)强迫宽展 轧制过程中迫使金属大量地向宽度方向流动,造成轧件宽度有很大的增加,轧件获得较大的宽展,这种宽展就叫做强迫宽展。

2.5.2 影响宽展的因素

1) 压下量的影响

压下量是影响宽展的主要因素,压下量越大宽展量越大。

2)轧辊直径对宽展的影响

在其他条件不变的情况下,随着轧辊直径的增加,变形区长度增加,宽展值相应增大。

3)轧件宽度对宽展的影响

随着轧件宽度的增加,变形区的金属在横向流动的阻力增加,导致宽展量减小。

4)轧辊工作表面对宽展的影响

轧辊表面越粗糙,摩擦系数越大,轧件的宽展量越大。

5)轧制速度与温度对宽展的影响

当轧制速度超过2m/s 时,轧制速度越高,摩擦系数越低;轧制温度越高,摩擦系数越低,从而轧件宽展量减小。

2.5.3 宽展系数

宽展量与压下量的比值叫做宽展系数。用下式表示:

h

b c ??= 式中 c ——宽展系数;

b ?——宽展量,mm ;

h ?——压下量,mm 。

2.6 轧制过程的前滑和后滑

在轧制变形中金属与轧辊间有相对运动,存在着金属相对于轧辊向后流动的后滑区和相对于轧辊向前流动的前滑区。在变形区内靠近轧辊的出口处,金属的纵向流动速度大于轧辊在该处的线速度,这种现象称为前滑。在变形区内靠近轧辊的入口处,金属的纵向流动速度小于轧辊在该处的线速度,这种现象称为后滑。

设轧件的出口速度为ν出口,轧辊的圆周速度为ν辊,则前滑值S 前滑就是其速度差的相对值,用下式表示:

%100S ?-=辊

出口前滑ννν

轧制时前滑值通常按3-6%考虑。

3、轧制压力

3.1轧制压力的概念

轧制压力是轧件变形时金属作用

在轧辊上的垂直于接触面积水平投影

的力。如图1-2-5所示。

变形区内单位面积上的轧制压力

称为单位压力。单位压力由两部分组

成,一部分是克服轧件内部滑移阻力

所需要的力,以K 表示,称为钢的变

形抗力

试验证明,单位压力在变形区内

的分布是不均匀的。一般在变形区进、

出口处的单位压力较小,在变形区内

某一中间位置的单位压力最大。单位压力在变形区内的这种分布不均匀性,造成轧制压力计算十分困难。因此,在实际生产中常用平均单位压力进行计算。为了得到较准确的数据,采用测定的方法得到轧制压力。

3.2 影响轧制压力的因素

影响轧制压力的主要因素有:

1)绝对压下量 在轧辊直径和摩擦系数相同的条件下,随着绝对压下量的增加,轧件与轧辊的接触面积加大,轧制压力增加,同时接触弧长增加,外摩擦的影响加剧,平均单位压力增加,轧制压力也随着增大。

2)轧辊直径 在其他条件一定时,随着轧辊直径的加大,接触面积增加,同时接触弧长增加,外摩擦的影响加剧。因而轧制压力增大。

3)轧件宽度 随着轧件宽度的增加,接触面积增加,轧制压力增大。

4)轧件厚度 随着轧件厚度的增加,轧制压力减小;反之,轧件越薄,轧制压力越大。

5)轧制温度 随着轧制温度的升高,变形抗力降低,平均单位压力降低,轧制压力减小。

6)摩擦系数 随着摩擦系数的增加,外摩擦影响加大,平均单位压力增加,轧制压力增加,轧制压力增大。

7)轧件的化学成分 在相同条件下,轧件的化学成分不同,金属的内部组织和性能不同,轧制压力也不同。

8)轧制速度 随着轧制速度的增加,变形抗力增加,轧制压力增加。 图1-2-5 轧制时的轧制压力

4、轧制时的弹塑性曲线

4.1轧件的塑性曲线

用图标表示轧制压力与厚度的关系叫塑性曲线,如 图所示,纵坐标表示轧制压力,横坐标表示厚度。

如图1-2-6所示,当变形抗力越大时,曲线2越陡。在同样轧制压力下,所轧成的轧件厚度要厚一些。

同样,摩擦系数越大,压力越大,轧件厚度越大。

张力对厚度的影响却相反,当张力越小,曲线2越陡,厚度越厚。

4.2轧机的弹性曲线

在轧制压力作用下轧机(轧辊、机架、轴承)产生弹性压扁和弯曲,把它相加起来就构成轧辊的弹性变形,表示轧机弹性变形和压

力的关系的曲线叫轧辊的弹性曲线,如图

所示。理论上弹性曲线是一条直线;实际上

在最初有一弯曲阶段。所以精轧要压1000

吨调零以消除这段非线性关系。

曲线的斜率称之为轧机的刚度系数,通

常以K 表示。其物理意义是使轧机产生单位

弹性变形所需施加的负载量(吨/毫米)。我

厂粗轧机刚度系数为 吨/毫米;精轧机

刚度系数为450吨/毫米。

弹性方程(如图1-2-8):

K P S h += 式中 h ——轧出厚度;

S ——辊缝值;

P ——轧制压力;

K ——轧机刚度。

图1-2-6 轧件塑性曲线 图1--7 各种因素的影响

图1-2-8 弹跳现象

轧制变形与工艺基础分析

第一节轧制变形基本原理 1、金属的塑性变形与弹性变形 1.1 影响金属热塑性变形的主要因素 影响金属热塑性变形的因素,有金属本身内部因素和加热等外部条件。 1)钢中存在碳及其他合金元素,使钢的高温组织,除有奥氏体外,还有其他过剩相。这些过剩相降低钢的塑性。钢中的杂质也是影响金属热塑性变形的内在因素,钢中的硫能使钢产生热脆。 2)影响热轧时塑性变形的外部条件有加热介质和加热工艺,对碳钢而言,当变形条件相同时,变形金属的化学成分及组织结构不同,温度对塑性的影响也不同,如图1-2-1。图中I、II、III、IV表示塑性降低区域(凹谷);1、2、3表示塑性增高区域(凸峰)。I区中钢的塑性很低;II区(200-400℃)——“蓝脆”区中,钢的强度高而塑性低;III区(850-950℃)——相变温度区又称“热脆”区,钢通常一个相塑性好,另一个相塑性较差;IV区接近于钢的熔化温度,钢在该区加热时易发生过热或过烧,这时钢塑性最低。所以,碳素钢热加工时的最有利的温度范围是 1000-1250℃。对合金钢而言,加 热介质尤为重要。镍含量达2-3% 以上的合金钢,在含硫气氛中加热 时,硫会扩散到金属中,并在晶界 上形成低熔点的Ni3S2化合物,因 而降低了金属的塑性。含铜超过 0.6%的钢,有时甚至是含铜 0.2-0.3%的钢,如在强氧化气氛中 图1-2-1 碳素钢塑性曲线 较长时间的高温加热时,由于选择 性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富铜合金,这层合金在1100℃时熔化并侵蚀钢的表面层,使钢在热轧加工时开裂。 3)热轧温度选择不合适,也会给金属带来不良的影响。当终轧温度过高时,往往会造成金属的晶粒粗大;若终轧温度过低时,又会造成晶粒沿加工方向伸长的组织,并有一定的加工硬化。在这两种情况下,金属的性能都会变坏。所以,合理控制金属的热轧温度范围,对获得所需要的金属组织和性能,具有重要意义。 1.2 金属的弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 2、轧制过程

02注塑产品变形解决办法

一、翘曲变形是指注塑制品的形状偏离了模具型腔的形状,它是塑料制品常见的缺陷之一。出现翘曲变形的原因很多,单靠工艺参数解决往往力不从心。结合相关资料和实际工作经验,下面对影响注塑制品翘曲变形的因素作简要分析。 二、模具的结构对注塑制品翘曲变形的影响。 在模具方面,影响塑件变形的因素主要有浇注系统、冷却系统与顶出系统等。1.浇注系统注塑模具浇口的位置、形式和浇口的数量将影响塑料在模具型腔内的填充状态,从而导致塑件产生变。 流动距离越长,由冻结层与中心流动层之间流动和补缩引起的内应力越大;反之,流动距离越短,从浇口到制件流动末端的流动时间越短,充模时冻结层厚度减薄,内应力降低,翘曲变形也会因此大为减少。一些平板形塑件,如果只使用一个中心浇口,因直径方向上的收缩率大于圆周方向上的收缩率,成型后的塑件会产生扭曲变形;若改用多个点浇口或薄膜型浇口,则可有效地防止翘曲变形。 当采用点浇口进行成型时,同样由于塑料收缩的异向性,浇口的位置、数量都对塑件的变形程度有很大的影响。 另外,多浇口的使用还能使塑料的流动比(L/t)缩短,从而使模腔内熔体密度更趋均匀,收缩更均匀。同时,整个塑件能在较小的注塑压力下充满。而较小的注射压力可减少塑料的分子取向倾向,降低其内应力,因而可减少塑件的变形。 2. 冷却系统 在注射过程中,塑件冷却速度的不均匀也将形成塑件收缩的不均匀,这种收缩差别导致弯曲力矩的产生而使塑件发生翘曲。 如果在注射成型平板形塑件(如手机电池壳)时所用的模具型腔、型芯的温度相差过大,由于贴近冷模腔面的熔体很快冷却下来,而贴近热模腔面的料层则会继续收缩,收缩的不均匀将使塑件翘曲。因此,注塑模的冷却应当注意型腔、型芯的温度趋于平衡,两者的温差不能太大(此时可考虑使用两个模温机)。 除了考虑塑件内外表的温度趋于平衡外,还应考虑塑件各侧的温度一致,即模具冷却时要尽量保持型腔、型芯各处温度均匀一致,使塑件各处的冷却速度均衡,从而使各处的收缩更趋均匀,有效地防止变形的产生。因此,模具上冷却水孔的布置至关重要。在管壁至型腔表面距离确定后,应尽可能使冷却水孔之间的距离小,才能保证型腔壁的温度均匀一致。同时,由于冷却介质的温度随冷却水道长度的增加而上升,使模具的型腔、型芯沿水道产生温差。因此,要求每个冷却回路的水道长度小于2米。在大型模具中应设置数条冷却回路,一条回路的进口位于另一条回路的出口附近。对于长条形塑件,应采用直通型水道。(而我们的模具大多是采用S型回路----既不利于循环,又延长周期。) 3. 顶出系统 顶出系统的设计也直接影响塑件的变形。如果顶出系统布置不平衡,将造成顶出力的不平衡而使塑件变形。因此,在设计顶出系统时应力求与脱模阻力相平衡。另外,顶出杆的截面积不能太小,以防塑件单位面积受力过大(尤其在脱模温度太高时)而使塑件产生变形。顶杆的布置应尽量靠近脱模阻力大的部位。在不影响塑件质量(包括使用要求、尺寸精度与外观等)的前提下,应尽可能多设顶杆以减少塑件的总体变形(换顶杆为顶块就是这个道理)。 用软质塑料(如TPU)来生产深腔薄壁的塑件时,由于脱模阻力较大,而材料又较软,如果完全采用单一的机械顶出方式,将使塑件产生变形,甚至顶穿或产生折叠而造成塑件报废,如改用多元件联合或气(液)压与机械式顶出相结合的方式效果会更好(以后会用到)。 三、塑化阶段对制品翘曲变形的影响 塑化阶段即由玻璃态料粒转化为粘流态熔体的过程(培训时讲过原料塑化的三态变化)。在这个过程中,聚合物的温度在轴向、径向(相对螺杆而言)温差会使塑料产生应力;另外,注射机的注射压力、速率等参数会极大地影响充填时分子的取向程度,进而引起翘曲变形。 四、充填及冷却阶段对制品翘曲变形的影响 熔融态的塑料在注射压力的作用下,充入模具型腔并在型腔内冷却、凝固。此过程是注射成型的关键环节。

焊接变形的分析与控制

焊接变形的分析与控制 随着我国钢结构产业的高速发展,焊接技术在钢结构工程中得到大量的应用,焊接工件尤其是厚板件的变形现象也成为人们密切关注的焦点。 在焊接过程中,焊接残余应力和焊接变形会严重影响制造过程、焊接结构的使用性能、焊接接头的抗脆断能力、疲惫强度、抗应力腐蚀开裂和高温蠕变开裂能力。焊接变形在制造过程中也会危及外形与公差尺寸、接头安装偏差且增加坡口间隙,使制造过程更加困难,当出现题目时还需采取一些费时耗资的附加工序来进行弥补,不仅增加本钱,还可能出现由此工序带来的其他不利因素。因此,要得到高质量的焊接结构必须对这些现象严格控制。焊接应力分析 熔化焊接时,被焊金属在热源作用下发生局部加热和熔化,材料的力学性能也会发生明显的变化,而焊接热过程也直接决定了焊缝和热影响区焊后的显微组织、残余应力与变形大小,所以焊接热过程的正确计算和测定是焊接应力和变形分析的条件。因此在焊接过程的模拟研究中,只考虑温度场对应力场的影响,而忽略应力场对温度场的作用。同时,非线性、瞬时作用以及温度相关性效应等也会妨碍正确描述在各种情况下产生的残余应力,并使同一系统化的工作很难完成。为使其简单化,实际中常用焊接性的概念作为一种分类系统,将焊接分解为热力学、力学和显微结构等过程,从而降低了焊接性各种现象的复杂性。图1所示的工艺基础将焊接性分解为温度场、应力和变形场以及显微组织状态场。这种分解针对焊接残余应力和焊接变形的数值分析处理很有价值。 在狭义上,焊接性又可理解成所要求的强度性能。影响强度性能的主要因素又包括化学成分、相变显微组织、焊接温度循环、焊后热处理、构件外形、负载条件以及氢含量等。因此可将图1扩展成图2以夸大相变行为的影响。其中,图1和图2中的箭头表示相互影响,实箭头表示强烈的影响,虚箭头表示较弱的影响。显微组织的转变不仅决定于材料的化学成分,也决定于其受热过程(特别是与焊接有关的过程),特别是它在焊接接头的热影响区和熔化区的影响更加引人留意。

铝合金轧制工艺

铝合金轧制工艺 一. 实验目的: 1.掌握板带轧机工作原理及设备操作过程。 2.学会轧制变形量的计算方法及安排道次变形量。 二. 轧制原理: 轧制法是应用最广泛的一种压力加工方法,轧制过程是靠旋转的轧辊及轧件之间形成的摩擦力将轧件拖进轧辊缝之间并使之产生压缩,发生塑性变形的过程,按金属塑性变形体积不变原理,通过轧制,轧件厚度变薄同时长度伸长,宽度变宽。见图1所示。 图1 轧制前后轧件厚度的减少成为绝对压下量,用△h 表示,△h =h 1-h 2绝对压下量与原厚度之比成为相对压下量,用ε表示,ε=△h /h 1×100%, 轧制时轧件的长度明显增加,轧后长度与轧前长度的比值称为延伸系数用λ表示, λ=l 1/l 2。由于轧带时轧件宽度变化不大,一般略而不计(Δb=b 2-b 1)。ε、Δh 和λ是考核变形大小的常用指标。 三. 实验内容:

使用两辊板带轧机轧制AlCu合金试件,试件铸态毛坯尺寸:120×15.00×7(mm)。经多道次轧制使熔铸台毛坯形成轧制态工件,轧制厚度由7mm轧至2mm,将其中一半轧件送到马弗炉时效处理,为下一实验做准备。 四.实验步骤: 1.根据轧机传动系统图和轧制原理图结合轧机了解板带轧机的组成,熟悉其结构和轧制机理。 2.润滑各运动部件,启动电源空车运转。 3.按总变形量分配道次压下量,并调整压下装置。 4.喂料轧制,按道次测量并记录相关数据。 5.轧制加工完成关闭电源,快速退回压下装置。 6.清理轧机和工作地点。 7.拟写实验报告。 五.实验装置: 图2 轧机基本结构 六.实验数据及处理:

七. 思考题: 1.试述齿轮座(分动箱)的作用? 齿轮箱位于辊与减速箱中间起连接传动作用,同时用它控制上下轧辊转速保 持一致 2.分析压下量与咬入角之间关系。 ]/)(1arccos[21D h h --=α 为轧辊直径为咬入角、即为压下量、其中D )( 21αh h - 根据实验原理的图示可知.

冷轧钢管变形原理

冷轧钢管变形原理 关于冷轧管轧管过程、变形和应力状态、瞬时变形区、滑移和轴向力、轧制力等的基本理论。 二辊式冷轧管机的轧管过程二辊式冷轧管机工作时,其工作机架借助于曲柄连杆机构作往复移动。管子的轧制(图1)是在一根拧在芯棒杆7上的固定不动的锥形芯棒和两个轧槽块5之间进行的。在轧槽块的圆周开有半径由大到小变化的孔型。孔型开始处的半径相当于管料1的半径,而其末端的半径等于轧成管2的半径。 图1二辊式冷轧管机 1-管料;2-轧成管;3-工作机架;4-曲柄连杆机构;5-轧槽块 6-轧辊;7-芯棒杆;8-芯棒杆卡盘;9-管料卡盘;10-中间卡盘;11-前卡盘 在送进和回转时,孔型和管体是不接触的,为此,轧槽块5上在孔型工作部分的前面和后面,分别加工有一定长度的送进开口(半径比管料半径大)和回转开口(半径比轧成管的半径大)。在轧制过程中,管料和芯棒被卡盘8、9夹住,因此,无论在正行程轧制或返行程轧制时,管料都不能作轴向移动。 工作机架由后极限位置移动到前极限位置为正行程;工作机架由前极限位置移动到后极限位置为返行程。 轧制过程中,当工作机架移到后极限位置时,把管料送进一小段,称送进量。工作机架向前移动后,刚送进的管料以及原来处在工作机架两极限位置之间尚未加工完毕的管体,在由孔型和芯棒所构成的尺寸逐渐减小的环形间隙中进行减径和管壁压下。当工作机架移动到前极限位置时,管料与芯棒一起回转60。~90。。工作机架反向移动后,正行程中轧过的管体受孔型的继续轧制而获得均整并轧成一部分管材。轧成部分的管材在下一次管料送进时离开轧机。

图2多辊式冷轧管机 1-柱形芯棒;2-轧辊;3-轧辊架;4-支承板;5-厚壁套筒;6-大连杆;7- 摇杆;8-管子 多辊式冷轧管机的轧管过程多辊式冷轧管机轧制管材时见(图2),管子在圆柱形芯棒1和刻有等半径轧槽的3~4个轧辊2之间进行变形。轧辊装在轧辊架3中,其辊颈压靠在具有一定形状的支承板(滑道)4上,支承板装在厚壁套筒5中,而厚壁套筒本身就是轧机的机架,它安装在小车上。工作时,曲柄连杆和摇杆系统分别带动小车和装在工作机架内的轧辊架作往复移动。由于小车和轧辊架是通过大连杆6和小连杆分别与摇杆7相联结的,所以当摇杆摆动时,轧辊与支承板便产生相对运动。当辊径在具有一定形状的支承板表面上作往复滚动时,轧辊和圆柱形芯棒组成的环形孔型就由大变小,再由小变大地作周期性改变。当小车走到后板极限位置时,送进一定长度的管料并将管体回转一个角度。为了降低返行程轧制时的轴向力以防止两根相邻管料在端部相互切入,一般管料的送进和管体的回转,是当小车在后极限位置时同时进行的。当小车离开后极限位置向前移动时,孔型逐渐变小,进行轧制,在返行程轧制时获得均整。 冷轧管时金属的变形和应力状态以二辊式冷轧管机轧管为例,在轧管过程中金属的变形过程如图3所示。送料时工作锥向轧制方向移动一段距离m(送进量),相当于管料的Ⅰ-Ⅰ截面移动相同的距离到了Ⅰ1-Ⅰ1,位置,Ⅱ一Ⅱ的截面移动同一个距离m到了Ⅱ1一Ⅱ1位置(图3a)。由于在管料送进的时候,工作锥的内表面脱离了芯棒的表面,两者之间形成了一个间隙c,所以,当工作机架前移,工作锥变形时,在变形区中先是减径,然后是压下管壁(图3b),而且在变形和延伸的过程中,工作锥内表面与位于轧槽块前的芯棒之间的间隙不断增大。同时,工作锥的末端截面移动到Ⅱx一Ⅱx位置。

注塑件变形的原因及解决方法

注塑件变形解决方法 注塑件形状与模腔相似但却是模腔形状的扭曲版本。可能出现问题的原因: ??? (1)弯曲是因为注塑件内有过多内部应力。 ??? (2)模具填充速度慢。??? (3)模腔内塑料不足。 ??? (4)塑料温度太低或不一致。??? (5)注塑件在顶出时太热。 ??? (6)冷却不足或动、定模的温度不一致。 ??? (7)注塑件结构不合理(如加强筋集中在一面,但相距较远)。 ?? 补救方法: ??? (1)降低注塑压力。???? (2)减少螺杆向前时间。 ??? (3)增加周期时间(尤其是冷却时间)。从模具内(尤其是较厚的注塑件)顶出后立即浸入温水中(38℃)使注塑件慢慢冷却。 ??? (4)增加注塑速度。??? (5)增加塑料温度。??? (6)用冷却设备。 ??? (7)适当增加冷却时间或改善冷却条件,尽可能保证动、定?模的模温一致。 (8)根据实际情况在允许的情况下改善塑料件的结构。 透明塑料注塑过程中应注意的常见问题

透明塑料由于透光率要高,必然要求塑料制品表面质量要求严格,不能有任何斑纹、气孔、泛白、雾晕、黑点、变色、光泽不佳等缺陷,因而在整个注塑过程对原料、设备、模具、甚至产品的设计,都要十分注意和提出严格甚至特殊的要求。其次由于透明塑料多为熔点高、流动性差,因此为保证产品的表面质量,往往需要较高的温度,注射压力、注射速度等工艺参数也要作细微调整,使注塑料时既能充满模,又不会产生内应力而引起产品变形和开裂。? ??? 因此从原料准备,对设备和模具要求、注塑工艺和产品的原料处理几方面都要进行严格的操作。??? (一)原料的准备与干燥 ??? 由于在塑料中含有任何一点杂质,都可能影响产品的透明度,因此和储存、运输、加料过程中都必须注意密封,保证原料干净。特别是原料中含有水分,加热后会引起原料变质,所以一定要干燥。在注塑时,加料必须使用干燥料斗。还要注意一点的是干燥过程中,输入的空气最好应经过滤、除湿,以便保证不会污染原料。其干燥工艺如下表,透明塑料的干燥工艺: 材料干燥温度(℃)干燥时间(h)料层厚度(mm)备注 PMMA 70~80 2~4 30~40 PC 120~130 >6 <30 采用热风循环干燥 PET 140~180 3~4 采用连续干燥加料装置为佳透明塑料注塑过程中应注意的常见问题??? (二)机筒、螺杆及其附件的清洁

轧制工艺

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 轧制工艺 Ⅹ第二章轧制生产工艺过程及其制定2.1 轧材产品标准和技术要求 2.2 金属与合金的加工特性 2.3 轧材生产各基本工序及对产品质量的影响下午9时23分 1/ 32

Ⅹ第二章轧制生产工艺过程及其制定轧制生产工艺过程由锭或坯轧制成符合技术要求的轧材的一系列加工工序的组合。 组织生产工艺过程,确定加工工序,首先要保证生产出的产品符合质量要求(或称技术要求),同时要尽量提高产量、降低消耗,这就是我们常说的“优质、高产、低消耗”,如何“优质、高产、低成本”的生产出符合技术要求的轧材,是制定工艺流程的总任务和总依据。 下午9时23分

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 第二章轧制生产工艺过程及其制定轧制生产工艺过程下午9时23分 3/ 32

Ⅹ2.1 轧材产品标准和技术要求一、轧材的技术要求为了满足使用上的要求,对轧材提出的必须具备的规格和技术性能,包括:形状、尺寸、表面状态、机械性能、物理化学性能,金属内部组织和化学成分等方面的要求。 轧材技术要求是由使用单位按用途的要求提出来的。 我们生产的钢材,都有用户使用。 用户根据使用的要求提出品种规格的要求(如:建筑桥梁需钢梁——工字钢,需要多大的规格),同时还提出其他要求:表面质量(裂纹、结疤、重皮,氧化铁皮),钢材机械性能(强度、塑性、韧性),工艺性能(弯曲、冲压、焊接等),物理化学性能(磁性、抗腐蚀性能等)。 下午9时23分

注塑制品变形的原因分析

注塑制品变形、弯曲、扭曲现象的发生主要是由于塑料成型时流动方向的收缩率比垂直方向的大,使制件各向收缩率不同而翘曲,又由于注射充模时不可避免地在制件内部残留有较大的内应力而引起翘曲,这些都是高应力取向造成的变形的表现。所以从根本上说,模具设计决定了制件的翘曲倾向,要通过变更成型条件来抑制这种倾向是十分困难的,最终解决问题必须从模具设计和改良着手。这种现象的主要有以下几个方面造成: 1.模具方面: (1)制件的厚度、质量要均匀。 (2)冷却系统的设计要使模具型腔各部分温度均匀,浇注系统要使料流对称避免因流动方向、收缩率不同而造成翘曲,适当加粗较难成型部份的分流道、主流道,尽量消除型腔内的密度差、压力差、温度差。 (3)制件厚薄的过渡区及转角要足够圆滑,要有良好的脱模性,如增加脱模余度,改善模面的抛光,顶出系统要保持平衡。 (4)排气要良好。 (5)增加制件壁厚或增加抗翘曲方向,由加强筋来增强制件抗翘曲能力。(6)模具所用的材料强度不足。 2.塑料方面: 结晶型比非结晶型塑料出现的翘曲变形机会多,加之结晶型塑料可利用结晶度随冷却速度增大而降低,收缩率变小的结晶过程来矫正翘曲变形。 3.加工方面:

(1)注射压力太高,保压时间太长,熔料温度太低速度太快会造成内应力增加而出现翘曲变形。 (2)模具温度过高,冷却时间过短,使脱模时的制件过热而出现顶出变形。 (3)在保持最低限度充料量下减少螺杆转速和背压降低密度来限制内应力的产生。 (4)必要时可对容易翘曲变形的制件进行模具软性定型或脱模后进行退火处理。 成型时主流道粘模的原因分析 注塑成型时主流道粘模的原因及排除方法: (1)冷却时间太短,主流道尚未凝固。 (2)主流道斜度不够,应增加其脱模斜度。 (3)主流道衬套与射嘴的配合尺寸不当造成漏流。 (4)主流道粗糙,主流道无冷却井。 (5)射嘴温度过低,应提高温度。 成型时生产缓慢的原因分析 注塑成型时生产缓慢的原因及解决方法如下: (1)塑料温度、模具温度高,造成冷却时间长。 (2)熔胶时间长。应降低背压压力,少用再生料防止架空,送料段冷却要充分。

平板焊接变形的测量与分析.doc

实验一平板焊接变形的测量与分析 一、实验目的 1 .掌握平板收缩变形、挠曲变形及角变形的基本方法。 2 .熟悉平板堆焊收缩变形、挠曲变形及角变形的产生原因和分布规律。 3 .了解不同厚度、不同线能量对收缩变形、挠曲变形及角变形大小的影响。 二、焊接设备、实验条件及测量工具和仪器 (一)焊接方法及设备 焊接方法:手工电弧焊。 焊接设备:交流弧焊机及其辅助设施。 (二)实验条件 1 .试件尺寸:2mm × 150mm ×300mm 6mm × 150mm × 300mm 2 ·试件材料:Q235A 3 .焊接规范 见下表 板厚焊接电流 2mm 90A 110A 6mm 170A 190A 4 .测点分布如下图1 2 所示

图1 2mm 板测点分布 图2 6mm 板测点分布 6mm 板:横向收缩、角变形以及挠曲变形均测。 2mm 板:只测角变形及挠曲变形。 (三)测量工具与仪器 测量仪器包括:1 ,引伸仪; 2 .游标卡尺; 3 .钢板尺。 三、测量方法 1、横向收缩变形的测量 横向收缩变形采用引伸仪来测量。引伸仪结构见图3 。

图3 引伸仪结构示意图 其中:1 .百分表; 2 .铰链;3 .活动支腿;4 .固定支腿;5 .弹簧。 对应图2 中A 、B 、C 、F 、G 、H 六条横线,把引伸仪的活动支腿 3 放在竖线L 上的洋冲孔内,拉动引伸仪,是活动支腿 4 放在竖线P 上对应的孔内,从百分表中读出焊前孔间距的原始数值BO ,焊后测出间距数值Bl 。分别填入附表内,其差值即为焊接所引起的横向收缩变形值。赶泣塑哩鳗互曳丝下表面差值的平均值即为该位置的横向收缩变形值。 2 、挠曲变形的测量 挠曲变形的测量采用带支腿的钢板尺和游标卡尺来测量。 图4 挠曲变形测量示意图 如图4 所示,1 为带支腿的钢板尺,2 为试件。使用游标卡尺分别测出焊前、焊后的高度h ,分别记为hl 、h2 填入附表内,其差值即为焊接所引起的挠曲变形。对Zmm 板需测量图1 中J 、K 、L 、M 、N 、P 、Q 、R 八条竖线上的挠曲变形。对6mm 板需测量图2 中J 、L 、M 、N 、P 、R 六条竖线上的挠曲变形。

【精品】注塑制品翘曲变形

1231慧聪网塑料讯:注塑制品翘曲变形是指注塑制品的形状偏离了模具型腔的形状,它是塑料制品常见的缺陷之一。随着塑料工业的发展,人们对塑料制品的外观和使用性能要求越来越高,翘曲变形程度作为评定产品质量的重要指标之一也越来越多地受到模具设计者的关注与重视。模具设计者希望在设计阶段预测出塑料件可能产生翘曲的原因,以便加以优化设计,从而提高注塑生产的效率和质量,缩短模具设计周期,降低成本。 本文主要对在注塑模具设计过程中影响注塑制品翘曲变形的因素加以分析. ●模具的结构对注塑制品翘曲变形的影响 在模具设计方面,影响塑件变形的因素主要有浇注系统、冷却系统与顶出系统等。 1.浇注系统的设计 注塑模具浇口的位置、形式和浇口的数量将影响塑料在模具型腔内的填充状态,从而导致塑件产生变形. 流动距离越长,由冻结层与中心流动层之间流动和补缩引起的内应力越大;反之,流动距离越短,从浇口到制件流动末端的流动时间越短,充模时冻结层厚度减薄,内应力降低,翘曲变形也会因此大为减少。图1为大型平板形塑件,

如果只使用一个中心浇口(如图1a所示)或一个侧浇口(如图1b所示),因直径方向上的收缩率大于圆周方向上的收缩率,成型后的塑件会产生扭曲变形;若改用多个点浇口(如图1c所示)或薄膜型浇口(如图1d所示),则可有效地防止翘曲变形. a)中心浇口b)侧浇口c)多点浇口d)薄膜型浇口 当采用点浇进行成型时,同样由于塑料收缩的异向性,浇口的位置、数量都对塑件的变形程度有很大的影响。图2为一箱形制件在不同浇口数目与分布下的试验图。 a)直浇口b)10个点浇口c)8个点浇口 d)4个点浇口e)6个点浇口f)4个点浇口 由于采用的是30%玻璃纤维增强PA6,而得到的是重量为4.95kg的大型注塑件,因此沿四周壁流动方向上设有许多加强肋,这样,对各个浇口都能获得充分的平衡.实验结果表明,按图f设置浇口具有较好的效果。但并非浇口数目越多越好。实验证明,按图c设计的浇口比图a的直浇口还差。 另外,多浇口的使用还能使塑料的流动比(L/t)缩短,从而使模腔内物料密度更趋均匀,收缩更均匀.同时,整个塑件能在较小的注塑压力下充满.而较小的注射压力可减少塑料的分子取向倾向,降低其内应力,因而可减少塑件的变形。

构件地静力分析基础

第二 讲 学时:2学时 课题:第一章构件静力分析基础静力分析的基本概念静力学公理约束和约束反力 目的任务:理解静力分析的基本概念、掌握静力学公理、约束和约束反力 重点:静力学公理、约束反力 难点:约束和约束反力的概念 第一章构件静力分析基础 静力分析的基本概念 1.1.1 力的概念 1. 定义力是物体间的相互机械作用。这种机械作用使物体的运动状态或形状尺寸发生改变。 力使物体的运动状态发生改变称为力的外效应; 力使物体形状尺寸发生改变称为力的内效应。 2. 力的三要素及表示方法 物体间机械作用的形式是多种多样的,如重力、压力、摩擦力等。 力对物体的效应(外效应和内效应)取决于力的大小、方向和作用点,这三者被称为力的三要素。 力是一个既有大小又有方向的物理量,称为力矢量。 用一条有向线段表示,线段的长度(按一定比例尺)表示力的大小;线段的方位和箭头表示力的方向; 线段的起始点(或终点)表示力的作用点,如图所示。力的国际单位为[牛顿](N)。

3.力系与等效力系 若干个力组成的系统称为力系。 如果一个力系与另一个力系对物体的作用效应相同,则这两个力系互称为等效力系。 若一个力与一个力系等效,则称这个力为该力系的合力,而该力系中的各力称为这个力的分力。 已知分力求其合力的过程称为力的合成,已知合力求其分力的过程称为力的分解。 4.平衡与平衡力系 平衡是指物体相对于地球处于静止或匀速直线运动的状态。 若一力系使物体处于平衡状态,则该力系称为平衡力系。 1.1.2 刚体的概念 所谓刚体,是指在外力作用下,大小和形状保持不变的物体。 这是一个理想化的力学模型,事实上是不存在的。 实际物体在力的作用下,都会产生程度不同的变形。 但微小变形对所研究物体的平衡问题不起主要作用,可以忽略不计,这样可以使问题的研究大为简化。 静力学中研究的物体均可视为刚体。 静力学公理 公理1 二力平衡公理 作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。

造船焊接变形和反变形控制

造船中的焊接变形和反变形控制 1.研究背景 船舶工业是传统的劳动密集型装配制造业,焊接操作是其中主要的作业形式之一,焊接水平的高低在很大程度上决定了船体的质量和生产效率,而焊接变形又是焊接过程中最难控制的一环。焊接变形的存在不仅造成了焊接结构形状变异,尺寸精度下降和承载能力降低,而且在工作荷载作用下引起的附加弯矩和应力集中现象是船舶结构早期失效的主要原因,也是造成船舶结构疲劳强度降低的原因之一[1]。焊接变形对现代造船技术的应用产生了障碍。由于焊接变形对船舶建造质量、成本和周期都具有重要影响,工业界一直对其非常重视,对焊接变形从实验和理论上进行了大量研究,希望能够对焊接过程进行有效预测和控制。反变形可以控制焊接变形,降低残余应力,且方法简单易行,在船舶行业有广泛的应用。 2.背景内容 针对造船中的焊接变形,国内外专家进行大量的研究。焊接过程是一个非平衡的、时变的、带有随机因素影响的物理化学过程,它涉及电弧物理、传质传热和力学等方面。至今对焊接过程变形的实时检测与监控仍是困难的,不仅需要特殊的方法,而且对设备的要求也很高。随着计算机软、硬件技术的快速发展,使得焊接热加工过程的数值模拟应运而生,实践证明数值模拟对于研究焊接现象是一种非常有用的方法。 2.1国外专家的预测和研究 20世纪30年代以来,许多苏联学者就开始了焊接变形计算与控制研究。如C.A.库兹米诺夫[2]研究了典型船体结构总变形和局部变形的计算方法,提出了减少和补偿焊接变形以及矫正主船体结构的解决方案。Greene和Holzbaur[3]开展了降低焊接残余应力和变形的研究,目前降低残余应力和焊接变形技术大多数由他们制定的法则演变而来。法国的国际焊接研究所对“焊接结构中残余

轧制工艺学总结简化版1

1自由宽展:在横向变形过程中,除受接触摩擦影响外,不受任何其他阻碍和限制。限制宽展:在横向变形过程中,除受接触摩擦影响外,还受到孔型侧壁的阻碍作用,破坏了自由流动条件,此时宽展称为限制宽展。 强迫宽展:在横向变形过程中,质点横向移动时,不仅不受任何阻碍,还受到强烈的推动作用,使轧件宽展产生附加增长。 2宽展的组成:①滑动宽展△B1滑动宽展是变形金属在与轧辊的接触面产生相对滑动所增加的宽展量.②翻平宽展△B2翻平宽展是由于接触摩擦阻力的作用,使轧件侧面的金属,在变形过程中翻转到接触表面上,使轧件的宽度增加。③鼓形宽展△B3是轧件侧面变成鼓形而造成的宽展量。 3.影响宽展的因素:①相对压下量的影响。②道次越多,宽展越小③轧辊直径的影响:轧辊直径增加,宽度增加。④摩擦系数⑤轧件宽度 4.前滑的概念:轧件出口速度Vh大于轧辊在该处的速度V,即Vh>V的现象称为前滑现象。后滑的概念:轧件进入轧辊的速度VH小于轧辊在该处的线速度V的水平分量V cosa的现象称为后滑。 前滑值: Sh=(Vh-V)/V *100% ;后滑值: SH=(Vcosa-VH)/ Vcosa *100% 5.影响前滑的因素:①压下率;②轧件厚度;③轧件宽度;④轧辊直径;⑤摩擦系数;⑥张力。 6.金属与合金的加工特性:①塑性:纯金属>单相>多相。②变形抗力:有色金属<钢;碳钢<合金钢。碳化物形成元素强化效果大。③导热系数:合金钢<碳钢。④摩擦系数:合金钢>碳钢。⑤相图状态。⑥淬硬性。⑦对某些缺陷的敏感性。 7型材轧制的咬入条件:其一当轧件与孔型顶部先接触就与平辊轧制矩形相似;其二当轧件与孔型侧壁接触时,咬入条件:Tx ≧ N0x Tx=Tcosα , T = Nf N0x=N0sinα, N0 =Nsin θ Nfcosα≧ Nsinθsinα f/sinθ≧tanα 8型材轧机按轧辊名义直径的分类:轨梁轧机(750-950mm)大型轧机(>650mm)中型(350-650mm)小型(250-350mm)线材(150-280mm) “对称轧制原则”:使轧件的断面对称轴和轧辊孔型的对称轴一致。 9孔腔形成机理:一定成分的金属在一定的工艺变形条件下(加工温度、变形速度、工具设计等),管坯径缩率达到一定临界值后,使轴心出现纵向裂纹,形成孔腔。孔腔形成原因:1)“外端”的影响,使轴心区承受了很强的横向附加应力;2)表面变形,临界径向压缩率提升;3)经多次反复,由于加工硬化和晶体内部缺陷的存在,这些部分便在最大横向张应力作用下出项裂纹,逐渐发展成轴心疏松区,形成孔腔。 10.轧件在万能孔型中的变形特点:①腰部和边部的变形区形状近似于平辊轧板;②边部和腰部的变形互相影响;③腰部全后滑;④边部的变形区长,立辊先接触轧件;⑤轧制后边端不齐,外侧宽展大。 11.棒材轧制新技术:直接使用连铸坯;连铸坯热装热送或直接轧制;柔性轧制技术;高精度轧制技术;低温轧制;无头轧制;切分轧制。 12.切分轧制:在型钢轧机上利用特殊轧辊孔型何导卫装置将一根轧件沿纵向切成两根(或多根)的轧件,进而扎出两根(或多根)成品轧材的轧制工艺 13.板带无头轧制:是在传统轧制机组上,将经粗轧后的中间坯进行热卷、开卷、剪切头尾、焊接及刮削毛刺,然后进行精轧,精轧后再经飞剪切断然后卷取。优点:1)不受传统轧法速度限制,生产率提高,成材率提高;2)无穿带、甩尾、漂浮等问题,带钢运行稳定;3)有利于润滑轧制、大压下量轧制及进行强力冷却;4)减少轧辊冲击和粘辊,延长轧辊寿命。 14线材控制冷却根据得到组织分为:珠光体型控制冷却和马氏体型控制冷却。珠光体控制冷却是在连续冷却过程中使钢材获得索氏体组织,而马氏体型控制冷却则是通过轧后淬火-回火

(完整版)汽车研发注塑件工艺流程及参数解析

汽车研发注塑件工艺流程及参数解析! 塑料化是当今国际汽车制造业的一大发展趋势,尤其内外饰上大部分件都是塑料件。内饰塑料件大致有仪表盘配件、座椅配件、地板配件、顶板配件、方向盘配件、车门内饰件、后视镜以及各种卡扣和固定件;外观塑料件有前后车灯、进气格栅、挡泥板、倒车镜。今天和大家一起聊聊注塑件的工艺流程及相关重要参数。 一 定义 注塑成型工艺是指将熔融的原料通过填充、保压、冷却、脱模等操作制作一定形状的半成品件的工艺过程。

二 工艺流程 注塑工艺流程图如下: 1填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高。但是在实际生产中,成型时间(或注塑速度)要受到很多条件的制约。填充又可分为高速填充和低速填充。 1)高速填充 高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行

为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 2)低速填充 热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 2保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。

焊接结构复习题

焊接结构复习思考题 1. 什么是内应力?有什么特点? 2. 什么是自由变形、内部变形、外观变形?之间有什么关系? 3. 画出低碳钢的屈服极限随温度的变化曲线. 4. 杆件均匀加热时产生残余应力和变形的原因是什么? 5. 分析低碳钢窄长板条中央纵向堆焊时应力与应变的演变过程,并用图示表示 加热和冷却时的应力和变形。 6. 低碳钢窄长板条沿板边堆焊时,是如何变形的,为什么?影响因素有哪些? 7. 焊接残余变形有几种形式? 8. 影响对接接头纵向残余变形的因素有哪些?这些因素是如何影响的? 9. 分析各种变形产生的原因。 10. 为什么焊接薄板时,容易产生波浪变形? 11. 焊接过程中产生错边的主要原因是什么?错边对接头强度有何影响? 12. 影响对接焊缝角变形的因素有哪些?它们是如何影响的? 13. 分析结构因素对焊接残余变形的影响。 14. 预防焊接变形的措施有那些?为什么? 15. 矫正焊接变形的措施有哪些? 16. 为防止焊接变形,如何选择合理的焊接顺序? 17. 低碳钢薄板对接接头中焊接残余应力是如何分布的?为什么会形成如此分 布?(纵向、横向) 18. 焊接残余应力对焊接接头静载强度的影响. 19. 焊接残余应力对受压构件稳定性的影像. 20. 焊接残余应力对构件刚度的影响. 21. 分析焊接应力和变形的演变过程时,有那些基本假设? 22. 在焊接过程中,调节内应力的措施有哪些?

23. 焊后消除内应力的方法有哪些? 24. 在工艺上有哪些控制焊接变形的方法? 25. 分析角焊缝搭接接头的应力分布特点? 26. 分析十字接头的应力分布特点? 27. 组配对接头静载强度的影响. 28. 与铆接相比,焊接结构为何易产生脆断? 29. 试述应力状态、温度、加载速度对焊接结构脆断的影响。 30. 影响焊接结构脆断的主要因素是什么? 31. 什么叫材料的脆性转变温度(Tk)?其大小反映了材料的什么性能? 32. 如何防止焊接接头的脆断? 33. 影响焊接接头疲劳强度的因素有哪些? 34. 如何提高焊接接头的疲劳强度? 35. 焊接接头的应力集中对接头的性能有何影响? 36. 何谓应力集中系数?焊接接头产生应力集中的主要因素有哪些? 37. 焊接残余应力对焊接结构疲劳强度有何影响? 38. 焊接残余应力对焊接结构脆性断裂有何影响? 39. 焊接缺陷对焊接结构疲劳强度有何影响? 40. 在工艺上有哪些控制焊接变形的方法? 41. 在设计上主要采取哪些措施预防焊接变形? 42. 影响焊接接头疲劳强度最主要因素是什么?

金属塑性加工学—轧制理论与工艺

1.简单轧制过程的条件,变形区及主要参数有哪些?P5-7 答:简单轧制过程:轧制过程上下辊直径相等,转速相同,且均为主动辊、轧制过程对两个轧辊完全对称、轧辊为刚性、轧件除受轧辊作用外,不受其他任何外力作用、轧件在入辊处和出辊处速度均匀、轧件本身的力学性质均匀。 变形区:(1)几何变形区:入口和出口截面之间的区域、(2)物理变形区:发生塑性变形的区域 变形区参数:(1)咬入弧:轧件与轧辊相接触的圆弧。(2)咬入角α:咬入弧所对应的圆心角称为咬入角。(3)变形区长:咬入弧的水平投影。(4)轧辊半径R。(5)轧件轧前、后的厚度H、h。(6)平均厚度。(7)轧件轧前、后宽度B、b。(8)平均宽度。(9)压下量 2.改善咬入条件的途径。P17 答:由α≦β应使α↓,β↑ 1.减小α方法:由α=arccos(1-△h/D) 1)减小压下量。2)增大D。生产中常用方法:3)采用开始小压下或采用带有楔形端的钢坯进行轧制的方法 2.提高β的方法:轧制中摩擦系数主要与轧辊和轧件的表面状态、轧制时轧件对轧辊的变形抗力以及轧辊线速度的大小有关1)改变表面状态,如清除氧化皮。2)合理调节轧制速度,随轧制速度提高摩擦系数降低,采取低速咬入。3)改变润滑情况等。 3.宽展的组成及分类。P19 答:组成:滑动宽展△B1、翻平宽展△B2、鼓形宽展△B3 分类:自由宽展、限制宽展、强制宽展 4.前、后滑区、中性角的定义。P37-40 答:(1)前滑区:摩擦力方向与带钢运行方向相反,在变形区出口处,金属速度大于轧辊圆周速度,相对轧辊向前运动。 (2)后滑区:摩擦力方向与带钢运行方向相同,在变形区入口处,金属速度小于轧辊圆周速度,相对轧辊向后运动。 (3)中性角:前滑区与后滑区的分界面对应的圆心角叫中性角,金属速度与轧辊圆周速度相等,相对轧辊没有运动。 5.确定平均单位压力的方法、说明。P50 答:(1)理论计算法:它是建立在理论分析基础上,用计算公式确定单位压力。通常,都要首先确定变形区内单位压力分布形式及大小,然后再计算平均单位压力。 (2)实测法:即在轧钢机上放置专门设计的压力传感器,将压力信号转换成电信号,通过放大或直接送往测量仪表将其记录下来,获得实测的轧制压力资料。用实测的轧制压力除以接触面积,便求出平均单位压力。 (3)经验公式和图表法:根据大量的实测统计资料,进行一定的数学处理,抓住一些主要影响因素,建立经验公式或图表。 6.卡尔曼微分方程:条件、作图、推导建立。M.D斯通公式轧制力、轧制力矩计算。P50 7.轧材按断面形状特征的分类及主要用途。P100 答:根据轧材的断面形状的特征,分为型材、线材、板材、带材、管材和特殊类型等。根据加工方式,轧制产品分为热轧材和冷轧材两大类。 (1)型材中的工字钢、槽钢、角钢广泛应用于工业建筑和金属结构,扁钢主要

轧制基础理论

一、什么是铝 铝是一种银白色金属,在地壳中含量仅次于氧和硅排在第三位。铝的密度小,仅为铁的34.61%、铜的30.33%,因此又被称作轻金属。拿同样体积的铝跟钢铁、铜比较,钢铁的重量是铝的2.9倍,铜的重量是铝的3.3倍,因此铝又成为各种设施轻量化的首选金属材料。 二、铝的特性及用途 铝具有轻便性、导电性、导热性、可塑性(易拉伸、易延展)、耐腐蚀性(不生锈)\物理和力学性能好等优良特性,所以成为机电、电力、航空、航天、造船、汽车制造、包装、建筑、交通运输、日用百货、房地产等行业的重要原材料。 铝的密度只有2.7103g/cm3,铝的表面具有高度的反射性,辐射能、可见光、辐射热和电波都能有效地被铝反射,而经阳极氧化和深色阳极氧化的表面可以是反射性的,也可以是吸收性的,抛光后的铝在很宽波长范围内反射优良,因而具有多种装饰用途及反射功能性用途。 铝通常显示出优良的电导率,它的导电能率约为铜的三分之二,但由于其密度仅为铜的三分之一,因而,将等质量和等长度的铝线和铜线相比,铝的导电能力约为铜的二倍,且价格较铜低,应用成本低,所以常被电力工业和电子工业选用。目前,具有高电阻率的一些特定铝合金也已经研制成功,这些合金可用于如高转矩的电动机中。 铝的热导率很高,仅次于铜,铝的导热能力比铁大3倍,大约是铜的50%~60%。铜的导热性虽然最佳,可是制造同样大小的工件重量要比铝大很多,价格也比铝贵很多。因此,制造散热器铝仍是首选。铝的性价比对制造热交换器、蒸发器、加热电器、炊事用具,以及汽车的缸盖与散热器都很有利。 铝是非铁磁性的,这对电气工业和电子工业而言是一个极其重要的特性。 铝是不能自燃的,这对涉及装卸或接触易燃易爆材料的行业来说十分重要。铝的毒性非常微小,通常用于制造盛食品和饮料的容器。近年来,铝箔在香烟、药品、食品的包装方面应用越来越广泛,已成为包装业的重要材料。 铝的自然表面状态具有宜人的外观。它柔软、有光泽,而且为了美观,还可着色或染上纹理图案。在现代生活中,铝已经广泛地应用在建筑行业和日用百货中。 铝还具有良好的吸音性能,根据这一特点,-些广播室、现代化大建筑内的天花板等有的采用了铝。 铝的可塑性非常好。纯的铝很软,强度不大,有着良好的延展性,可拉成细丝和轧成箔片,具有良好的可机加工性,大量用于电线、电缆制造业和无线电工业以及包装业。在某些

注塑制品的翘曲变形分析

注塑制品的翘曲变形分析 翘曲变形是指注塑制品的形状偏离了模具型腔的形状,它是塑料制品常见的缺陷之一。随着塑料工业的发展,人们对塑料制品的外观和使用性能要求越来越高,翘曲变形程度作为评定产品质量的重要指标之一也越来越多地受到模具设计者的关注与重视。模具设计者希望在设计阶段预测出塑料件可能产生翘曲的原因,以便加以优化设计,从而提高注塑生产的效率和质量,缩短模具设计周期,降低成本。 一、本文主要对在注塑模具设计过程中影响注塑制品翘曲变形的因素加以分析。 二、模具的结构对注塑制品翘曲变形的影响在模具设计方面,影响塑件变形的因素主要有浇注系统、冷却系统与顶出系统等。 1 .浇注系统的设计注塑模具浇口的位置、形式和浇口的数量将影响塑料在模具型腔内的填充状态,从而导致塑件产生变形。流动距离越长,由冻结层与中心流动层之间流动和补缩引起的内应力越大;反之,流动距离越短,从浇口到制件流动末端的流动时间越短,充模时冻结层厚度减薄,内应力降低,翘曲变形也会因此大为减少。大型平板形塑件,如果只使用一个中心浇口或一个侧浇口,因直径方向上的收缩率大于圆周方向上的收缩率,成型后的塑件会产生扭曲变形;若改用多个点浇口或薄膜型浇口,则可有效地防止翘曲变形。当采用点浇进行成型时,同样由于塑料收缩的异向性,浇口的位置、数量都对塑件的变形程度有很大的影响; 实验表明,浇口位置具很重要,但并非浇口数目越多越好。另外,多浇口的使用还能使塑料的流动比(L /t )缩短,从而使模腔内物料密度更趋均匀,收缩更均匀。同时,整个塑件能在较小的注塑压力下充满。而较小的注射压力可减少塑料的分子取向倾向,降低其内应力,因而可减少塑件的变形。 2 .冷却系统的设计在注射过程中,塑件冷却速度的不均匀也将形成塑件收缩的不均匀,这种收缩差别导致弯曲力矩的产生而使塑件发生翘曲。如果在注射成型平板形塑件时所用的模具型腔、型芯的温度相差过大,如图 3 所示,由于贴近冷模腔面的熔体很快冷却下来,而贴近热模腔面的料层则会继续收缩,收缩的不均匀将使塑件翘曲。因此,注塑模的冷却应当注意型腔、型芯的温度趋于平衡,两者的温差不能太大。除了考虑塑件内外表面的温度趋于平衡外,还应考虑塑件各侧的温度一致,即模具冷却时要尽量保持型腔、型芯各处温度均匀一致,使塑件各处的冷却速度均衡,从而使各处的收缩更趋均匀,有效地防止变形的产生。因此,模具上冷却水孔的布置至关重要。在管壁至型腔表面距离确定后,应尽可能使冷却水孔之间的距离小,才能保证型腔壁的温度均匀一致。同时,由于冷却介质的温度随冷却水道长度的增加而上升,使模具的型腔、型芯沿水道产生温差。因此,要求每个冷却回路的水道长度小于2m 。在大型模具中应设置数条冷却回路,一条回路的进口位于另一条回路的出口附近。对于长条形塑件,

相关文档
相关文档 最新文档