文档库 最新最全的文档下载
当前位置:文档库 › 圆经典例题精析

圆经典例题精析

圆经典例题精析
圆经典例题精析

圆经典例题精析

考点一、圆的有关概念和性质

1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )

(A)4个(B)3个(C)2个(D)1个

【考点】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念,

【思路点拨】其中第②个命题不对的原因在于忽视了过三点作图的条件.若三点在一条直线上,则不能作出过这三点的圆,故②不对.

【答案】B.

2.下列判断中正确的是( )

(A)平分弦的直线垂直于弦

(B)平分弦的直线也必平分弦所对的两条弧

(C)弦的垂直平分线必平分弦所对的两条弧

(D)平分一条弧的直线必平分这条弧所对的弦

【考点】垂径定理

【解析】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.A中被平分的弦应不是直径;

B理由同A;D中平分弧的直线的直线应过圆心.

【答案】C.

3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则( )

(A)(B)

(C)的度数=的度数(D)的长度=的长度

【思路点拨】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB=∠A′OB′,所以的

度数=的度数.

【答案】C.

4.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是( )

A.80°

B.100°

C.120°

D.130°

【考点】同弧所对的圆周角等于圆心角的一半,圆内接四边形的对角互补.

【思路点拨】可连结OC,则由半径相等得到两个等腰三角形,

∵∠A+∠B+∠ACB=360°-∠O=260°,且∠A+∠B=∠ACB,∴∠ACB=130°.

或在优弧AB上任取一点P,连结PA、PB,则∠APB=∠O=50°,

∴∠ACB=360°-∠APB =130°.

【答案】D.

总结升华:圆的有关性质在解决圆中的问题时,应用广泛,运用简便.

举一反三:

【变式1】某公园的一石拱桥是圆弧形(劣弧),跨度为24米,拱的半径为13米,则拱高为_____.

【考点】垂径定理.

【思路点拨】本题可用几何语言叙述为:如图,AB为⊙O的弦,CD为拱高,AB=24米,半径OA=13米,求拱高CD的长.

【解析】由题意可知:CD⊥AB,AD=BD,且圆心O在CD的延长线上.连结OA,

则OD===5(米).所以CD=13-5=8(米).

【答案】8米.

【变式2】如图,AB是⊙O的直径,∠ACD=15°,则∠BAD=__________°.

【考点】同弧所对的圆周角相等,直径所对的圆周角是90°.

【思路点拨】AB是直径,则∠ADB=90°,∠ACD=∠ABD=15°,可求得∠BAD.

【答案】75°.

【变式3】如图,⊙O的直径AB和弦CD相交于点E,且AE=1cm,EB=5cm,∠DEB=60°,求CD的长.

【解析】因为AE=1cm,EB=5cm,所以OE=(1+5)-1=2(cm),半径等于3cm.在Rt△OEF中可求EF

的长,再求OF的长,连结OD,利用勾股定理求得FD,可得CD的长.

【略解】∵AE=1 cm,BE=5 cm,∴⊙O的半径为3 cm.∴OE=3-1=2(cm).在Rt△OEF中,∠OEF=60°,∴OF=sin 60°·OE=·2=(cm).

连结OD,在Rt△ODF中,OF⊥CD,∴ FC=FD.FD2=OF2+OD2即FD2=32-()2,

解得FD=±(负值舍去).∴CD=2FD=2(cm).

考点二、与圆有关的位置关系

5.圆心O与直线AB上一点的距离等于半径,则直线AB与⊙O的位置关系是( )

A. 相离

B.相切

C.相交

D.相切或相交

【考点】直线和圆的位置关系.

【思路点拨】注意审题,本题说的是圆心和直线上一点的距离等于半径,不是圆心到直线的距离等于半径.故不能选B.如下图有两种情况均符合题意:点O到点A的距离均等于半径.

【答案】D.

6.如图,AB、AC是⊙O的切线,将OB延长一倍至D,若∠DAC=60°,则∠D=_____.

【思路点拨】连结OA.∵ AB、AC是⊙O的切线,

∴ AO平分∠BAC,且OB⊥AB.又OB=BD,

∴ OA=DA.∴∠OAB=∠DAB.

∴ 3∠DAB=60°.∴∠DAB=20°.∴∠D=70°.

【答案】∠D=70°.

7.若两圆半径分别为R和r(R>r),圆心距为d,且R2+d2=r2+2Rd,则两圆的位置关系为( )

A.内切

B.内切或外切

C.外切

D.相交

【考点】圆和圆位置关系的判定

【思路点拨】由R2+d2=r2+2Rd得R2+d2-2Rd =r2,(R-d)2= r2,所以d=R±r,故选B.

【答案】B.

8.OA平分∠BOC,P是OA上任一点,P不与点O重合,且以P为圆心的圆与OC相离,那么圆P与OB的位

置关系是( )

(A)相离(B)相切(C)相交(D)不确定

【考点】直线和圆的位置关系.

【思路点拨】因为以点P为圆心的圆与OC相离,则P到OC的距离大于圆的半径.又因为角平分线上的一点

到角的两边的距离相等,则点P到OB的距离也大于圆的半径,故圆P与OB也相离.

【答案】A.

9.△ABC的三边长分别为a、b、c,它的内切圆的半径为r,则△ABC的面积为( )

(A)(a+b+c)r(B)2(a+b+c)(C)(a+b+c)r(D)(a+b+c)r

【考点】内心到三角形三边的距离相等.

【解析】连结内心与三个顶点,则△ABC的面积等于三个三角形的面积之和,

所以△ABC的面积为a·r+b·r+c·r=(a+b+c)r.

【答案】A.

总结升华:主要考查用点与圆、直线与圆、圆与圆的位置关系及切线长定理解决问题.

举一反三:

【变式1】已知半径分别为r和2r的两圆相交,则这两圆的圆心距d的取值范围是( )

(A)0<d<3r (B)r<d<3r(C)r≤d<3r (D)r≤d≤3r

【考点】相交两圆的圆心距与两圆半径之间的关系.

【解析】当两圆相交时,圆心距d与两圆半径的关系为2r-r<d<2r+r,即r<d<3r.

【答案】B.

【变式2】如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E作⊙O的切线交AC于点D,试判断△AED的形状,并说明理由.

【考点】角平分线的性质和切线的性质.

【解析】△AED是直角三角形,理由如下:

连结OE

AE平分∠BAC,∴∠1=∠2

OA=OE,∴∠1=∠3

∴∠2=∠3,∴AC//OE

ED是⊙O的切线,∴∠OED=90°

∴∠ADE=90°,∴△AED是直角三角形.

【变式3】在射线OA上取一点A,使OA=4cm,以A为圆心,作一直径为4cm的圆,问:过O的射线OB与OA所夹的锐角取怎样的值时,⊙A与OB(1)相离;(2)相切;(3)相交.

【考点】直线与圆的位置关系的判定.

【思路点拨】判定直线与圆的位置关系,主要通过圆心到直线的距离与半径之间的比较:

设⊙O的半径为r,圆心到直线的距离OP=d,则有:

①直线与圆相交d<r;

②直线与圆相切d=r;

③直线与圆相离d>r.

【解析】作于点C

AC=AO·sin

当AC=2cm时,锐角=30°,

∴当=30°时,该圆与OB相切;

当0°<<90°时,sin随的增大而增大.

∴30°<<90°时,AC>2cm,该圆与OB相离;0°<<30°时,该圆与OB相交.

【变式4】⊙O2和⊙O1相交于点A、B,它们的半径分别为2和,公共弦AB长为2,若圆心O1、O2在AB的同侧,则∠O1AO2=_____.

【考点】相交两圆的连心线垂直平分公共弦.

【思路点拨】连结O1O2并延长交AB于点C,则O1O2⊥AB,AC=AB=1,在Rt△AO2C中可求得∠CAO2=60°,在Rt△AO1C中可求得∠CAO1=45°,得出结论∠O1AO2=15°.

【变式5】⊙O2和⊙O1相交于点A、B,它们的半径分别为2和,公共弦AB长为2,若圆心O1、O2在AB的同侧,则O1O2=_____.

【考点】相交两圆的连心线垂直平分公共弦和勾股定理.

【思路点拨】连结O1O2并延长交AB于点C,则O1O2⊥AB,AC=AB=1,运用勾股定理,在Rt△AO2C 中可求得CO2=,在Rt△AO1C中可求得CO1=1,则O1O2=CO2- CO1=-1.

【答案】O1O2=-1.

【变式6】⊙O2和⊙O1相交于点A、B,它们的半径分别为2和,公共弦AB长为2,则O1O2=_____.

【考点】相交两圆的连心线垂直平分公共弦和勾股定理.

【思路点拨】分两种情况:1、圆心O1、O2在AB的同侧,如图1;2、圆心O1、O2在AB的两侧,如图2.

图1图2

【解析】连结O1O2并延长交AB于点C,则O1O2⊥AB,AC=AB=1,运用勾股定理,

在Rt△AO2C中可求得CO2=,在Rt△AO1C中可求得CO1=1,

(1)如图1,圆心O1、O2在AB的同侧时,则O1O2=CO2-CO1=-1;

(2)如图2,圆心O1、O2在AB的两侧时,则O1O2=CO2+CO1=+1.

【答案】O1O2=-1或+1.

考点三、圆与正多边形

10.如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,连结AC,则图中阴影部分的面积为_________.

【考点】切线的性质和扇形面积公式.

【解析】∵BC∥OA ∴△ABC和△OBC同底等高∴S△A BC=S△OBC

∴图中阴影部分的面积等于扇形OBC的面积.

∵AB是⊙O的切线∴OB⊥BA 在Rt△ABO中,OA=4,OB=2 ∴∠OAB=30°

则可得∠BOA=60°可得结论.

11.扇形的半径为6cm,面积为9cm2,那么扇形的弧长为______,扇形的圆心角度数为_____.

【考点】弧长公式和扇形面积公式.

【解析】已知扇形面积为9 cm2,半径为6 cm,则弧长;设圆心角的度数为n,则,所以.

【答案】3;.

12.用一张面积为900 cm2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为_____.

【思路点拨】本题中圆柱的侧面展开图为正方形,圆柱底面圆的周长是正方形的边长.

【解析】面积为900 cm2的正方形的边长为30 cm,则底面圆的周长30 cm.设直径为d,

则,故(cm).

【答案】cm.

13.如图,已知扇形AOB的圆心角为60°,半径为6,C、D分别是弧AB的三等分点,则阴影部分的面积等于_______.

【考点】扇形面积公式.

【思路点拨】可将阴影部分通过旋转得到一个扇形.

【解析】阴影部分的面积等于扇形AOB面积的.

【答案】2.

14.圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是( )

A.180°

B.200°

C.225°

D.216°

【考点】圆锥底面圆周长是侧面展开图的扇形的弧长.

【解析】圆锥底面圆周长=×3×2=可求n=216°.

【答案】D.

总结升华:熟记弧长和扇形面积公式,并会利用与圆心角、半径之间的关系互求.

举一反三:

【变式1】如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是( )

A. B.1.5 C.2 D.2.5

【思路点拨】五个扇形(阴影部分)的面积之和可以看作是圆心角为五边形的内角和,

半径为1的扇形面积.

【解析】五边形的内角和为540°,所以阴影部分的面积=.

【答案】B.

【变式2】一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是( )

(A)60°(B)90°(C)120°(D)180°

【考点】此题考查圆锥的侧面展开图的概念.注意理解圆锥、圆锥的侧面展开图的有关概念.

【思路点拨】设圆锥的母线长为a,圆心角度数为n,底面圆的半径为r,则

解此方程组,得n=180.

【答案】D.

【变式3】如图所示,在Rt△ABC中,∠BAC=90°,AC=AB=2,以AB为直径的圆交BC于D,求图形阴影部分的面积.

【考点】会把不可求的阴影面积转化为可求面积.

【思路点拨】连接AD,则阴影面积等于△ACD的面积,即等于△ABC面积的一半.

【解析】连接AD

AB是直径,∴∠ADB=90°

△ABC中AC=AB=2,∠BAC=90°∴∠C=45°

∴CD=AD=

∴=××=1

弦AD=BD,∴以AD、BD和它们所对的劣弧构成的弓形是等积形

∴==1.

【变式4】在ABCD中,AB=4,AD=2,BD⊥AD,以BD为直径的⊙O交AB于E,交CD于F,则□ABCD被⊙O截得的阴影部分的面积为_______.

【思路点拨】本题考查了勾股定理、扇形面积公式、解直角三角形等知识.注意:求不规则图形面积,往往转化为规则图形的面积的和或差的形式.

【解析】连结OE、DE.

∵ AD⊥BD,且AB=4,AD=2,

∴∠DBA=30°,且BD=6.

∵ BD为直径,

∴∠DEB=90°.

∴ DE=BD·sin 30°=6×=3,BE=BD·cos30°

=6×=3.

∴ S△DEB=×3×3=.

∵ O为BD的中点,

∴ S△BOE=S△DEB=.

∵ DO=BD=3,∠DOE=2×30°=60°,

∴ S阴影=2(S△ADB-S扇形DOE-S△EOB)=2(×2×6-·32-).

=.

【答案】.

考点四、与圆有关的计算

15.边长为2a的正六边形的面积为______.

【考点】正六边形的面积等于六个等边三角形的面积之和.

【提示】把正六边形的中心与六个顶点连结起来,所得六个等边三角形全等.每个等边三角形的面积为

·(2 a)2=a2,所以正六边形的面积为6a2.

【答案】6a2.

16.下列命题正确的是( ).

A.各边相等的多边形是正多边形

B.各内角分别相等的多边形是正多边形

C.既是轴对称图形又是中心对称图形的多边形是正多边形

D.各边相等,各角也相等的多边形是正多边形

【考点】正多边形的概念及对称性.

【思路点拨】让学生掌握同时满足各边相等,各角也相等的多边形才是正多边形;正多边形都是轴对称图形,只有偶数边的正多边形才是中心对称图形.

【答案】D.

17.同一个圆的内接正方形和外切正六边形的边长之比为_________.

【考点】圆和正多边形的关系,边长都用圆的半径表示.

【思路点拨】设此圆的半径为R,则它的内接正方形的边长为R,它的外切正六边形的边长为

R,圆内接正方形和外切正六边形的边长比为R:R=:2.

【答案】:2.

18.边长为a的正n边形的外接圆与内切圆围成的圆环的面积为_______.

【考点】用正n边形的边长a 分另表示外接圆与内切圆的半径.

【思路点拨】如图,AB为正n边形的一边,正n边形的中心为O,AB?与小圆切于点C,连接OA,

OC,则OC⊥AB,AC=AB=a,

所以AC2=a2=OA2-OC2,S圆环=S大圆-S小圆=OA2-OC2=(OA2-OC2)=a2.

【答案】a2.

总结升华:正多边形和圆习题计算量较大,要求学生掌握正多边形外接圆半径、内切圆半径、正多边形的边数、边长、边心距、中心角之间的关系,灵活运用.

举一反三:

【变式1】下列图形中,既是轴对称图形,又是中心对称图形的有( )个.

①正三角形;②正方形;③正五边形;④正六边形;⑤线段;⑥圆;⑦菱形;⑧平行四边形

A.3

B.4

C.5

D.6

【考点】会判断轴对称图形和中心对称图形.

【答案】C.②④⑤⑥⑦符合条件.

【变式2】如图所示,木工师傅从一块边长为60cm的正三角形木板上锯出一块正六边形木板,那么这块正六边形木板的边长为( ).

A.24cm

B.22cm

C.20cm

D.18cm

【思路点拨】正六边形的边长为原正三角形边长的.

【答案】C.

【变式3】如图所示,图①,②,③,…,n,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…正n边形的边AB,BC上的点,且BM=CN,连接OM,ON.

(1)求图①中∠MON的度数;

(2)图②中∠MON的度数是_______,图③中∠MON的度数是_______;

(3)试探究∠MON的度数与正n边形边数n的关系.(直接写出答案)

【考点】正多边形和圆的有关计算

【解析】(1)方法一:如题图①中,连接OB,OC.

∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.

又∠OCN=30°,∠BOC=120°,

而BM=CN,OB=OC,

∴△OBM≌△OCN,

∴∠BOM=∠CON,∴∠MON=∠BOC=120°.

方法二:如题图①中,连接OA,OB.

∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°,

∴∠AOM=∠BON.

∴∠MON=∠AOB=120°.

【答案】(1)120°;(2)90°,72°;(3)∠MON=.

圆的面积练习题及答案

(人教新课标)六年级数学上册圆的面积 班级______姓名______ 一、填空。 1.圆周率是一个()的小数。 2.圆的周长总是()的π倍。 3.半径是3分米的一个圆,它的面积是()平方分米。周长是()米。 4.一根长62.8米的铁丝围成一个圆形,这个圆形的面积是()平方米。 5.一个直径为20米的圆形游泳池,占地面积是()平方米;它的周长是()米。 6.一个直径是4厘米的半圆形,它的周长是()厘米;它的面积是()平方厘米。 二、判断。 1.圆周率指的是圆的周长和直径的比值。 () 2.圆的半径是2,它的周长和面积相等。 () 3.周长相等的两个圆,面积也一定相等。 () 4.如果圆的半径扩大2倍,那么它的周长也扩大2倍,面积扩大4倍。 () 三、应用题。 1.一个圆环铁片零件,内圆半径是2厘米,外圆半径是3厘米。它的面积是多少平方厘米? 2.在一块周长是80米的正方形花坛里,用一串红围出一个最大的圆形,这个圆形的面积是多少平方米?这个花坛还剩下多少平方米的空地? 3.从一块长5分米,宽4分米的长方形木板上锯下一个最大的圆,剩下的木板是多少平方分米?

多少平方米? 参考答案 一、填空。 1. 无限不循环

2. 它的直径 3. 28.26 18.84 4. 314 5. 314、62.8 6. 10.28、12.56 二、判断。 1.√ 2.× 3.√ 4.√ 三、应用题。 1. 3.14×(32-22)=15.7 2. 202-314=86(平方米) 3. 20-3.14×4=7.44(平方分米) 4. 12 5.6÷4=31.4(米) 31.4÷3.14=10(米) (10×2)2+3.14×102×2=400+628=1028(平方米)

初三圆经典练习题

圆的概念和性质例2.已知,如图,CD是直径,? = ∠84 EOD,AE交⊙O于B,且AB=OC,求∠A的度数。 例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm。例4 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm 例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为3 ,2 【考点速练】 1.下列命题中,正确的是() A.三点确定一个圆B.任何一个三角形有且仅有一个外接圆 C.任何一个四边形都有一个外接圆 D.等腰三角形的外心一定在它的外部 2.如果一个三角形的外心在它的一边上,那么这个三角形一定是() A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形 3.圆的内接三角形的个数为()A.1个B.2 C.3个D.无数个 4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个 5.下列说法中,正确的个数为() ①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆. A.1个 B.2个 C.3个 D.4个 6.与圆心的距离不大于半径的点所组成的图形是( ) A.圆的外部(包括边界); B.圆的内部(不包括边界); C.圆; D.圆的内部(包括边界) 7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( ) A.等于6cm B.等于12cm; C.小于6cm D.大于12cm 8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( ) A.2个 B.3个 C.4个 D.5个 9.如图,A是半径为5的⊙O内一点,且OA=3,过点A且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条 11.如图,已知在ABC ?中,? = ∠90 A,A为圆心,AC长为半径画弧交CB的延长线于点D,求CD的长. 12、如图,有一圆弧开桥拱,拱的跨度AB= 13、△ABC中,AB=AC=10,BC=12 14、如图,点P是半径为5的⊙O内一点,且OP=3,在过点P 条数为__。 1、在半径为2的圆中,弦长等于的弦的弦心距为 ____ B P A O

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

圆经典例题精析

圆经典例题精析 考点一、圆的有关概念和性质 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) (A)4个(B)3个(C)2个(D)1个 【考点】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念, 【思路点拨】其中第②个命题不对的原因在于忽视了过三点作图的条件.若三点在一条直线上,则不能作出过这三点的圆,故②不对. 【答案】B. 2.下列判断中正确的是( ) (A)平分弦的直线垂直于弦 (B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧 (D)平分一条弧的直线必平分这条弧所对的弦 【考点】垂径定理 【解析】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.A中被平分的弦应不是直径; B理由同A;D中平分弧的直线的直线应过圆心. 【答案】C. 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则( ) (A)(B) (C)的度数=的度数(D)的长度=的长度 【思路点拨】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB=∠A′OB′,所以的 度数=的度数. 【答案】C. 4.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是( ) A.80° B.100° C.120° D.130°

【考点】同弧所对的圆周角等于圆心角的一半,圆内接四边形的对角互补. 【思路点拨】可连结OC,则由半径相等得到两个等腰三角形, ∵∠A+∠B+∠ACB=360°-∠O=260°,且∠A+∠B=∠ACB,∴∠ACB=130°. 或在优弧AB上任取一点P,连结PA、PB,则∠APB=∠O=50°, ∴∠ACB=360°-∠APB =130°. 【答案】D. 总结升华:圆的有关性质在解决圆中的问题时,应用广泛,运用简便. 举一反三: 【变式1】某公园的一石拱桥是圆弧形(劣弧),跨度为24米,拱的半径为13米,则拱高为_____. 【考点】垂径定理. 【思路点拨】本题可用几何语言叙述为:如图,AB为⊙O的弦,CD为拱高,AB=24米,半径OA=13米,求拱高CD的长. 【解析】由题意可知:CD⊥AB,AD=BD,且圆心O在CD的延长线上.连结OA, 则OD===5(米).所以CD=13-5=8(米). 【答案】8米. 【变式2】如图,AB是⊙O的直径,∠ACD=15°,则∠BAD=__________°. 【考点】同弧所对的圆周角相等,直径所对的圆周角是90°. 【思路点拨】AB是直径,则∠ADB=90°,∠ACD=∠ABD=15°,可求得∠BAD. 【答案】75°. 【变式3】如图,⊙O的直径AB和弦CD相交于点E,且AE=1cm,EB=5cm,∠DEB=60°,求CD的长. 【解析】因为AE=1cm,EB=5cm,所以OE=(1+5)-1=2(cm),半径等于3cm.在Rt△OEF中可求EF

(完整版)六年级圆的面积经典题型讲解+练习

圆(二)圆的面积 知 知识梳理 1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S 表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化 抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因为: 长方形面积 = 长 × 宽 所以: 圆的面积 = 圆周长的一半 × 圆的半径 S 圆 = πr × r 圆的面积公式: S 圆 = πr 2 r 2 = S ÷ π 4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。(R =r +环的宽度.) S 环 = πR2-πr2 或 环形的面积公式: S 环 = π(R2-r2)。 5、扇形的面积计算公式: S 扇 = πr 2 × 360 n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。 例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 7、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 8、(选学)两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如: 两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9 9、常用平方数 典题探究 例1 填空 1.鼓楼中心岛是半径 10米的圆,它的占地面积是( )平方米。

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

小学数学-圆的面积精选练习题

圆的面积练习精选 一、填空 1.一个圆形桌面的直径是2米,它的面积是()平方米。 2.已知圆的周长c,求d=(),求r=()。 3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。 4.环形面积S=()。 5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。 6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。 7.圆的半径增加1/4圆的周长增加(),圆的面积增加()。 8.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。 9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长 长10厘米,这个长方形的面积是()平方厘米。 10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米; 再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。

11.大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。 12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是()平方厘米。 13.鼓楼中心岛是半径10米的圆,它的占地面积是()平方米。 14.小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是()平方厘米 15.一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是3米。这只羊可以吃到() 平方米地面的草。 16.一根2米长的铁丝,围成一个半径是30厘米的圆,(接头处不计),还多()米, 围成的面积是() 17.用一根10.28米的绳子,围成一个半圆形,这个半圆的半径是(),面积是()18.从一个长8分米,宽5分米的长方形木板上锯下一个最大的圆,这个圆的面积是() 19.大圆的半径等于小圆的直径,大圆的面积是小圆面积的() 20.一个圆的周长扩大3倍,面积就扩大()倍。 21.用三根同样长的铁丝分别围成一个长方形、一个正方形、和一个圆,其中()面积最小,()面积最大 二、应用题

初三圆的典型例题

圆典型例题精选 【例题1】如图所示,AB 是圆O 的一条弦,OD AB ⊥,垂足为C ,交圆O 于点D ,点E 在圆O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长. 【例题2】如图,线段AB 经过圆心O ,交圆O 于点A,C ,点D 在圆O 上,连接AD ,BD , ∠A=∠B=30度.BD 是圆O 的切线吗?请说明理由. 【例题3】已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)请说明:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 【例题4】如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加 任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形 (全等三角形除外). 【例题5】如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿线段CA 移动,当OC 等于多少时,⊙O 与AB 相切? E B D C A O 第 1 题图 图9 E D B A O C

【例题6】推理运算:如图,AB 为圆○直径,CD 为弦,且CD AB ⊥,垂足为H .OCD ∠的平分线CE 交圆○于E ,连结OE . (1)请说明:E 为弧ADB 的中点; (2)如果圆○的半径为1,3CD =,①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为 12 . 【例题7】已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC ?交于点E ,请说明:△DEC 为等腰三角形. 【例题8】如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M .试说明:PC 是⊙O 的切线. 【例题9】已知:如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于C 且C 为OB 中点,过C 点的弦CD 使∠ACD =45°,弧AD 的长为2 2 π, 求弦AD 、AC 的长. 【例题10】如图所示,ABC △是直角三角形,90ABC ∠=,以AB 为直径的圆○交AC 于点 E ,点D 是BC 边的中点,连结DE . (1)请说明:DE 与圆○相切; (2)若圆O 的半径为3,3DE =,求AE . A B O C P M 图4 A B C D ·O 45° A B D E O C H B D C E A O

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

新初中数学圆的经典测试题含答案

新初中数学圆的经典测试题含答案 一、选择题 1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆. 下列说法中错误的是( ) A .勒洛三角形是轴对称图形 B .图1中,点A 到?BC 上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等 【答案】C 【解析】 【分析】 根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误. 【详解】 鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确; 点A 到?BC 上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误; 鲁列斯曲边三角形的周长=3×60180DE DE ππ?=? ,圆的周长=22 DE DE ππ?=? ,故说法正确. 故选C. 【点睛】 主要考察轴对称图形,弧长的求法即对于新概念的理解. 2.如图,在ABC ?中,90ABC ∠=?,6AB =,点P 是AB 边上的一个动点,以BP 为

圆的面积练习题

圆的面积练习题 一、思考并填空: 1. 画一个周长是1 2.56厘米的圆,圆规两脚间的距离是(2 ) 厘米。 2. 一个圆形花坛的周长是25.12米,它的面积是()平方 米。 3. 一个半径为4厘米的圆,把它平均剪成若干份后,拼成一个近 似平行四边形,这个平行四边形的底是()厘米,高是()厘米。 4. 圆的半径扩大到原来的3倍,周长就扩大到原来的()倍,面积就增加了原来的()倍。 5. 圆环的外圆半径和内圆直径都是10厘米,圆环宽是()厘米,面积是()平方厘米。 6. 一辆拖拉机,它的后轮的直径是前轮的2倍,若后轮滚动8圈,前轮滚动()圈。 7. 长方形、正方形、等边三角形、等腰梯形和圆都是轴对称图形,按对称轴条数从多到少的顺序排列依次是()。 8.把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于(),长方形的宽就是圆的()。因为长方形的面积是(),所以圆的面积是().9.圆的直径是6厘米,它的周长是(),面积是()。10.圆的周长是25.12分米,它的面积是()。11.甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(),甲圆面积是乙圆面积的()。

12.一个圆的半径是8厘米,这个圆面积的3/4 是()平方厘米。 13.周长相等的长方形、正方形、圆,()面积最大。14.圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。15.要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是()。16.要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝()厘米。 17.用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是()厘米。这个圆的面积是()平方厘米。18.有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是(),小圆与大圆面积的比是()。19.一个半圆半径是r,它的周长是()。二、我是小法官。 1.圆心决定圆的位置,半径决定圆的大小。() 2.如果圆和正方形的周长相等,那么圆的直径大于正方形的边长。() 3.同心圆的几个圆组成的图形有无数条对称轴。() 4.有两个大小不等的圆,大圆的圆周率比小圆的大。() 5.周长相等的长方形、正方形和圆中,面积最大的是圆。() 三、选择题。 1.小圆的直径等于大圆的半径,小圆的面积等于大圆的面积() A 1/2 B 1/4 C 1/8 D 1/16 2.周长是15.7厘米的圆,画圆时圆规两脚间的距离是

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

圆的面积练习题资料

圆的面积练习题

一、填空: 1. 画一个周长是1 2.56厘米的圆,圆规两脚间的距离是()厘米。 2. 一个圆形花坛的周长是25.12米,它的面积是()平方米。 3. 一个半径为4厘米的圆,把它平均剪成若干份后,拼成一个近似平行四边形,这个平行四边形的底是()厘米,高是()厘米。 4. 圆的半径扩大到原来的3倍,周长就扩大到原来的()倍,面积就增加了原来的()倍。 5. 圆环的外圆半径和内圆直径都是10厘米,圆环宽是()厘米,面积是()平方厘米。 6. 一辆拖拉机,它的后轮的直径是前轮的2倍,若后轮滚动8圈,前轮滚动()圈。 7. 长方形、正方形、等边三角形、等腰梯形和圆都是轴对称图形,按对称轴条数从多到少的顺序排列依次是()。 8.把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于 (),长方形的宽就是圆的()。因为长方形的面积是 (),所以圆的面积是(). 9.圆的直径是6厘米,它的周长是(),面积是()。 10.圆的周长是25.12分米,它的面积是()。 11.甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(),甲圆面积是乙圆面积的()。 12.一个圆的半径是8厘米,这个圆面积的3/4 是()平方厘米。 13.周长相等的长方形、正方形、圆,()面积最大。 14.圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。 15.要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是()。 16.要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝()厘米。 17.用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是()厘米。这个圆的面积是()平方厘米。 18.有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是(),小圆与大圆面积的比是()。 19.一个半圆半径是r,它的周长是()。 二、我是小法官。 1.圆心决定圆的位置,半径决定圆的大小。() 2.如果圆和正方形的周长相等,那么圆的直径大于正方形的边长。() 仅供学习与交流,如有侵权请联系网站删除谢谢2

初三圆经典例题新

有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。 132O AB AC BAC 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE === =323222 ∵,∴∠,OA OAD AD OA == =132cos cos ∠OAE AE OA ==22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 解:(1)证明,作直径DE 交AB 于F ,交圆于 E ∵为的中点,∴⊥,D AB AB DE A F FB ? = 又∵AD=DC ∴∥,DF BC DF BC =1 2 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2∵,DE R DF BC ==21 2

∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>??AB ∴,∴,∴,∴22 22AF AB AF AB AF CD AF CD >>>?>? ∴AB CD ?>?2 ∴选A 。 解法(二),如图,作弦DE=CD ,连结CE 则DE CD CE ?=?=?12 在△CDE 中,有CD+DE>CE ∴2CD>CE ∵AB=2CD ,∴AB>CE ∴,∴AB CE AB CD ?>??>? 2∴选A 。 例4. 如图,四边形内接于半径为的⊙,已知,ABCD 2O AB BC AD == =1 4 1 求CD 的长。 解:延长AB 、DC 交于E 点,连结BD ∵AB BC AD == =1 4 1

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

初三圆的经典例题

有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意A B与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC在圆心O 的异侧时,如下图所示, 过O作OD ⊥AB 于D,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == =323222 ∵,∴∠,OA OAD AD OA ===13 2 cos cos ∠OAE AE OA ==2 2 ∴∠OAD=30°,∠OA E=45°,故∠BA C=75°, 当A B、A C在圆心O同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BA C=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D, 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形;

()22 求的值AD BC 分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB,OD ⊥AB ,可证DF 是△A BC的中位线; (2)延长DO 交⊙O 于E,连接A E,由于∠DA E=90°,D E⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△E DA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2== 例3. 如图,在⊙O 中,AB =2CD ,那么( ) A A B CD B AB CD ..?>??

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

小学奥数圆面积的典型题和解法知识讲解

圆面积的典型题和解法 一、半径r 2替代法 题的特点:一般将正方形,三角形和圆放到一起,一般已知条件是正方形或三角形面积,求圆的面积。 解法:一般设法求出r ,或者求出r 2, ★注意:园内直角三角形一般为等腰直角三角形,两腰等长,斜边是斜边上高的2倍。 例1:已知下图阴影部分面积为8平方米,求圆的面积: 解:由已知条件可得r 2 =8, 因此,圆的面积为:814.32?=r π 例2:ABCD 为正方形,已知AC 长6m ,求阴影部分面积: 解:△ACD 为等腰直角三角形,则S △ACD=6*3/2=9㎡ AD=DC=r AD*DC/2=9 因此,r 2 =18, 扇形DAC 的面积为:4 /1814.34/2?=r π 因此,阴影部分面积为:18-4/1814.34/2?=r π 例3:求圆与圆内最大正方形的面积比值。 解:△ABC 为等腰直角三角形,则S △ABC=22/2r r r =? 正方形的面积是两个三角形面积和,为:22r 圆的面积为:2r π,则圆与圆内最大正方形的比为:2/π 练习题: 1、已知下图阴影部分面积为5平方米,求圆的面积: 2:、在右图扇形中,正方形面积为30平方米,求阴影部分面积: 3:求正方形与正方形内最大圆的面积比值。

二、图像平移填补法 题的特点:一般圆内由多个阴影部分面积构成,阴影由弧线和弧线构成,或者由弧线和直线构成。 解法:注意观察面积相同的部分,将相同的部分移动替换, 若遇到轴对称图形可尝试旋转图形,记住常见的面积平移图例。, 例1:求阴影部分的面积: 解:正方形外三角形底为6,和正方形内三角形底相同, 由于顶角相同,所以两个三角形可以互换。 阴影部分面积则为:正方形面积-1/4圆的面积 例2:求阴影部分的面积: 解:平移得到下图: 则阴影部分面积为扇形面积-三角形面积 256 2 π = - ? 4/ 4cm 2/2 .8 4 例3:求阴影部分的面积: 解:注意观察,: 阴影部分面积为:1*1-1*1/2=1/2 练习题:求阴影部分面积:

相关文档