文档库 最新最全的文档下载
当前位置:文档库 › §1.1.3回归分析的基本思想及其初步应用(三)

§1.1.3回归分析的基本思想及其初步应用(三)

§1.1.3回归分析的基本思想及其初步应用(三)
§1.1.3回归分析的基本思想及其初步应用(三)

沈丘县县直高中高二数学◆选修1-1&2-2◆导学案编写:秦新亮

回归分析的基本思想及其初步应用(三)

1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;

2. 通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.

3. 了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.

47

复习1:求线性回归方程的步骤

复习2:作函数2x

y x

=+的图像

0.25

y=和2

二、新课导学

※学习探究

探究任务:如何建立非线性回归模型?

实例一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据列于下表中,试建立y与

(1)根据收集的数据,做散点图

上图中,样本点的分布没有在某个区域,因此两变量之间不呈关系,所以不能直接用线性模型.由图,可以认为样本点分布在某一条指数函数曲线bx a

y e+

=的周围(,a b 为待定系数).

2012年上学期◆高二 月 日 班级: 姓名: 第一章 统计案例

对上式两边去对数,得

ln y =

令ln ,z y =,则变换后样本点应该分布在直线 的周围.这样,就利用 模型来建立y 和x 的非线性回归方程.

作散点图(描点(,)i i x z )

由上表中的数据得到回归直线方程

z

=

因此红铃虫的产卵数y 和温度x 的非线性回归方程为

※ 典型例题

例1一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,

2

34

y c x c =+其中12,c c 为待

定参数)试建立y 与x 之间的回归方程.

思考:评价这两个模型的拟合效果.

小结:利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.

三、总结提升 ※ 学习小结

利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.

※ 知识拓展

非线性回归问题的处理方法: 1、 指数函数型bx a y e +=

① 函数bx a y e +=的图像:

② 处理方法:两边取对数得ln ln()bx a

y e +=,即ln y bx a =+.令ln ,z y =把原始数据(x,y )转化为(x,z ),再根据线性回归模型的方法求出,b a . 2、对数曲线型ln y b x a =+ ① 函数ln y b x a =+的图像

② 处理方法:设ln x x '=,原方程可化为y bx a '=+ 再根据线性回归模型的方法求出,a b . 3、2y bx a =+型

处理方法:设2x x '=,原方程可化为y bx a '=+,再根据线性回归模型的方法求出,a b .

※ 自我评价 你完成本节导学案的情况为( ).

A. 很好

B. 较好

C. 一般

D. 较差

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当解释变量10x =时( ). A. 预报变量30y e -= B. 预报变量y 大于30e -

2012年上学期◆高二 月 日 班级: 姓名: 第一章 统计案例

C. 预报变量y 小于30e -

D. 预报变量y 在30e -左右

2. 在回归分析中,求得相关指数20.89R =,则( )预报变量. A. 解释变量解对总效应的贡献是11% B. 解释变量解对总效应的贡献是89% C. 随机误差的贡献是89% D. 随机误差的贡献是0.89%

3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为( ).

A .回归分析

B .独立性检验分析

C .残差分析 D. 散点图分析

4.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线bx a y e +=的

周围,令ln z y =,求得回归直线方程为0.252.58z x =-

,则该模型的回归方程

为 .

5. 已知回归方程 0.5ln ln 2y x =-,则100x =时,y 的估计值为 .

1.为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下:

(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图; (2)试求出预报变量对解释变量的回归方程.

应用回归分析

第五章 自变量选择对回归参数的估计有何影响 答:全模型正确而误用选模型时,我们舍去了m-p 个自变量,用剩下的p 个自变量去建立选模型,参数估计值是全模型相应参数的有偏估计。选模型正确而误用全模型时,参数估计值是选模型相应参数的有偏估计。 自变量选择对回归预测有何影响 (一)全模型正确而误用选模型的情况 估计系数有偏,选模型的预测是有偏的,选模型的参数估计有较小的方差,选模型的预测残差有较小的方差,选模型预测的均方误差比全模型预测的方差更小。 (二)选模型正确而误用全模型的情况 全模型的预测值是有偏的,全模型的预测方差的选模型的大,全模型的预测误差将更大。 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣 答:应该用自由度调整复决定系数达到最大的准则。当给模型增加自变量时,复决定系数也随之增大,然而复决定系数的增大代价是残差自由度的减小,自由度小意味着估计和预测的可靠性低。应用自由度调整复决定系数达到最大的准则可以克服样本决定系数的这一缺点,把2 R 给予适当的修正,使得只有加入“有意义”的变量时,经过修正的样本决定系数才会增加,从而提高预测的精度。 试述前进法的思想方法。 解:主要是变量由少到多,每次增加一个,直至没有可引入的变量为止。 具体做法是:首先将全部m 个自变量,分别对因变量y 建立m 个一元线性回归方程,并分别计算这m 个一元回归方程的m 个回归系数的F 检验值,记为 111 12{,,,} m F F F ,选其最大者 1111 12max{,, ,} j m F F F F =,给定显著性水平α,若 1(1,2) j F F n α≥-,则首先将 j x 引入回 归方程,假设 1 j x x =。其次,将 12131(,),(,),,(,)m y x x x x x x 分别与建立m-1个二元线性 回归方程,对这m-1个回归方程中 23,, ,m x x x 的回归系数进行F 检验,计算F 值,记为 222 23{,, ,} m F F F ,选其最大的记为 2222 23max{,, ,} j m F F F F =,若 2(1,3) j F F n α≥-,则 接着将j x 引入回归方程。以上述方法做下去。直至所有未被引入方程的自变量的F 值均小

应用回归分析,第8章课后习题参考答案

第8章 非线性回归 思考与练习参考答案 8.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1) 乘性误差项,模型形式为 e y AK L αβε =, (2) 加性误差项,模型形式为y AK L αβ ε = + 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表8.15 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 5000.00 4000.003000.002000.001000.00x 12.00 10.00 8.006.00 y

从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS 输出结果如下: Model Summ ary .981 .962 .942 .651 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x. ANOVA 42.571221.28650.160.001 1.6974.424 44.269 6 Regression Residual Total Sum of Squares df Mean Square F Sig.The independent variable is x. Coe fficients -.001.001-.449-.891.4234.47E -007.000 1.417 2.812.0485.843 1.324 4.414.012 x x ** 2 (Constant) B Std. E rror Unstandardized Coefficients Beta Standardized Coefficients t Sig. 从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。 (2)指数曲线 Model Summ ary .970 .941 .929 .085 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x.

应用回归分析第章课后习题答案

第6章 6.1 试举一个产生多重共线性的经济实例。 答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。 6.2多重共线性对回归参数的估计有何影响? 答:1、完全共线性下参数估计量不存在; 2、参数估计量经济含义不合理; 3、变量的显著性检验失去意义; 4、模型的预测功能失效。 6.3 具有严重多重共线性的回归方程能不能用来做经济预测? 答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。 6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系? 答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。 6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。将所得结果与逐步回归法所得的选元结果相比较。 5.9 在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量,自变量如下:x1为农业增加值(亿元),x2为工业增加值(亿元),x3为建筑业增加值(亿元),x4为人口数(万人),x5为社

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用 1.回归分析 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型 (1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑n i =1 (x i -x )(y i -y )∑n i =1 (x i -x )2 ,a ^=y --b ^x -,其中x -=1 n ∑n i =1x i ,y -=1n ∑n i =1 y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量. [注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具. (2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^ 为基数,x 每增加1个单位,y 相应地平均增加b ^ 个单位. 3.刻画回归效果的方式 方式方法 计算公式 刻画效果 R 2 R 2=1-∑n i =1 (y i -y ^i )2 ∑n i =1 (y i -y )2 R 2越接近于1,表示回归的效果 越好 残差图 e ^ i 称为相应于点(x i ,y i )的残差,e ^ i =y i -y ^ i 残差点比较均匀地落在水平的 带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高 残差平方和 ∑n i =1 (y i -y ^i )2 残差平方和越小,模型的拟合效果越好 判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( ) (2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )

应用回归分析第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定? 答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。 2. 等方差及不相关的假定条件为 ? ? ? ? ? ? ??????≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1, 0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。 3. 正态分布的假定条件为 ???=相互独立 n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。 4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。 在整个回归分析中,线性回归的统计模型最为重要。一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。因此,线性回归模型的理论和应用是本书研究的重点。 1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计; 2. 对回归方程及回归系数的种种假设进行检验; 3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。 2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。求1β的最小二 乘估计。 答:∑∑==-=-=n i n i i i i x y y E y Q 1 1 2112 1)())(()(ββ

应用回归分析课后习题第7章第6题

7.6一家大型商业银行有多家分行,近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的提高。为弄清楚不良贷款形成的原因,希望利用银行业务的有关数据做定量分析,以便找出控制不良贷款的方法。表7-5是该银行所属25家分行2002年的有关业务数据。 (1)计算y 与其余4个变量的简单相关系数。 由系数表可知,y 与其余4个变量的简单相关系数分别为0.844,0.732,0.700,0.519. (2)建立不良贷款对4个自变量的线性回归方程,所得的回归系数是否合理? 由上表可知,回归方程为为: 022.1029.0015.0148.04.0?4321--++=x x x x y 从上表可看出,方程的自变量2x 、3x 、4x 未通过t 检验,说明回归方程不显著,而且由实际意义出发,4x 的系数不能是负的,所以所得的回归系数不合理。 (3)分析回归模型的共线性。

由上表可知,所有自变量对应的VIF 全部小于10,所以自变量之间不存在共线性。但进行特征根检验见下表: 由这个表可以看出来,第5行中1x 、3x 的系数分别为0.87和0.63,可以说明这两个变量之间有共线性。 (4)采用后退法和逐步回归法选择变量,所得的回归系数是否合理?是否还存在共线性? 采用后退法(见上表),所得回归方程为972.0029.0149.0041.0y ?421--+=x x x 采用逐步回归法(见上表),所得回归方程为443.0032.005.0?41--=x x y 所得4x 的系数不合理(为负),说明存在共线性. (5)建立不良贷款y 对4个变量的岭回归。

《回归分析的基本思想及其初步应用》教学反思

《回归分析的基本思想及其初步应用》 教学反思 1、设计理念 《数学课程标准》明确指出:有效的数学学习活动不能单纯地模仿与记忆,动手实践、自主探索与合作交流,可以促进学生自主、全面、可持续的发展,是学生学习数学的重要方式.为使教学真正做到以学生为本,我对教材P2—P3的知识进行了适当地重组和加工,力求给学生提供研究、探讨的时间与空间,让学生充分经历“做数学”的过程,促使学生在自主中求知,在合作中获取,在探究中发展. 2、本节课的教法特点 通过分析教材和学生认知规律,创造性地使用教材,做到既重视教材,更重视学生.具体说来有以下改造: (1)创设生活情景.利用学生的“体检经验”设置问题,既没有脱离课本例题1的相关内容,又能激发学生对数学的亲切感,引发学生看个究竟的冲动,兴趣盎然地投入学习. (2)充分体现随机观念.课本上仅仅希望利用8组数据就要学生体会到统计的思想和后继课程中回归分析的必要性,实在是为难学

生了.在本课教学设计学生操作时强调“增多数据,加强比较”. 帮助学生体会“不同事件(如课本例1女大学生和高二女生)”,则统计结果不同、“同一事件(如都是高二女生),采样不同结果也不同”的基本事实. (3)教师的作用. 在这节课里,教师在学生操作结束后,利用更多数据的操作,形成一个与学生结果的对比,这一操作与展示为学生创造了新的思维增长点,引领学生进入更深层领悟. 本课教学以问题引导学习活动,通过恰时恰点地提出问题,提好问题,给学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动和有兴趣地学,逐步培养学生的问题意识,孕育创新精神.例如,在“结果的分析”中的问题4.”预测出的体重值都不同,那么它还有参考价值吗?”目的是让学生充分认识随机误差e的来源和对预报变量的影响,而这一问题的提出,立刻吸引学生细细体会随机观念,同时激发出学生的好奇心,提升深入探求的欲望. 3 合作、探究的学习方式 本节课的合作学习体现在两个方面:除了体现在每个小组内部成员之间,还体现在整堂课的教学结构上.小组成员内部提倡“不同的人作不同的事”,面对不同分组,学生可以自主选择的不同工作,

回归分析及独立性检验的基本知识点及习题集锦

回归分析的基本知识点及习题 本周题目:回归分析的基本思想及其初步应用 本周重点: (1)通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤;了解线性回归模型与函数模型的区别; (2)尝试做散点图,求回归直线方程; (3)能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法――相关指数和残差分析。 本周难点: (1)求回归直线方程,会用所学的知识对实际问题进行回归分析. (2)掌握回归分析的实际价值与基本思想. (3)能运用自己所学的知识对具体案例进行检验与说明. (4)残差变量的解释; (5)偏差平方和分解的思想; 本周内容: 一、基础知识梳理 1.回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 求回归直线方程的一般步骤: ①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→ ③写出回归直线方程,并利用回归直线方程进行预测说明. 2.回归分析: 对具有相关关系的两个变量进行统计分析的一种常用方法。 建立回归模型的基本步骤是: ①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; ②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系). ③由经验确定回归方程的类型. ④按一定规则估计回归方程中的参数(最小二乘法); ⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等. 3.利用统计方法解决实际问题的基本步骤: (1)提出问题; (2)收集数据; (3)分析整理数据; (4)进行预测或决策。 4.残差变量的主要来源: (1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。 可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。这 种由于模型近似所引起的误差包含在中。 (2)忽略了某些因素的影响。影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重 关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。 (3)观测误差。由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可 能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。 上面三项误差越小,说明我们的回归模型的拟合效果越好。

应用回归分析课后答案

应用回归分析课后答案 第二章一元线性回归 解答:EXCEL结果: SUMMARY OUTPUT 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值5 方差分析 df SS MS F Significance F 回归分析125 残差3 总计410 Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限%上限% Intercept X Variable 15 RESIDUAL OUTPUT 观测值预测Y残差 1 2 3 4 5 SPSS结果:(1)散点图为:

(2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 12 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? (10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3= ++++= 1 330 6.13 σ∧=≈ (5)由于2 11(, )xx N L σββ∧ :

t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-=- ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<<+=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + : t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ?? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑ (7)

应用回归分析,第7章课后习题参考答案

第7章岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X|≈0,回归系数估计的方差就很大,估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X’X)-1为奇异时,给X’X加上一个正常数矩阵 D, 那么X’X+D接近奇异的程度就会比X′X接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k有哪几种方法? 答:最优 是依赖于未知参数 和 的,几种常见的选择方法是: 岭迹法:选择 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多;

方差扩大因子法: ,其对角线元 是岭估计的方差扩大因子。要让 ; 残差平方和:满足 成立的最大的 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除; 3. 去掉标准化岭回归系数很不稳定的自变量。如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

应用回归分析,第4章课后习题参考答案

第4章违背基本假设的情况 思考与练习参考答案 试举例说明产生异方差的原因。 答:例:截面资料下研究居民家庭的储蓄行为 Y i=β0+β1X i+εi 其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。 由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。 例:以某一行业的企业为样本建立企业生产函数模型 Y i=A iβ1K iβ2L iβ3eεi 被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。异方差带来的后果有哪些 答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果: 1、参数估计量非有效 2、变量的显著性检验失去意义 3、回归方程的应用效果极不理想 总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差

的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。 加权最小二乘法的方法: 简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法。 答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数i w ,以调整各项在平方和中的作用,加权最小二乘的离差平方和为: ∑=----=n i ip p i i i p w x x y w Q 1211010)( ),,,(ββββββ (2) 加权最小二乘估计就是寻找参数p βββ,,,10 的估计值pw w w βββ?,,?,?10 使式(2)的离差平方和w Q 达极小。所得加权最小二乘经验回归方程记做 p pw w w w x x y βββ????110+++= (3) 22011 1 ???()()N N w i i i i i i i i Q w y y w y x ββ===-=--∑∑22 __ 1 _ 2 _ _ 02 222 ()() ?()?1 11 1 ,i i N w i i i w i w i w w w w w kx i i i i m i i i m i w x x y y x x y x w kx x kx w x σβββσσ==---=-= = ===∑∑1N i =1 1表示=或

应用回归分析第三章课后习题整理

y1 1 x11 x12 x1p 0 1 3.1 y2 1 x21 x22 x2p 1 + 2 即y=x + yn 1 xn1 xn2 xnp p n 基本假定 (1) 解释变量x1,x2…,xp 是确定性变量,不是随机变量,且要求 rank(X)=p+1

n 注 tr(H) h 1 3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中 自变量的数目以及样本量n 有关,当样本量个数n 太小,而自变量又较 多,使样本量与自变量的个数接近时, R 2易接近1,其中隐藏一些虚 假成分。 3.5当接受H o 时,认定在给定的显著性水平 下,自变量x1,x2, xp 对因变量y 无显著影响,于是通过x1,x2, xp 去推断y 也就无多大意 义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描 述,而误用了线性模型,使得自变量对因变量无显著影响;另一方面 可能是在考虑自变量时,把影响因变量y 的自变量漏掉了,可以重新 考虑建模问题。 当拒绝H o 时,我们也不能过于相信这个检验,认为这个回归模型 已经完美了,当拒绝H o 时,我们只能认为这个模型在一定程度上说明 了自变量x1,x2, xp 与自变量y 的线性关系,这时仍不能排除排除我 们漏掉了一些重要的自变量。 3.6中心化经验回归方程的常数项为0,回归方程只包含p 个参数估计 值1, 2, p 比一般的经验回归方程减少了一个未知参数,在变量较 SSE (y y)2 e12 e22 1 2 1 E( ) E( - SSE* - n p 1 n p n 2 [D(e) (E(e ))2 ] 1 n (1 1 n 2 en n E( e 1 1 n p 1 1 n p 1 1 "1 1 n p 1 J (n D(e) 1 (p 1)) 1_ p 1 1 1 n p 1 2 2 n E(e 2 ) (1 h ) 2 1

应用回归分析 课后答案 浙江万里学院

2.1 一元线性回归有哪些基本假定? 答: 假设1、解释变量X 是确定性变量,Y 是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n 误差εi (i=1,2, …,n )仍满足基本假定。求β1的最小二乘估计 解: 得: 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。 证明: 其中: 即: ∑e i =0 ,∑e i X i =0 2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。 ∑∑+-=-=n i i i n i X Y Y Y Q 1 21021 ))??(()?(ββ211 1 2 )?()?(i n i i n i i i e X Y Y Y Q β∑∑==-=-= 01????i i i i i Y X e Y Y ββ=+=-0 1 00??Q Q β β ??==??

答:由于εi ~N(0, σ2 ) i=1,2, …,n 所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数: 使得Ln (L )最大的0 ?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小, 上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N(0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在εi ~N(0, σ2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。 2.5 证明0 ?β是β0的无偏估计。 证明:)1[)?()?(111 0∑∑==--=-=n i i xx i n i i Y L X X X Y n E X Y E E ββ )] )(1 ([])1([1011i i xx i n i i xx i n i X L X X X n E Y L X X X n E εββ++--=--=∑∑== 1010)()1 (])1([βεβεβ=--+=--+=∑∑==i xx i n i i xx i n i E L X X X n L X X X n E 2.6 证明 证明: )] ()1([])1([)?(102110i i xx i n i i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 2 2221 2]1[])(2)1[(σσxx xx i xx i n i L X n L X X X nL X X X n +=-+--=∑= 2.7 证明平方和分解公式:SST=SSE+SSR ∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ() ) 1()1()?(2 2 2 1 2 2 xx n i i L X n X X X n Var +=-+=∑=σσβ

应用回归分析课后习题参考答案

应用回归分析课后习题 参考答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第二章一元线性回归分析 思考与练习参考答案 一元线性回归有哪些基本假定 答:假设1、解释变量X是确定性变量,Y是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(ε i )=0 i=1,2, …,n Var (ε i )=2i=1,2, …,n Cov(ε i, ε j )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X之间不相关: Cov(X i , ε i )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 ε i ~N(0, 2) i=1,2, …,n 考虑过原点的线性回归模型 Y i =β 1 X i +ε i i=1,2, …,n 误差εi(i=1,2, …,n)仍满足基本假定。求β1的最小二乘估计解: 得: 证明(式),e i =0 ,e i X i=0 。 证明: ∑ ∑+ - = - = n i i i n i X Y Y Y Q 1 2 1 2 1 )) ? ?( ( )? (β β 其中: 即:e i =0 ,e i X i=0 2 1 1 1 2) ? ( )? ( i n i i n i i i e X Y Y Y Qβ ∑ ∑ = = - = - = ) ? ( 2 ?1 1 1 = - - = ? ?∑ = i i n i i e X X Y Q β β ) ( ) ( ? 1 2 1 1 ∑ ∑ = = = n i i n i i i X Y X β 01 ?? ?? i i i i i Y X e Y Y ββ =+=- 01 00 ?? Q Q ββ ?? == ??

线性回归分析报告地基本步骤

步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例

实用标准文案 由于()01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据:

那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y 和自变量X 之间的近似于真实的非确定型依赖关系。这种近似表现在两个方面:一是结构参数?β 是其真实值β的一种近似估计;二是残差e 是随机误差项U 的一个近似估计; ⅱ:总体回归方程是根据总体数据得到的,它描述的是因变量的条件均值

第一章课后习题解答(应用回归分析)

1、 变量间统计关系和函数关系的区别是什么 答:函数关系是一种确定性的关系,一个变量的变化能完全决定另一个变量的变化;统计关系是非确定的,尽管变量间的关系密切,但是变量不能由另一个或另一些变量唯一确定。 2、 回归分析与相关分析的区别和联系是什么 答:联系:刻画变量间的密切联系; 区别:一、回归分析中,变量y 称为因变量,处在被解释的地位,而在相关分析中,变量y 与x 处于平等地位;二、相关分析中y 与x 都是随机变量,而回归分析中y 是随机的,x 是非随机变量。三、回归分析不仅可以刻画线性关系的密切程度,还可以由回归方程进行预测和控制。 3、 回归模型中随机误差项ε的意义是什么主要包括哪些因素 答:随机误差项ε的引入,才能将变量间的关系描述为一个随机方程。主要包括:时间、费用、数据质量等的制约;数据采集过程中变量观测值的观测误差;理论模型设定的误差;其他随机误差。 4、 线性回归模型的基本假设是什么 答:1、解释变量非随机;2、样本量个数要多于解释变量(自变量)个数;3、高斯-马尔科夫条件;4、随机误差项相互独立,同分布于2(0,)N σ。 5、 回归变量设置的理论根据在设置回归变量时应注意哪些问题 答:因变量与自变量之间的因果关系。需注意问题:一、对所研究的问题背景要有足够了解;二、解释变量之间要求不相关;三、若某个重要的变量在实际中没有相应的统计数据,应考虑用相近的变量代替,或者由其他几个指标复合成一个新的指标;四、解释变量并非越多越好。 6、 收集、整理数据包括哪些内容 答:一、收集数据的类型(时间序列、截面数据);二、数据应注意可比性和数据统计口径问题(统计范围);三、整理数据时要注意出现“序列相关”和“异

回归分析基本思想

《回归分析的基本思想及初步应用》课例反思 一、教材分析 1、教材的地位和作用 在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在人教A版选修1-2第一章第一节“回归分析的基本思想及其初步应用”这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容共计4课时,第一课时:复习必修三内容,介绍线性回归模型的数学表达式;第二课时:解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第三课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第四课时:介绍两个变量非线性相关关系,回归分析的应用. 本节课是第二课时的内容. 2、教学目标 知识和技能:认识随机误差,认识残差以及相关指数。 根据散点分布特点,建立线性回归模型。 了解模型拟合效果的分析工具——残差分析。 过程与方法:经历数据处理全过程,培养对数据的直观感觉,体会统计方法的应用。 通过一次函数模型和线性回归模型的比较,使学生体会函数思想。 情感、态度与价值观: 通过案例分析,了解回归分析的实际应用,感受数学“源于生活,用于 生活”,提高学习兴趣。 教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他 人合作的重要性.。 3、教学重难点 重点:1、了解回归模型与函数模型的区别 2、了解任何模型只能近似描述实际问题 3、了解模型拟合效果的分析工具——残差分析 难点:参差分析 二、教法学法分析 通过创设情境——运用已有知识——发现新问题——启发引导——合作交流——得到新知识。整个活动过程,学生始终是学习活动的主体,教师是组织者、引导者、合作者。 三、学情分析 1.通过必修3的学习,学生已掌握了线性回归方程的相关知识和应用,已具有一定的对数据的直观感觉,具备了较好的数据整理和分析能力。 2.学生思维活泼,积极性高,但探究问题的能力和合作交流的能力发展还不够。 3.普高学生层次参次不齐,个体差异比较明显。 四、教学过程

应用回归分析,第7章课后习题参考答案

第7章 岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X |≈0,回归系数估计的方差就很大, 估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其 统计思想是对于(X ’X )-1为奇异时,给X’X 加上一个正常数矩阵D, 那么X’X+D 接近奇异的程度就会比X ′X 接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue 。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k 有哪几种方法? 答:最优k 是依赖于未知参数β和2σ的,几种常见的选择方法是: ○ 1岭迹法:选择0k 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多; ○ 2方差扩大因子法:11()()()c k X X kI X X X X kI --'''=++,其对角线元()jj c k 是岭估计的方差扩大因子。要让()10jj c k ≤; ○ 3残差平方和:满足()SSE k cSSE <成立的最大的k 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这 样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k 值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随

相关文档
相关文档 最新文档