文档库 最新最全的文档下载
当前位置:文档库 › 定义域-函数问题致错的隐形杀手

定义域-函数问题致错的隐形杀手

函数定义域的类型和求法

函数定义域的类型和求法 本文介绍函数定义域的类型和求法,目的在于使学生全面认识定义域,深刻理解定义域,正确求函数的定义域。现举例说明。 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得或。③ 由②解得或④ ③和④求交集得且或x>5。 故所求函数的定义域为。 例2 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得③

由②解得④ 由③和④求公共部分,得 故函数的定义域为 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知的定义域,求的定义域。 其解法是:已知的定义域是[a,b]求的定义域是解,即为所求的定义域。 例3 已知的定义域为[-2,2],求的定义域。 解:令,得,即,因此,从而,故函数的定义域是。 (2)已知的定义域,求f(x)的定义域。 其解法是:已知的定义域是[a,b],求f(x)定义域的方法是:由,求g(x)的值域,即所求f(x)的定义域。 例4 已知的定义域为[1,2],求f(x)的定义域。

解:因为。 即函数f(x)的定义域是。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数的定义域为R求实数m的取值范围。 分析:函数的定义域为R,表明,使一切x∈R都成立,由项的系数是m,所以应分m=0或进行讨论。 解:当m=0时,函数的定义域为R; 当时,是二次不等式,其对一切实数x都成立的充要条件是综上可知。 评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。 例6 已知函数的定义域是R,求实数k的取值范围。 解:要使函数有意义,则必须≠0恒成立,因为的定义域为R,即 无实数 ①当k≠0时,恒成立,解得;

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

函数的定义域及函数的解析式解读

函数的定义域及函数的解析式 因为函数是现实世界对应关系的抽象或者说是对应关系的数学模型,它重要而且基本,不仅是数学研究的重要对象,也是数学中常用的一种数学思想,所以全面正确深刻理解函数概念则是我们教学的关键.其中函数的定义域是研究函数及应用函数解决问题的基础,即处理函数问题必须树立“定义域优先”这种数学意识.熟练准确地写出函数表达式是对函数概念理 解充分体现.下面,针对函数的定义域及函数解析式做进一步探讨. 一、函数的定义域 [例1]求下列函数的定义域 (1)y=-22 1x +1 (2)y=4 22--x x (3)x x y +=1 (4)y=241+-+-x x (5)y=3 142-+-x x (6)y=)13(1 13-+--x x x (7)y= x 1 11 11++ (8)y=3-ax (a为常数) 分析:当函数是用解析法给出,并且没有指出定义域,则使函数解析式有意义的自变量的全体所组成的集合就是函数的定义域. 解:(1)x∈R (2)要使函数有意义,必须使x2-4≠0得原函数定义域为{x|x≠2且x≠-2} (3)要使函数有意义,必须使x+|x|≠0得原函数定义域为{x|x>0} (4)要使函数有意义,必须使? ??≥-≥-0401x x 得原函数的定义域为{x|1≤x≤4}

(5)要使函数有意义,必须使?????≠-≥-0 3042x x 得原函数定义域为{x|-2≤x≤2} (6)要使函数有意义,必须使???≠-≠-0 1301x x 得原函数的定义域为{x|x≠31且x≠1} (7)要使函数有意义,必须使??????? ????????≥++≠++≠+≠01111011110110x x x x 得 原函数的定义域为{x|x<-1或x>0或- 2 1<x<0} (8)要使函数有意义,必须使ax-3≥0得当a>0时,原函数定义域为 {x|x≥a 3} 当a<0时,原函数定义域为{x|x≤a 3} 当a=0时,ax-3≥0的解集为?,故原函数定义域为? 评述:(1)求函数定义域就是求使函数解析式有意义的自变量取值的集合,一般可通过解不等式或不等式组完成. (2)对于含参数的函数定义域常常受参数变化范围的制约,受制约时应对参数进行分类讨论.例1中的(8)小题含有参数a,须对它分类讨论. [例2](1)已知函数f(x)的定义域为(0,1),求f(x2)的定义域. (2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域. (3)已知函数f(x+1)的定义域为[-2,3],求f(2x2-2)的定义域. 分析:(1)求函数定义域就是求自变量x的取值范围,求f(x2)的定义域就是求x的范围,而不是求x2的范围,这里x与x2的地位相同,所满足的条件一样. (2)应由0<x<1确定出2x+1的范围,即为函数f(x)的定义域. (3)应由-2≤x≤3确定出x+1的范围,求出函数f(x)的定义域进而再求 f(2x2-2)的定义域.它是(1)与(2)的综合应用. 解:(1)∵f(x)的定义域为(0,1) ∴要使f(x2)有意义,须使0<x2x<0或0<x

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点) 一.定义域 定义域、值域、对应法则合称为函数的三要素.本词条主要介绍函数定义域的概念及其求法. 二.函数定义域的概念 函数的定义域就是指自变量x 的取值范围,它是构成函数的重要组成部分.定义域必须是非空数集,且必须写成区间或集合的形式. 例如:一次函数()(0)f x kx b k =+≠的定义域为 (或写成(,)-∞+∞). 三.函数定义域的求法 在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种. 四.具体函数的定义域 对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合.常见情形如下: 1. 若函数()f x 为整式,则其定义域为实数集 . 例如,二次函数2()1f x x x =++的定义域为. 2. 若函数()f x 是分式,则其定义域是使分母不为零的全体实数的集合. 例如,函数1()1 f x x =-的定义域为{1}x x ≠. 3. 若函数()f x 是偶次根式,则其定义域是使得根号内的式子大于或等于零的全体实数构成的集合. 例如,函数()f x =[1,)-+∞. 4. 若函数()f x 是由几个部分的数学式子构成的,则函数的定义域是使是使各部分都有意义的实数的集合, 即交集. 例如,函数1()1 f x x =-[1,1)(1,)-+∞. 5. 若函数0()f x x =,则其定义域是{0}x x ∈≠. 注:除了上述情形,还应注意指数函数和对数函数均需满足底数大于零且不等于1,对数函数的真数必须大于零,以及三角函数的定义域,如正切函数的定义域为ππ,2x x k k ??≠+∈???? 例 :求下列函数的定义域:①y = 2310x y x x --;③() f x =. 解:①由80,30,x x +??-?≥≥得83x -≤≤.所以原函数的定义域为[]8,3-. ②由220,3100,x x x +???--≠?? ≥解得()() 2250x x x -???+-≠??≥所以2,2,5,x x x -??≠-≠?≥即25x -<<或5x >.所以原函数的定义域为()()2,55,-+∞.

第一讲 函数的定义域和解析式

函数的定义域和解析式 一. 知识点 1常见函数的定义域:①分母不为零;②被开偶次方的数大于等于零;③0x 中x 不等于0 ④log a x 中0,1a a >≠,0x >;⑤x a 中0,1a a >≠⑥tan x 中,2x k k Z ππ≠+ ∈ 2.抽象函数的定义域:①定义域是指自变量x 的范围;②()f 中,()内的取值范围相同。 3.同一函数的判断:两个函数有相同的定义域和解析式。 二. 常考题 1. 函数()lg 43 x y x -=-的定义域是___________ 2. 已知函数()3f x +的定义域是[]4,5-,则函数()23f x -的定义域是___________ 3. 设()2lg 2x f x x +=-,则22x f f x ????+ ? ????? 的 定义域是___________ 4. 已知函数()2lg 2194y mx m x m ??=++++??的定义域是R,则m 的取值范围是 ___________。 5. .若函数()253 x f x x -=-的值域为[)4,+∞,()f x 的定义域是. _________。 6. 已知函数()21f x x =-,()2,01,0x x g x x ?≥=?-

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

求函数的定义域及解析式

高一数学必修1 编号:SX--01--06 《求函数的定义域及解析式专题》导学案 撰稿:张娜 审核: 涂珎 时间:2010.9.5 姓名: 班级: 组别: 组名:____________ 【学习目标】 1、熟练掌握求具体函数和抽象函数的定义域的一般方法; 2、熟练运用换元法、待定系数法、解方程组等方法求函数的解析式. 【重点难点】 重点:求函数的定义域及解析式 难点:求函数的定义域及解析式 【知识链接】 函数的三要素:定义域、解析式、值域 【学习过程】 知识点一:求具体函数的解析式 例1求下列函数的定义域: (1)x y 213- =; (2)x x y ---= 11; (3)30 +=x x y ; (4)11+?-=x x y . 点拨:求具体函数的定义域,其实质是求使解析式各部分有意义的未知数的取值范围. 知识点二 求抽象函数的定义域 抽象函数是没有明确给出具体解析式的函数,求抽象函数的定义域问题主要有四种题型: 题型一:已知的定义域的定义域,求 ))(()(x g f x f 解法:若b x g a x g f b x a x f ≤≤≤≤)())(()(中,则的定义域为,从中解得x 的取值范围即

为))((x g f 的定义域 例2、已知函数的定义域求的定义域为)5(],5,1[)(--x f x f . 题型二:已知的定义域的定义域,求)())((x f x g f 解法:若)()(,))((x g u x g n x m n x m x g f =≤≤≤≤的范围,设确定则由的定义域为, 则的定义域的范围即为是同一函数,所以与又)()()()(),())((x f x g x f u f u f x g f = 例3、已知函数的定义域,求函数的定义域是)(]3,0[)1(x f x f -. 题型三:已知的定义域的定义域,求))(())((x h f x g f 解法:先由的的定义域求得的定义域,再由定义域求得))(()()())((x h f x f x f x g f 定义域 例4、若函数的定义域求的定义域为)1(],2,2 1[)1(--+x f x f . 题型四:求运算型的抽象函数(由有限个抽象函数经四则运算得到的函数)的定义域 解法:先求出各个函数的定义域,再求交集 例5、若的定义域,求的定义域为 )()()(]5,3[)(x f x f x x f +-=-?.

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

1求函数定义域类型几方法(word版)

函数定义域的类型及求法 一、已知解析式型(所有同学一定要会的) 二、含参问题(很重要) 三、抽象函数(复合函数)的定义域 1已知()f x 的定义域,求[]()f g x 的定义域 其解法是:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[] ()f g x 的定义域.

例1 已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围. 解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤. 故函数(35)f x -的定义域为41033?????? ,. 2、已知[]()f g x 的定义域,求()f x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域. 例2 已知函数2(22)f x x -+的定义域为[] 03,,求函数()f x 的定义域. 分析:令222u x x =-+,则2(22)()f x x f u -+=, 由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域. 解:由03x ≤≤,得21225x x -+≤≤. 令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤. 故()f x 的定义域为[]15,. 3,已知[]()f g x 的定义域,求[()]f h x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的取值范围即为()h x 的取值范围,由()h x 的取值范围即可求出 [()]f h x 的定义域x 的取值范围。 例2 已知函数(1)f x +的定义域为[]15-,,求(35)f x -的定义域. 分析:令1,35u x t x =+=-,则(1)(),(35)()f x f u f x f t +=-=, (),()f u f t 表示的是同一函数,故u 的取值范围与t 相同。 解:()f x 的定义域为[]15-,,即15x ∴-≤≤016x ∴+≤≤。 056x ∴-≤3≤

函数的定义域常见求法-含答案

【知识要点】 一、函数的定义域的定义 函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据 1、分式的分母不能为零. 2(2,)n k k N *=∈其中中0,x ≥奇次方根 (21,)n k k N *=+∈其中中,x R ∈. 3、指数函数x y a =的底数a 必须满足01,a a x R >≠∈且. 4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且. 5、零次幂的底数不能为零,即0x 中0x ≠. 6、正切函数tan y x =的定义域是{|,}2 x x k k z π π≠+∈. 7、复合函数的定义域的求法 (1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域. (2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数 ()g x 的值域,即得原函数()f x 的定义域. 8、求函数()()y f x g x =+的定义域 一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的 定义域. 9、求实际问题中函数的定义域 不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示 函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上

是集合的一种特殊表示形式. 四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法. 五、函数的问题,必须遵循“定义域优先”的原则. 研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】 【例1】求函数y . 【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数y =. B ,A B 就是函数 【例2】求函数y =3log cos x 的定义域. 【解析】由题得?? ? ??∈+<<-≤≤-∴???>≥-z k k x k x x x 22225 50cos 0252π πππ ∴}52 3 22235|{≤<<<--<≤-x x x x ππππ或或 所以函数的定义域为}52 3 22235|{≤<<<--<≤-x x x x ππππ或或

高中数学函数的解析式和抽象函数定义域练习题

1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ D P C P A P B

换元法(3)13)2(2++=-x x x f 待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

函数的定义域值域和解析式

函数的定义域、值域和解析式 1.函数的定义域 函数的定义域是指使函数有意义的自变量的取值范围. 2.求函数定义域的主要依据: ①分式函数:分母不为0; ②偶次方根:被开方数为非负数; ③对数函数:真数大于0,底数大于0且不为1; ④零次幂的底数不等于0 注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。 指数函数 x a y =(a >0且a ≠1) R (0,+∞) 对数函数 x y a log =(a >0且a ≠ 1) (0,+∞) R 正、余弦函数 y =sin x ,y =cos x R [-1,1] 正切函数 y =tan x {x |x ≠k π +2 π,k ∈Z} R 解析式 定义域 值域 一次函数 y =kx +b (k ≠0) R R 二次函数 c bx ax y ++=2 (a ≠0) R 当a >0时,),44( 2 +∞-a b a c 当a <0时,)44, (2 a b a c --∞ 反比例函数 x k y = (k ≠0) {x |x ≠0} {y |y ≠0} 均值函数 x b ax y + =(a >0,b >0) {x |x ≠0} (-∞,-2ab ]∪[2ab ,+∞) 常见函数的定义域与值域

,0 ||0 1?? ?>-≠+x x x ,||1 ? ??>-≠x x x 例1求下列函数的定义域 (1)1 log 1 )(2-=x x f (2))1(log 1 |2|)(2---=x x x f (3)y=x x x -+||)1(0 ; 解:(1)由题意可得???>->01log 0 2 x x 解得x >2. ∴所求定义域为(2,+∞) ?? ? ??≠->-≥--110 10 1|2|x x x 解得x ≥3 (2)由题意得 ∴所求定义域为(3,+∞) (3)由题意 化简 故函数的定义域为{x|x <0且x ≠-1}. 练习:求函数的定义域 (1) y=2 3 2 531 x x -+-; (2))34lg(1 3)(22-+-+-=x x x x x f 3.抽象函数的定义域 求复合函数y =f(t),t =q(x)的定义域的方法: ①若y =f(t)的定义域为(a ,b),则解不等式得a <q(x)<b 即可求出y =f(q(x))的定义域; ②若y =f(g(x))的定义域为(a ,b),则求出g(x)的值域即为f(t)的定义域. 例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(x 1);(3)y=f( )31 ()31-++x f x ; 解:(1)0≤3x ≤1,故0≤x ≤3 1 , y=f(3x)的定义域为[0, 3 1] . (2)仿(1)解得定义域为[1,+∞ ). (3)由条件,y 的定义域是f )31(+x 与)3 1 (-x 定义域的交集 .

(完整版)1求函数定义域类型几方法(word版)

函数定义域的类型及求法 、已知解析式型(所有同学一定要会的) 即给出函数的解析式的定义域求袪,苴解袪是由解析式有意义列出关于自变量的不等 式或不等式组■解此不等式(或组)即得原函数的定义域° Jx 1 - 2x - 1^ 例求函数p 二 _ 的定文域. I - 15 >0 f Y > 5或丫 < -3 解*要使函数有意5C 则必须满足] ' - 即J ”工+引―8工0 [工疋5且工工―11 解得r > §或斗< 且里工一11 即口数的定义域为{工r > 5或藍丈-3且工上-11 } o 二、含参问题(很重要) 例乳已知函数$ = J 沁亍一6沁一澈十8的定义境为E 求实数战的取值范围° 分析;函数的定文域为R ,表明他:-6林亠用十S 乙0 ,使一切工E R 都成立,由厂 项的系數是刖,所以应分刪=0或旳黑0进行讨论d 解.讨论. ① 当也二0时,函数的定义域为R ; ② 当用=0时,mx ■ - 6)KX + M ? -F X > 0杲二次不等式,其对一切实数X 都成立的充 综上可知;0 £ m 玉1 ° 三、抽象函数(复合函数)的定义域 1已知f(x)的定义域,求f g(x)的定义域 其解法是:若f (x)的定义域为a < x < b ,则在f g(x)中,a < g(x) < b ,从中解得x 的取值范 要条件是.

围即为f g(x)的定义域. 例1 已知函数f(x)的定义域为1,,求f(3x 5)的定义域. 分析:该函数是由u 3x 5和f(u)构成的复合函数,其中x是自变量,u是中间变量,由于f(x)与f (u)是同一个函数,因此这里是已知 1 < u < 5,即K 3x 5 < 5,求x的取值范围. 4 10 解:Q f(x)的定义域为1,, 1 < 3x 5 < 5,4< x < 10. 3 3 故函数f(3x 5)的定义域为-,10. 3 3 2、已知f g(x)的定义域,求f (x)的定义域 其解法是:若f g(x)的定义域为m < x< n,则由m< x < n确定的g(x)的范围即为f (x)的定义域. 2 例2已知函数f(x 2x 2)的定义域为0,3,求函数f(x)的定义域. 分析:令u x2 2x 2,则f(x2 2x 2) f(u), 由于f(u)与f(x)是同一函数,因此u的取值范围即为f(x)的定义域. 解:由0 < x < 3,得 1 < x2 2x 2 < 5 . 令u x2 2x 2,贝y f (x2 2x 2) f (u),1< u < 5 . 故f (x)的定义域为1,. 3,已知f g(x)的定义域,求f[h(x)]的定义域 其解法是:若f g(x)的定义域为m < x < n,则由m < x < n确定的g(x)的取值范围即为h(x) 的取值范围,由h(x)的取值范围即可求出f[h(x)]的定义域x的取值范围。 例2 已知函数f(x 1)的定义域为1,,求f(3x 5)的定义域. 分析:令u x 1,t 3x 5,则f(x 1) f(u), f(3x 5) f(t), f (u), f (t)表示的是同一函数,故u的取值范围与t相同。 解:Q f(x)的定义域为1,,即K x < 5 0 < x 1 < 6。

函数的解析式以及定义域的求法讲义

函数的解析式以及定义域的求法 一:学生情况及其分析:上海高一学生,不等式学完了,国庆没有上课,这节课给她巩固求解析式的方法,思维灵活,自己动手能力挺好,所以有些例题有留给她一定的思考空间。 二:教学目的: 1.学习函数的表示方法中的解析式的求法, 2.会求解简单函数以及复合函数的定义域 三:教学设计: 1,教学回顾:函数的概念是什么?函数的三要素是什么?函数的表示方法有哪些? 2,教学过程: 一、解析式的求解 (一)换元法: 已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),再求出f(t)可得f (x )的解析式。换元后要确定新元t 的取值范围。 例1.若x x x f -=1)1(,求)(x f . 分析:怎么能由)1(x f 的解析式得到)(x f 的解析式,他们的联系是什么? 练习1.已知x x x f 2)1(+=+,求)1(+x f 练习2.已知) 123f x =+,求()f x 的表达式。 思考:已知2 21)1 (x x x x f +=+,求()f x 的表达式。 分析:题型好像和上面一样,是不是能用同样的方法做出来? (二)配凑法: 把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。 一般的利用完全平方公式 例2.若x x x f 2)1(+=+,求)(x f . 分析:观察怎么才能得到f(x)? 练习1.已知) 123f x =+,求()f x 的表达式。

(三)待定系数法: 已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数 例3. 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 分析:对于一次函数的解析式,我们是不是很熟悉,那能不能先设出他的一般形式呢? 练习1.已知f (x )是二次函数,且满足f (x +1)+f (x -1)=2x 2-4x ,求f (x ). 练习2.已知一次函数()f x ,()()1223f x f x x -+=+,求函数()f x 的解析式。 (四)解方程组法: 求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式 例4. 设,)1(2)()(x x f x f x f =-满足求)(x f 分析:我们用1/x 去代替x 试试看有什么惊人的效果! 练习1.若x x x f x f +=-+1)1()(,求)(x f . (五)特殊值法; 一般的,已知一个关于x,y 的抽象函数,利用特殊值去掉一个未知数y ,得出关于x 的解析式。 例5:已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f 分析:题干中信息太少?就用你能看得见的条件呗,那令谁等于0呢? 练习1.函数f(x)对一切实数x,y 均有f(x+y)-f(y)=(x+2y+1)x 成立,且f(1)=0.求f(x)的解析式。 练习2.已知(0)1,()()(21),f f a b f a b a b =-=--+求()f x 。 (六)代入法: 求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例6.已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 分析:两点关于某点对称时有什么特征?

高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?????≠+≠-≥-. 03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数265)(:12-+-= x x x x f 020652≠-≥+-x x x

求复合函数定义域值域解析式(集锦)

求复合的定义域、值域、解析式(集锦) 一、 基本类型: 1、 求下列函数的定义域。 (1)12)(-+=x x x f (2)x x x x f -+=0 )1()( (3) 1 11--= x y (4)()28 x f x = - 二、复合函数的定义域 1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域 2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2) ()1 f x g x x =-的定义域 2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域 3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是 求函数的值域 一、二次函数法 (1)求二次函数232y x x =-+的值域 (2)求函数225,[1,2]y x x x =-+∈-的值域. 二、换元法: (1) 求函数 y x =+

分分式法 求2 1 +-= x x y 的值域。 解:(反解x 法) 四、判别式法 (1)求函数22221 x x y x x -+=++;的值域 2)已知函数21 ax b y x += +的值域为[-1,4],求常数b a ,的值。 五:有界性法: (1)求函数1e 1e y x x +-=的值域 六、数形结合法---扩展到n 个相加 (1)|1||4|y x x =-++(中间为减号的情况?) 求解析式 换元法 已知 23,f x =- 求 f (x ). 解方程组法 设函数f (x )满足f (x )+2 f (x 1 )= x (x ≠0),求f (x )函数解析式. 一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数 ,x y ,总有2()()(21),f x f x y x y y +=+++求()f x 。 令x=0,y=2x 待定系数法 设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

函数的定义域值域及解析式

函数的定义域值域及解 析式 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

函数的定义域、值域及解析式【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 注意:

1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 例. 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x ; g ( x ) = (√x )2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x 2-2x+2, g ( x )=t 2-2t+2 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”。 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. 练习、请用区间表示 (1){|12}x x <<=____________, {|01}x x ≤≤=____________, {|10}x x -≤<=____________, {|23}x x <≤=____________, (2){|}x x a ≥=____________, {|}x x a >=____________,

相关文档
相关文档 最新文档