文档库 最新最全的文档下载
当前位置:文档库 › 典型环节的Bode图

典型环节的Bode图

典型环节的Bode图
典型环节的Bode图

控制系统的开环频率特性

目的:掌握开环Bode 图的绘制

根据Bode 图确定最小相位系统的传递函数

重点:开环Bode 图的绘制、根据Bode 图确定最小相位系统的传递函数

1 开环伯德图手工作图的一般步骤:

1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率

2)求20lgK 的值,并明确积分环节的个数ν 3)通过(1,20lgK )绘制斜率为-20vdB/dec 低频段 4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率

最小相位系统定义: 递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。否则就是非最小相位系统。

对数幅频特性与相频特性之间存在确定的对应关系。对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。

非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。对响应要求快的系统,不宜采用非最小相位元件。

2 典型环节的伯德图

绘制曲线在MA TLAB 中实现,利用下述的程序段:

num=[b2 b1 b0]; den=[1 a2 a1 a0]; H=tf(num,den); bode(H) margin(H) hold on

2.1 比例环节

传递函数:()G s K = 频率特性:()G j K ω= 对数幅频特性:()20lg L j K ω= 对数相频特性:()0?ω=

程序段:

num=[0 10]; den=[0 1]; H=tf(num,den); bode(H)

margin(H) hold on

结论:放大环节的对数幅频特性是一条幅值为20lgK 分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。 K>1时,20lgK>0dB ;K<1时,20lgK<0dB 。

2.2 惯性环节(低通滤波特性) 传递函数:1()1G s s

τ=

+

频率特性:()()()j G j A e ?ωωω= 对数幅频特性:2

1()20lg

1()

L ωτω=+

对数相频特性:()arctan ?ωτω=- 绘制1()10.1G s s

=+的Bode 图

程序段:

num=[0 1]; den=[0.1 1];H=tf(num,den); bode(H) margin(H)

hold on

结论:惯性环节的对数幅频特性可以用在1ωτ= 处相交于0分贝的两条渐近直线来近似表示:当1ωτ 时,是一条0分贝的直线; 当1ωτ 时,是一条斜率为-20dB/dec 的直线。

惯性环节具有低通特性,对低频输入能精确地复现,而对高频输入要衰减,且产生相位迟后。因此,它只能复现定常或缓慢变化的信号。

2.3 积分环节

传递函数:1

()G s s

τ=

频率特性:()()()j G j A e ?ωωω= 对数幅频特性:1

()20lg L j ωτω

=

对数相频特性:()2

π?ω=-

在同一坐标中绘制1()G s s

=

、1()0.1G s s

=

1()0.01G s s

=

的Bode 图

num1=[0 1];den1=[1 1];H1=tf(num1,den1); bode(H1)margin(H1)hold on

num1=[0 1];den1=[0.1

1];H1=tf(num1,den1);bode(H1)margin(H1) hold on

num1=[0 1];den1=[0.01 1];

H1=tf(num1,den1);bode(H1)margin(H1) hold

on

蓝色的线为:1()G s s

=,红色的线为:1()0.1G s s

=

紫色的线为:1

()0.01G s s

=

结论:积分环节的对数幅频曲线是一条经过横轴上ω=1这一点,且斜率为-20的直线;相频与ω无关,值为-90°且平行于横轴的直线, 2.4 微分环节

传递函数:()G s s τ=

频率特性:()()()j G j A e ?ωωω= 对数幅频特性:()20lg L j ωτω= 对数相频特性:()2

π?ω=

在同一坐标中绘制()G s s

=、()0.01G s s =和

()0.001G s s =的Bode 图

num1=[1 0];den1=[0 1];H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0.1 0];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0.01 0];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold

on

蓝色的线为:()G s s =,红色的线为:()0.01G s s =,紫色的线为:()0.001G s s =

结论:微分环节是积分环节的倒数,它们的曲线斜率和相位移也正好相差一个负号。 2.5 一阶比例微分环节 传递函数:()1G s s τ=+ 频率特性:()()()j G j A e ?ωωω=

对数幅频特性:2()20lg 1()L j ωτω=+ 对数相频特性:()arctan ?ωτω=

在同一坐标系中,绘制()1G s s =+,()10.1G s s =+和()10.01G s s =+的Bode 图。

num1=[1 1];den1=[0 1];H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0.1 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0.01 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

2.6 二阶比例微分环节

传递函数:22()12G s s s ξττ=++ 频率特性:()()()j G j A e ?ωωω=

对数幅频特性:

2222

()20lg

(2)(1)L j ωξτωτω=+-

对数相频特性:2

2

2()arctan

1ξτω?ωτω

=-

绘制22()12G s s s ξττ=++的Bode 图。 1)取0.707ξ=,1τ=则

2

()12G s s s

=+

+

2)取1ξ=,1τ=则

2

()12G s s s =+

+

3)取0.2ξ=,1τ=则

2

()10.4G s s s =++

4)取0.5ξ=,1τ=则

2

()11G s s s =+

+

5)取0.1ξ=,1τ=则

2

()10.2G s s s =+

+

在同一个标系中绘制以上曲线

num1=[1 1.414 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[1 2 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[1 0.4 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[1 1 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[1 0.2 1];den1=[0 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

二阶微分环节Bode

2.7 振荡环节 传递函数:2

2

2

()2n

n n G s s s

ωωξω=++ 令1

n

τω=

则:22

1

()12G s s s

ξττ=

++

频率特性:

()

2

2

1

()()12j G j A e

j ?ωωωξτωτω

=

=+-

对数幅频特性:

2

2

2

2

1

()20lg

(2)(1)

L j ωξτωτω=+-

对数相频特性:

2222

2arctan 1

1()2arctan 1

1ξτωτωτω

?ωξτω

πτωτω?

-≤??-=?

?-->?-?

绘制2

2

1

()12G s s s

ξττ=

++的Bode 图。

1)1)取0.707ξ=,1τ=则

2

1()12G s s s =

+

+

2)取1ξ=,1τ=则

2

1()12G s s s

=

++

3)取0.2ξ=,1τ=则

21()10.4G s s s

=

++

4)取0.5ξ=,1τ=则

21()11G s s s

=

++

5)取0.1ξ=,1τ=则

21()10.2G s s s

=

++

在同一个标系中绘制以上曲线

num1=[0 1];den1=[1 1.414 1]; H1=tf(num1,den1); bode(H1)

margin(H1) hold on

num1=[0 1];den1=[1 2 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0 1];den1=[1 0.4 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0 1];den1=[1 1 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold on

num1=[0 1];den1=[1 0.2 1]; H1=tf(num1,den1); bode(H1) margin(H1) hold

on

3 对控制系统的一般要求

开环对数频率特性的一般要求或者说怎样的

Bode 图才算是比较理想的频率特性?

(1)中频段以-20dB/dec 的斜率穿越零分贝 线,而且这一斜率占有足够的频带宽度,则系 统的稳定性好。

(2)截止频率c ω越高,则系统的快速性越好。 (3)低频段的斜率陡,增益高,表示系统的稳 态精度好(即稳态误差小)。

(4)高频段衰减得越快,即高频特性负分贝值 低,说明系统抗高频噪声干扰的能力越强。

典型环节的Bode图

控制系统的开环频率特性 目的:掌握开环Bode 图的绘制 根据Bode 图确定最小相位系统的传递函数 重点:开环Bode 图的绘制、根据Bode 图确定最小相位系统的传递函数 1 开环伯德图手工作图的一般步骤: 1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率 2)求20lgK 的值,并明确积分环节的个数ν 3)通过(1,20lgK )绘制斜率为-20vdB/dec 低频段 4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率 最小相位系统定义: 递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。否则就是非最小相位系统。 对数幅频特性与相频特性之间存在确定的对应关系。对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。 非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。对响应要求快的系统,不宜采用非最小相位元件。 2 典型环节的伯德图 绘制曲线在MA TLAB 中实现,利用下述的程序段: num=[b2 b1 b0]; den=[1 a2 a1 a0]; H=tf(num,den); bode(H) margin(H) hold on 2.1 比例环节 传递函数:()G s K = 频率特性:()G j K ω= 对数幅频特性:()20lg L j K ω= 对数相频特性:()0?ω= 程序段: num=[0 10]; den=[0 1]; H=tf(num,den); bode(H) margin(H) hold on 结论:放大环节的对数幅频特性是一条幅值为20lgK 分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。 K>1时,20lgK>0dB ;K<1时,20lgK<0dB 。 2.2 惯性环节(低通滤波特性) 传递函数:1()1G s s τ= + 频率特性:()()()j G j A e ?ωωω= 对数幅频特性:2 1()20lg 1() L ωτω=+ 对数相频特性:()arctan ?ωτω=- 绘制1()10.1G s s =+的Bode 图 程序段: num=[0 1]; den=[0.1 1];H=tf(num,den); bode(H) margin(H) hold on 结论:惯性环节的对数幅频特性可以用在1ωτ= 处相交于0分贝的两条渐近直线来近似表示:当1ωτ 时,是一条0分贝的直线; 当1ωτ 时,是一条斜率为-20dB/dec 的直线。 惯性环节具有低通特性,对低频输入能精确地复现,而对高频输入要衰减,且产生相位迟后。因此,它只能复现定常或缓慢变化的信号。 2.3 积分环节 传递函数:1 ()G s s τ= 频率特性:()()()j G j A e ?ωωω= 对数幅频特性:1 ()20lg L j ωτω = 对数相频特性:()2 π?ω=- 在同一坐标中绘制1()G s s = 、1()0.1G s s = 和 1()0.01G s s = 的Bode 图 num1=[0 1];den1=[1 1];H1=tf(num1,den1); bode(H1)margin(H1)hold on

MATLAB中bode图绘制技巧(精)

Matlab中Bode图的绘制技巧学术收藏2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。我们可以用下面的语句:num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den; bode(H 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions 我们可以看到以下

内容:ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct]TickLabel: [1x1 struct]Grid: 'off' XLim: {[1 10]}XLimMode: {'auto'}YLim: {[1 10]} YLimMode: {'auto'}IOGrouping: 'none'InputLabels: [1x1 struct]OutputLabels: [1x1 struct]InputVisible: {'on'} OutputVisible: {'on'}FreqUnits: 'rad/sec'FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear'MagVisible: 'on' MagLowerLimMode: 'auto'MagLowerLim: 0PhaseUnits: 'deg'PhaseVisible: 'on'PhaseWrapping: 'off' PhaseMatching: 'off'PhaseMatchingFreq: 0 PhaseMatchingValue: 0我们可以通过修改上面的每一 项修改伯德图的风格,比如我们使用下面的语句画我 们的伯德图:P=bodeoptions;P.Grid='on'; P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ'; num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den; bode(H,P 这时,我们将会看到以下的伯德图: 上面这张图相对就比较好了,它的横坐标单位 是HZ,范围是[10 40K]HZ,而且打开了网格,便于我 们观察-3DB处的频率值。当然,你也可以改变bodeoptions中的其它参数,做出符合你的风格的伯

BODE图 画图过程

电机定位系统校正(BODE图) MATLAB软件具有强大的计算能力和绘图功能,能够快速、准确地做出频域特性曲线。利用MATLAB绘制系统的Bode图,为控制系统设计和分析提供了极大的方便。 1. 创建M-file文挡,并输入如下程序,运行后生成LTI对象my_sys: J=3.2284e-6; b=3.5077e-6; K=0.0274; R=4; L=2.75e-6; num=[0 0 0 K]; den=[(J*K) (J*R+(L*b)) ((b*R)+K^2) 0]; my_sys=tf(num,den); 打开Matlab7.0软件,并新建一个空文档,将程序复制到文档内,如图1所示: 图1 2.运行程序并保存运行结果。如图2所示: 图2

3.打开Start-Toolboxes—Control System—SISO Design Tool。启动SISO Design,如图3所示 图3 4.将my_sys程序导入到SISO Design Tool中,如图4所示 图4

5.在View菜单中,关闭根轨迹显示,只显示开环的Bode图。如图5所示 图5 6. 加积分环节;加零点(60角频率)将各个参数进行积分:空白处右键—Add Pole/Zero—Integrator。如图6所示: 图6

7.在magnitude曲线加零点,然后Analysis菜单下Response to Step Command 指令。如图7所示: 图7 8.在管理反馈界面中,只显示闭环的r与y的关系—LT1 Viewer For SISO Design Tool界面空白处右键—Systems—Closed Loop :r to u (green),如图8所示: 图8

Matlab中Bode图的绘制技巧

Matlab中Bode图的绘制技巧 我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + s^3 + s^2 + s + (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[ 0 0]; den=[1 ]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图:

可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。 下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'}

MATLAB中bode图绘制技巧

Matlab中Bode图的绘制技巧 学术收藏 2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅 我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图: P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图:

MatlabSimulink中bode图的画法

Matlab/Simulink中bode图的画法 在Matlab中,大多时候,我们都是用M语言,输入系统的传递函数后,用bode函数绘制bode图对系统进行频率分析,这样做,本人觉得效率远不如Simulink建模高。如何在Matlab/Simulink中画bode图,以前也在网上查过些资料,没看到太多有用的参考。今天做助教课的仿真,又要画电机控制中电流环的bode图,模型已经建好,step response也很容易看出来,可这bode图怎么也出不来,又不愿意用m语言写出传递函数再画。baidu和google了好一阵,几乎没有一个帖子说的清清楚楚的,经过一番摸索,终于掌握了Simulink里画bode图的方法。.其实,Simulink里画bode图,非常的easy,也很方便。写此文的目的是希望对那些常用Simulink进行仿真希望画bode图又不愿用M语言的新手有所帮助。 以下均是以Matlab R2008a为例。 首先,在simulink里建好model。如图1,这里需要注意的是,输入和输出要用input port和output port,这样以后画bode图的时候,系统就会知道是这两个变量之间的关系。 图1 建好model 其次,选择线性分析。Tools->Control Design ->Linear Analysis。如图2。

图2 选择Linear Ansysis 将出现如图3所示的Control and Estimation Tools Manager窗口。

图3 Control and Estimation Tools Manager窗口 第三步,激动人心的时刻到了,哈哈。如果你是按照前面的步骤来的,那么这时候,你就应该可以直接画出bode图,在窗口的下方,将“Plot linear an alysis result in a ”前面的方框打上勾,已打的就不用管了,再在后面的下拉框里选择“bode response plot”,即画output port和input port之间的bode图,再点击“Linearize Model”按钮,就OK了。其实除了bode图,还可以画其他很多响应曲线,比如step response、impulse response和Nyquist图等等,只需选择相应的step response plot,inpulse response plot或者Nyquist plot等等。方法都是相同的。选择选择“bode response plot”,如图4所示。 图4 画出bode图 稍等片刻,便出现了图1中output port和input port的bode图了。是不是很简单?!

matlab绘制bode图技巧

我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。 下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct]

YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图:P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图:

matlab绘制bode图技巧(可编辑修改word版)

我们经常会遇到使用Matlab 画伯德图的情况,可能我们我们都知道bode 这个函数是用来画bode 图的,这个函数是Matlab 内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter 函数产生的2 阶的,频率范围为[20 20K]HZ 的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on 解决)。 下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct]

YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图:P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图:

bode图怎么绘制

不过在系统辨识工具箱中有相应的函数能够完成该功能。 应该是invfrqs函数。但这个是由频率响应得到的,所以你的对输入输出信号做傅里叶变换得到频率响应后在用这个函数拟合传递函数。 使用matlab工具箱更为方便和直观: 1. 把u,y信号导入到工作空间里。 2. 用ident命令打开matlab系统辨识工具箱,然后点击import data,从新打开界面里导入工作空间的数据。然后可以通过图形查看该输入输出信号,或者在proprocess进行信号预处理。 3. 根据你的模型在estimate里选择linear parameter models,个人觉得你应该选择ARX 结构,确定阶数,然后进行估计。 4. 在主界面里查看估计模型,并且可以和实际输出比较,看看拟合度。 详细使用方面参考帮助文档System Identification Toolbox User's Guide 也只能是拟合吧,拟合的目标也只能是有限的一些典型传递函数。 做过这个,就是拟合吧 在sisotool工具里放置合适的零极点,尽量使曲线吻合,得到传递函数 我是大概知道实测的曲线的零极点分布的,然后去拟合的,这样好做点 如果已经得到Bode plot,就幅度vs频率,相位vs频率曲线,根据+/-20db/dec,+/-40db/dec 渐近线先预测几个pole,zero,double pole double zero,然后再去近似了。

还有几个比较困难的地方是: 1)实际系统引入的杂散参数和群延迟特性,才是拟合和预测的难点。 2)实际测量时仪器已经采用了离散化的数字处理手段,还有测量系统处理误差和测量时注入的扰动幅度所引起的误差,对低频还好,对高频都是很大的影响。 3)所以目前已有的模型,多是对1/2开关频率之前的预测,V2等新模型有所改进,但是还是有其局限性 以我测试的为例吧, R=1e3; C=1e-7; L=0.1; Rl=1000; magdb_LCR=zeros(1,1e5);% -sL-R-|(1/sC) mag_LCR=zeros(1,1e5); phase_LCR=zeros(1,1e5); freq=(1:1e5); RCplot=zeros(1,1e5); LCRplot=zeros(1,1e5); for f=1:1:1e5 LCR=1/((1i*2*pi*f)^2*L*C+1i*2*pi*f*C*Rl+1); LCRplot(f)=LCR; mag_LCR(f)=abs(LCR); magdb_LCR(f)=20*log10(abs(LCR)); phase_LCR(f)=angle(LCR)*180/pi; end 我用上方的函数写一个已知的传递函数,生成对应频率下的幅值和相位。频率响应曲线如下,需要注意的是,幅值的纵坐标不是dB。

bode图画图过程

电机定位系统校正 (BODE图) MATLAB软件具有强大的计算能力和绘图功能,能够快速、准确地做出频域特性曲线。利用MATLAB绘制系统的Bode图,为控制系统设计和分析提供了极大的方便。 1. 创建M-file文挡,并输入如下程序,运行后生成LTI对象my_sys: J=; b=; K=; R=4; L=; num=[0 0 0 K]; den=[(J*K) (J*R+(L*b)) ((b*R)+K^2) 0]; my_sys=tf(num,den); 打开软件,并新建一个空文档,将程序复制到文档内,如图1所示: 图1 2.运行程序并保存运行结果。如图2所示: 图2 3.打开 Start-Toolboxes—Control System—SISO Design Tool。启动SISO Design,如图3所示

图3 4. 将my_sys程序导入到SISO Design Tool中,File-Import 如图4所示 图4 5. 在View菜单中,关闭根轨迹显示,只显示开环的Bode图。如图5所示

图5 6. 加积分环节;加零点(60角频率)将各个参数进行积分:空白处右键—Add Pole/Zero—Integrator。如图6所示: 图6 7.在magnitude曲线加零点,然后Analysis菜单下Response to Step Command指令。如图7所示:

图7 8. 在管理反馈界面中,只显示闭环的r与y的关系—LT1 Viewer For SISO Design Tool界面空白处右键—Systems—Closed Loop :r to u (green),如图8所示: 图8 9. 添加零点和极点,如图8所示,并移动极点、零点和线的位置,调整LT1 Viewer For SISO Design Tool窗口中函数图像的变化直到符合Bode图,如图9所示:

(完整版)使用simulinkbode图的绘制

在Matlab中,大多时候,我们都是用M语言,输入系统的传递函数后,用bode函数绘制bode图对系统进行频率分析,这样做,本人觉得效率远不如Simulink建模高。如何在Matlab/Simulink中画bode图,以前也在网上查过些资料,没看到太多有用的参考。今天做助教课的仿真,又要画电机控制中电流环的bode图,模型已经建好,step response也很容易看出来,可这bode图怎么也出不来,又不愿意用m语言写出传递函数再画。baidu和google 了好一阵,几乎没有一个帖子说的清清楚楚的,经过一番摸索,终于掌握了Simulink里画bode图的方法。.其实,Simulink里画bode图,非常的easy,也很方便。写此文的目的是希望对那些常用Simulink进行仿真希望画bode图又不愿用M语言的新手有所帮助。 以下均是以Matlab R2008a为例。 首先,在simulink里建好model。如图1,这里需要注意的是,输入和输出要用input port 和output port,这样以后画bode图的时候,系统就会知道是这两个变量之间的关系。 图1 建好model 其次,选择线性分析。Tools->Control Design ->Linear Analysis。如图2。 图2 选择Linear Ansysis 将出现如图3所示的Control and Estimation Tools Manager窗口。

图3 Control and Estimation Tools Manager窗口 第三步,激动人心的时刻到了,哈哈。如果你是按照前面的步骤来的,那么这时候,你就应该可以直接画出bode图,在窗口的下方,将“Plot linear analysis result in a ”前面的方框打上勾,已打的就不用管了,再在后面的下拉框里选择“bode response plot”,即画output port和input port之间的bode图,再点击“Linearize Model”按钮,就OK了。其实除了bode图,还可以画其他很多响应曲线,比如step response、impulse response和Nyquist图等等,只需选择相应的step response plot,inpulse response plot或者Nyquist plot等等。方法都是相同的。选择选择“bode response plot”,如图4所示。 图4 画出bode图

相关文档