文档库 最新最全的文档下载
当前位置:文档库 › 实验一 风力发电机组的运行实验

实验一 风力发电机组的运行实验

实验一 风力发电机组的运行实验
实验一 风力发电机组的运行实验

实验一风力发电机组运行实验

一.实验目的

熟悉异步风电机组的工作原理及其并网过程,掌握风速波动时异步风电机组的输出特性和电网故障时异步风电机组的输出特性。

二.实验内容

1. 搭建一个单机容量为1.5MW的异步风力发电系统,并实现其并网运行,电网由单机无穷大系统代替。

2.对该异步风力发电系统和单机无穷大系统中各个模块进行参数设置。

3.观察并记录风速波动时异步风电机组的输出特性和电网故障时异步风电机组的输出特性。

三.实验设备及仪器

1.计算机。

2.MATLAB软件。

四.实验方法

1.并网运行异步风电机组的系统结构

基于普通感应发电机的异步风电机组,一般由风轮、轴系(包括低速轴LS、高速轴HS 和齿轮箱组成)、感应发电机等组成,如图1-1所示。发电机转子通过轴系与风电机组风轮连接,而发电机定子回路与电网用交流线路连接。这种类型的风电机组一旦起动,其风轮转速是不变的(取决于电网的系统频率),与风速无关。在电力系统正常运行的情况下,风轮转速随感应发电机的滑差变化。风电机在额定功率运行状态下,发电机滑差的变化范围为1%~2%,因此正常运行时风轮转速仅在很小范围内变化。

图1-1 基于普通感应发电机的异步风电机组

2.并网运行异步风电机组的仿真模型搭建

首先找到MA TLAB软件并打开,在主页面的菜单栏下面一行点击simulink的标志

,或者在命令行输入Simulink,执行后就会弹出Simulink Library Browser下图1所示。

图2-1 Simulink Library Browser

然后新建一个model,点击上图file下面的白色框,或者点击file中的new model,弹出图2-2所示图形,然后保存,文件名字一定不能写成中文名,最好用英文字母命名,路径名也最好不要有中文。

图2-2 simulink仿真模型

然后,在图2-1仿真库文件中的Enter search term处输入要找的库元件模块。

上面步骤做好后,开始搜索风电机组所需的元件模块。如图2-3,按照图中每个模块下面的名字搜索即可。搜索到想要的模块后,直接拖曳到图2-2中即可,然后按照图2-3将各个模块连接起来。如果对某个模块的功能不熟悉,可以双击模块,然后选择help,就会有这个模块的一些功能介绍。

注意:图中的from模块接的是Bus selector 模块,是将From模块中的很多变量分开表示出,这个两个模块要先连接起来,才能在、Bus selector 中选择变量。当然Goto模块要先与Wind Turbine Induction Generator先连接,From模块才能用。Bus Selector中选择的变量主要来自表2-1中,主要选择wr、P、Q、Pitch_angle和Vabc。

图2-3 并网运行异步风电系统的仿真模型

图2-3中,右键单击风电机组模块(Wind Turbine),然后单击弹出对话框“Look under mask”选项,打开后可见风电机组子系统结构如图2-4所示,包括风力机(Wind Turbine)和感应发电机(Asynchronous Machine)两部分。

图2-4 异步风电机组子系统结构

表2-1 异步风电机的内部信号

3.模块参数设置

Powergui的设置,双击powergui模块,在弹出的对话框中选择最上面的Configure parameters,参数设置如图3-1

图3-1 powergui的参数设置

图3-2 Three-Phase Source 的参数设置

图3-3 Three-Phase Transformer(Two Windings)的参数设置

图3-4 Three-Phase PI Section Line的参数设置

图3-5 Three-Phase Fault的参数设置

图3-6 Three-Phase PI Section Line的参数设置

图3-7 Three-Phase Transformer(Two Winding)1的参数设置

图3-8 Three-Phase V-I Measurement的参数设置图3-9中的Turbine data显示风力机数据参数对话框,Generator data则显示

发电机数据参数对话框。

图3-9风电机组模块的参数设置

在进行Bus Selector模块参数设置前,一定要先与From模块连接好后。参

数设置如图3-10所示。先将左边框变量选中,然后点击中间的Select,变量就会

出现在右边框中,不要的变量可以点击最左边的Remove。

图3-10 Bus Selector模块的参数设置

Step模块的参数设置就是风速的设置,可以自定义设置,用阶跃模块(Step)、斜波模块(Ramp)或者随机发生器模块(Random Number或Uniform Random Number)分别模拟阵风、渐变风和随机风。图2-3中的Step模块参数设置如图3-11

所示。

Rate Limiter模块参数如图3-12所示。

图3-12 Rate Limiter模块的设置

4、仿真运行

(1)风速波动时风电机组输出特性仿真

按照(1)中各个模块的参数设置好后,在图2-3中,也就是自己搭建各个模块的窗口中,在菜单栏选择Simulation->configuration Parameters命令打开设置仿真参数的对话框,选择Ode23tb(Stiff/TR-BDF2)算法,仿真起始时间为0,终止时间为30s。

图4-1 算法和时间的参数设置

(2) 电网故障时风电机组输出特性仿真

仿真电路参数设置基本不变,主要改变Three-Phase Fault(三相故障模块)的参数。设置电网在0.02s发生三相短路故障,到0.1s时故障消失,仿真起始时间为0,终止时间为1s,如图4-2所示。

图4-2 Three-Phase Fault参数设置

五.注意事项:

(1)图2-3中的From 模块和Bus Selector要在Goto模块连接后才能连接,否则Bus Selector中的参数设置时,没有变量可供选择。

(2)实验简单介绍了基于普通异步发电机的异步风电机组的仿真实例,而不去过多地讨论相关装置及其过程。想更为深入的仿真方法还可以参考MATLAB 软件的安装目录下的\MATLAB\R2006a\toolbox\physmod\powersys\DR子目录下的相关例程。

六.实验报告

1.分析并网运行异步风电机组的工作原理

2.记录风速波动时异步风电机组的输出特性和电网故障时异步风电机组的

输出特性。

三相同步发电机的并联运行实验报告

实验报告四 实验名称:三相同步发电机的并联运行实验 实验目的:1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的 调节。 实验项目:1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时有功功率的调节。 3.三相同步发电机与电网并联运行时无功功率调节。 →测取当输出功率等于零时三相同步发电机的V形曲线。(一)填写实验设备表

(二)三相同步发电机与电网并联运行时有功功率的调节 填写实验数据表格 表4-1 U=220V (Y ) f f0I =I = 0.85 A

cos (三)三相同步发电机与电网并联运行时无功功率的调节 填写实验数据表格 表4-2 n=1500r/min U=220V 2P 0 W

(四)问题讨论 1.三相同步发电机投入电网并联运行有哪些条件?不满足这些条件将产生什么后果? 答: 1.发电机的频率和电网的频率相同。 2.发电机和电网的电压大小相等,相位相同。 3.发电机和电网的相序相同。

不满足这些条件将产生:1.频率不同,引起系统功率下降,进而导致系统解列。2.电压不同,引起系统损耗加大。相位不同不但会使有功和无功的冲击外,还会有一个电磁力矩冲击,会导致传动部分冲击。 3.相序不同.将会发生短路,造成人身伤亡和损坏设备事故。 2. 三相同步发电机与电网并联的方法有哪些? 答: 1.直接并网,2.有电动机带动至电网电压和频率时并网。3.发电机先做电动机,再转向发电机状态。 3. 实验的体会和建议 答:熟悉了三相同步发电机并网运行的条件与操作方法,知道了如何对三相同步发电机并联运行时有功功率与无功功率的调节,明白了三相同步发电机投入电网并联条件的重要性。

风力发电机组的运行维护技术(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 风力发电机组的运行维护技术 (新编版)

风力发电机组的运行维护技术(新编版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重要。现在就风机的运行维护作一下探讨。 一.运行 风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。 1.远程故障排除 风机的大部分故障都可以进行远程复位控制和自动复位控制。风

机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。 除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种: (1)风机控制器误报故障; (2)各检测传感器误动作; (3)控制器认为风机运行不可靠。 2.运行数据统计分析 对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核量化,也可对风电场的设计,风资源的评估,设备选型提供有效的理论依据。 每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益挂钩。其主要内容有:风机的月发电量,场用

风力发电机设计

高等教育自学考试毕业设计(论文) 风力发电机设计题目 级机电一体化工程09专业班级 姓名高级工程师指导教师姓名、职称

所属助学单位 2011年 4月1 日 目录 1 绪论………………………………………………………………………………… 1 1.1 风力发电机简介 (1) 1.2 风力发电机的发展史简介 (1) 1.3 我国现阶段风电技术发展状况 (2) 1.4 我国现阶段风电技术发展前景和未来发展 (2) 2 风力发电机结构设计……………………………………………………………… 3 2.1 单一风力发电机组成 (3) 2.2 叶片数目 (3) 2.3 机舱 (4) 2.4 转子叶片 (5) 3 风力发电机的回转体结构设计和参数计算 (5) 3.1联轴器的型号及主要参数 (5) 3.2 初步估计回转体危险轴颈的大小 (5) 3.3 叶片扫描半径单元叶尖速比 (6) 4 风轮桨叶的结构设计……………………………………………………………… 6 4.1桨叶轴复位斜板设计 (6) 4.2托架的基本结构设计 (6) 5 风力发电机的其他元件的设计 (6) 5.1 刹车装置的设计 (6) 6 风力发电机在设计中的3个关键技术问题 (7) 6.1空气动力学问题 (7) 6.2结构动力学问题 (7) 6.3控制技术问题 (7)

7 风力发电机的分类………………………………………………………………… 7 8 风力发电机的选取标准 (8) 9 风力发电机对风能以及其它的技术要求………………………………………… 8 9.1风力发电机对风能技术要求 (8) 9.2风力发电机建模的技术是暂态稳定系统 (9) 9.3风力电动机技术之间的能量转换 (10) 10 风力发电机在现实中的使用范例 (10) 结论 (12) 致谢 (13) 参考文献 (14) 摘要 随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。 我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。 关键词:风力发电、风电场、无功补偿、电压波动

柴油发电机组并联运行典型故障及原因分析

柴油发电机组并联运行典型故障及原因分析 摘要:柴油发电机组的运行情况直接影响部队的供电效果。若出现负荷不均匀 或者不稳定的情况,会直接威胁电站系统的运行安全,严重时甚至会损坏柴油发 电机组本身。本文将对柴油发电机组并联运行的典型故障与发生原因进行探讨, 进而提出故障的应对方法,仅供参考。 关键词:柴油发电机组;并联;典型故障 作为部队供电系统中的组件之一,柴油发电机组的作用不可忽视。而柴油发电机 组的并联运行状态容易受到柴油机的稳态调速率与发电机的静态电压调整率影响,比如当柴油发电机组并联运行时出现功率过大的情况,会使柴油发电机组执行安 全保护装置动作,让整个电站系统受到影响。鉴于此,对柴油发电机组并联运行 典型故障及发生原因进行探讨有一定的现实意义。 下面将结合实例探讨柴油发电机组并联运行时出现的典型故障与原因。 1.负荷分配超差 1.1故障说明 对三台柴油发电机组的单机进行运行负荷试验,单机显示:1号的稳态调速率和 稳态电压调整率分别为2.68%、3.08%,2号机组分别为2.66%、3.08%,3号机组 分别为3.52%、3.08%。依据试验结果可以发现,3台单机运行时无异常情况,且 稳态电压调整率完全一致。而稳态调速率方面,1号与2号单机的数据基本相同,3号数据过大。 1.2原因分析 从理论上来看,柴油发电机组的转速需要保持一致才会以恒定的转速运行,保障 设备供电的稳定性。但实际上机组的各个单机会存在转速不同的情况,而随着机 组负荷的改变,实际转速会持续与设定值产生偏差,进而使得发电机输出电压的 频率不稳定。 究其原因,发电机组的稳态调速率不同,发电机电压的频率不同,而要使机组并 联运行后保持相同的频率,柴油发电机组就会自行调整每个机组所承担的负荷。 如果并联运行时机组的稳态调速率与设定值基本一致,那么每个单机所负担的负 荷也会相对均匀一些。 2.功率因数表波动 2.1故障说明 对3台柴油发电机组进行修后单机运行负荷试验,数据结果显示:1号机组的稳 态电压调整率为4.2%,2号与3号分别为3.8%与4.7%。若将其中两台机组并联 起来并且尝试运行,未出现明显异常,并车时则会发现功率因数表持续波动,幅 度基本在0.2左右,波动周期为0.5s,而功率表没有发现明显抖动的情况。 2.2原因分析 柴油发电机组的输出功率可以被分为有功功率与无功功率两种,其中有功功率 用来支持各个用电设备的正常运行,而无功功率不对外做工,负责实现电路内的 电场交换与磁场交换。3台发电机组的运行负荷试验无异常情况,整体情况相对 稳定,当将任意两个机组并联起来没有出现明显异常,可以肯定的是柴油发电机 组输出的有功功率是正常的,并且分配合理。并车之后会出现功率因数表的抖动 证明柴油发电机组的无功功率分配不均衡。 3.功率分配不稳定

风力发电机组运行规程

华能东营河口风力发电有限公司技术标准 运行技术标准 风力发电机组运行规程Q/HNDYHK.YX.DQ.2010 1 主题内容与适用范围 本规程规定了华能东营河口风电场设备和运行人员的要求及正常运行、维护的内容和方法与事故处理的原则和方法等。 本规程适用于华能东营河口风电场的风力发电机组的运行及日常维护。 2 引用标准 DL/T666—1999 《风力发电场运行规程》 华锐风电科技有限公司《SL1582/70风机操作手册》 华锐风电科技有限公司《SL1500系列风力发电机维护与维修手册》 3 运行规程说明 本手册提供的内容可供用户进行以下工作: ?快速熟悉风机的性能 ?安全地进行与风机有关的工作 ?操作风机 ?修复故障要获得风机的可靠运行,延长其使用寿命,防止发生停机停产,必须要遵照本手册的要求。因此,风机中必须留有本操作手册。本操作手册不能代替培训,但是可起到补充培训的作用。 3.1 符号

本手册中重要的信息都附有以下各项符号表示:3.1.1 人员防护装备符号 戴安全帽! 戴耳罩! 穿防护服! 戴安全手套! 系安全带! 穿防护鞋! 3.1.2 危险符 表示对生命和健康有直接危险 表示电流危险 表示悬挂载荷造成的危险 表示有绊倒的危险 高温危险

3.1.3 警示符号 未经许可禁止入内! 上字和符号表示该区域未经许可禁止入内。 禁止吸烟! 基本原则之一是整个设备内禁止吸烟。 严禁明火! 在有此标记的作业过程中禁止明火。 3.1.4 指示符号 表示如此可迅速、安全地完成任务。 4.技术说明 SL1582/70 机型额定功率为1500kW,风轮直径为82米的华锐风机。 4.1部件说明 SL1582/70风机用在固定的位置,将风能转换为电能并按照供电公司的指标为其电网供电。风机主要包括以下部件: ?发动机舱(1),含发电机(5),齿轮箱(7)和轮毂(10)?塔筒(2) ?风轮叶片(3)

风力发电机组总体设计

1.总体设计 一、气动布局方案 包括对各类构形、型式和气动布局方案的比较和选择、模型吹风,性能及其他气动特性的初步计算,确定整机和各部件(系统)主要参数,各部件相对位置等。最后,绘制整机三面图,并提交有关的分析计算报告。 二、整机总体布置方案 包括整机各部件、各系统、附件和设备等布置。此时要求考虑布置得合理、协调、紧凑,保证正常工作和便于维护等要求,并考虑有效合理的重心位置。最后绘制整机总体布置图,并编写有关报告和说明书。 三、整机总体结构方案 包括对整机结构承力件的布置,传力路线的分析,主要承力构件的承力型式分析,设计分离面和对接型式的选择,和各种结构材料的选择等。整机总体结构方案可结合总体布置一起进行,并在整机总体布置图上加以反映,也可绘制一些附加的图纸。需要有相应的报告和技术说明。 四、各部件和系统的方案 应包括对各部件和系统的要求、组成、原理分析、结构型式、参数及附件的选择等工作。最后,应绘制有关部件的理论图和有关系统的原理图,并编写有关的报告和技术说明。五、整机重量计算、重量分配和重心定位 包括整机总重量的确定、各部分重量的确定、重心和惯量计算等工作。最后应提交有关重量和重心等计算报告,并绘制重心定位图。 六、配套附件 整机配套附件和备件等设备的选择和确定,新材料和新工艺的选择,对新研制的部件要确定技术要求和协作关系。最后提交协作及采购清单等有关文件。总体设计阶段将解决全局性的重大问题,必须精心和慎重地进行,要尽可能充分利用已有的经验,以求总体设计阶段中的重大决策建立在可靠的理论分析和试验基础上,避免以后出现不应有重大反复。阶段的结果是应给出风力发电机组整机三面图,整机总体布置图,重心定位图,整机重量和重心计算报告,性能计算报告,初步的外负载计算报告,整机结构承力初步分析报告,各部件和系统的初步技术要求,部件理论图,系统原理图,新工艺、新材料等协作要求和采购清单等,以及其他有关经济性和使用性能等应有明确文件。 2.总体参数 在风轮气动设计前必须先确定下列总体参数。 一、风轮叶片数B 一般风轮叶片数取决于风轮的尖速比λ。目前用于风力发电一般属于高速风力发电机组,即λ=4-7 左右,叶片数一般取2—3。用于风力提水的风力机一般属于低速风力机,叶片数较多。叶片数多的风力机在低尖速比运行时有较低的风能利用系数,即有较大的转矩,而且起动风速亦低,因此适用于提水。而叶片数少的风力发电机组的高尖速比运行时有较高的风能利用系数,且起动风速较高。另外,叶片数目确定应与实度一起考虑,既要考虑风能

#1发电机进相运行试验报告

#1发电机进相运行试验报告

发电机进相运行试验报告 (A版/0)

参加工作单位:山东电力研究院 山东中实易通集团有限公司 太阳纸业热电厂 工作人员:张维超、孙善华等 项目负责人:张维超 工作时间:2008年2月15日至2008年2月16日编写: 审核: 批准:

1.前言 随着山东电网装机容量的增加,输电线路的容量和距离不断扩大,线路相间和对地电容相应地增大,系统的容性负荷大量增加。在负荷低谷时,系统发出的总感性无功可能超过用户的感性无功和线路的无功损耗总和,导致电网局部电压超出容许范围,影响电网设备的安全运行。为吸收系统多余无功调整电网电压,一般采用并联电抗器或调相机的办法,但这不仅增加了设备投资,而且增加了损耗。如果降低发电机的励磁电流,使发电机由通常的定子电流滞后于机端电压(发电机向系统提供感性无功)的迟相运行,转变为由于欠励磁使发电机的定子电流超前定子电压(发电机从系统吸收感性无功)的进相运行,也可以达到同样目的。显然,这种方式比使用电抗器或调相机节约投资和能耗,而且操作也很简便。为此调度中心要求新建及改造机组在投产前做进相运行试验,利用试验结果指导机组的实际运行,确保系统电压控制在允许范围内。 太阳纸业热电厂#1发电机为空气冷却方式发电机,2008年2月,由山东电力研究院负责,电力研究院、太阳纸业热电厂双方共同对#1发电机进行了进相运行试验,以确认该机的进相运行能力。 2.试验依据的标准 GB/T 1029-2005 《三相同步电机试验方法》 《WX21-D85LLT型汽轮发电机技术数据及有关说明》 GB/T 7064-2002 《透平型汽轮发电机技术要求》 #1发电机运行规程 3.#1发电机有关参数: #1发电机参数 型号:WX21-D85LLT 额定容量:176.5 MV A 额定功率:150 MW 额定电压:15.75 kV 额定电流:6469 A 励磁电流:1344 A

风力发电机设计

摘要 自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。 风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍。 本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。 关键词:风能;风力发电机;叶片;轮毂;齿轮箱

Abstract Natural wind speed and direction of change is random, wind characteristics of uncertainty, how to make wind turbine output power stability, wind power technology is an important subject. So far, have raised a variety of ways to improve the quality of the wind, such as the use of variable speed control technology, can make use of wind round the moment of inertia smooth power output. Because variable speed wind power group using a power electronic devices, when it will transfer to the output of electric power grids, will change in the wave's power, and power factor deterioration. Use of wind energy in the development of key technical issues involved in wind energy technology is one of a number of integrated technical disciplines. Moreover, the wind turbine is usually different from the mechanical system characteristics: a strong power source is not random and continuity of the natural wind, the leaves often run in the stall condition, the power transmission system very irregular importation, fatigue load than Rotating Machinery usually several times. Based on the wind turbine design, leaves, the wheel design, level of rotating the design, gear box system design, use of wind power to achieve the objective of effective use of wind energy resources, reduce non-renewable resources Consumption, reduce the environmental pollution. Key words: wind power;wind power generators;blade;wheel;Gearbox

电力系统自动化实验2018

实验1手动准同期并网实验 一、实验目的 1.加深理解同步发电机准同期并列运行原理,掌握准同期并列条件。 2.掌握手动准同期的概念及并网操作方法,准同期并列装置的分类和功能。 3.熟悉同步发电机手动准同期并列过程 二、原理说明 在满足并列条件的情况下,只要控制得当,采用准同期并列方法可使冲击电流很小且对电网扰动甚微,故准同期并列方式是电力系统运行中的主要并列方式。准同期并列要求在合闸前通过调整待并发电机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。 依并列操作的自动化程度,又可分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映发电机组与系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映电机组与系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制装置根据给定的允许压差和允许频差,不断地检测准同期条件是否满足,在不满足要求时,闭锁合闸并且发出均压、均频控制脉冲。当所有条件均满足时,在整定的越前时间送出合闸脉冲。 三、实验内容与步骤 选定实验台面板上的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“手动”位置。微机励磁装置设置为“恒U g”控制方式。 1.发电机组起励建压,使n=1485 rpm;U g=390V。 将自耦调压器的旋钮逆时针旋至最小。按下QF7合闸按钮,观察实验台上系统电压表,顺时针旋转旋钮至显示线电压400V,然后按下QF1和QF3合闸按钮。 2.在手动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 ⑴将实验台上的“同期表控制”旋钮打到“投入”状态。投入模拟同期表。观察模拟式同期表中,频差和压差指针的偏转方向和偏转角度,以及和相角差指针的旋转方向。 ⑵按下微机调速装置上的“+”键进行增频,同期表的频差指针接近于零;此时同期表的压差指针也应接近于零,否则,调节微机励磁装置。 ⑶观察整步表上指针位置,当相角差指针旋转至接近0度位置时(此时相差也满足条件),手动按下QF0合闸,合闸成功后,并网指示灯闪烁蜂鸣。观察并记录合闸时的冲击电流将并网前的初始条件调整为:发电机端电压为410V,n=1515 rpm,重复以上实验,注

风力发电机组的运行维护技术

编订:__________________ 单位:__________________ 时间:__________________ 风力发电机组的运行维护 技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6351-59 风力发电机组的运行维护技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重要。现在就风机的运行维护作一下探讨。 一.运行 风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的

运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。 1.远程故障排除 风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。 除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种: (1)风机控制器误报故障;

柴油发电机运行状况记录表

柴油发电机运行状况记录表 编号: 日期 工作加油其它 事件累计工作 时间(h) 人员签字备注 工作状况起止时间数量起止时间 分包方:_______________ 工长:_________________ 本表一式一份,填写时不得涂改,不需填写位置画“/”,加油时必须工长、分包方、及供油方三方代表签字。 1

柴油发电机运行状况记录表 编号: 日期 工作加油其它 事件累计工作 时间(h) 人员签字备注 工作状况起止时间数量起止时间 分包方:_______________ 工长:_________________ 本表一式一份,填写时不得涂改,不需填写位置画“/”,加油时必须工长、分包方、及供油方三方代表签字。 2

柴油发电机运行状况记录表 编号: 日期 工作加油其它 事件累计工作 时间(h) 人员签字备注 工作状况起止时间数量起止时间 分包方:_______________ 工长:_________________ 本表一式一份,填写时不得涂改,不需填写位置画“/”,加油时必须工长、分包方、及供油方三方代表签字。 3

柴油发电机运行状况记录表 编号: 日期 工作加油其它 事件累计工作 时间(h) 人员签字备注 工作状况起止时间数量起止时间 分包方:_______________ 工长:_________________ 本表一式一份,填写时不得涂改,不需填写位置画“/”,加油时必须工长、分包方、及供油方三方代表签字。 4

柴油发电机运行状况记录表 编号: 日期 工作加油其它 事件累计工作 时间(h) 人员签字备注 工作状况起止时间数量起止时间 分包方:_______________ 工长:_________________ 本表一式一份,填写时不得涂改,不需填写位置画“/”,加油时必须工长、分包方、及供油方三方代表签字。 5

#1发电机进相运行试验报告

太阳纸业热电厂150MW机组 发电机进相运行试验报告 (A版/0) 山东电力研究院 山东中实易通集团有限公司 2008年2月

参加工作单位:山东电力研究院 山东中实易通集团有限公司 太阳纸业热电厂 工作人员:张维超、孙善华等 项目负责人:张维超 工作时间:2008年2月15日至2008年2月16日编写: 审核: 批准:

随着山东电网装机容量的增加,输电线路的容量和距离不断扩大,线路相间和对地电容相应地增大,系统的容性负荷大量增加。在负荷低谷时,系统发出的总感性无功可能超过用户的感性无功和线路的无功损耗总和,导致电网局部电压超出容许范围,影响电网设备的安全运行。为吸收系统多余无功调整电网电压,一般采用并联电抗器或调相机的办法,但这不仅增加了设备投资,而且增加了损耗。如果降低发电机的励磁电流,使发电机由通常的定子电流滞后于机端电压(发电机向系统提供感性无功)的迟相运行,转变为由于欠励磁使发电机的定子电流超前定子电压(发电机从系统吸收感性无功)的进相运行,也可以达到同样目的。显然,这种方式比使用电抗器或调相机节约投资和能耗,而且操作也很简便。为此调度中心要求新建及改造机组在投产前做进相运行试验,利用试验结果指导机组的实际运行,确保系统电压控制在允许范围内。 太阳纸业热电厂#1发电机为空气冷却方式发电机,2008年2月,由山东电力研究院负责,电力研究院、太阳纸业热电厂双方共同对#1发电机进行了进相运行试验,以确认该机的进相运行能力。 2.试验依据的标准 GB/T 1029-2005 《三相同步电机试验方法》 《WX21-D85LLT型汽轮发电机技术数据及有关说明》 GB/T 7064-2002 《透平型汽轮发电机技术要求》 #1发电机运行规程 3.#1发电机有关参数: #1发电机参数 型号:WX21-D85LLT 额定容量:176.5 MV A 额定功率:150 MW 额定电压:15.75 kV 额定电流:6469 A 励磁电流:1344 A 功率因数:0.85 接线方式:Y 出厂编号:1500018 出品年月:2007.4 制造厂:山东济南发电设备厂 4.试验的有关说明 通常限制发电机进相运行能力的主要因素有三个:发电机的静稳定、定子铁芯端部的温升、厂用电的降低。 为了保证试验的安全,试验时采取以下措施:

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ错误!未找到引用源。错误!未找到引用源。 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△ t P t P t P s t a t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

实验九 三相同步发电机的并联运行

实验九三相同步发电机的并联运行 一.实验目的 1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 二.预习要点 1.三相同步发电机投入电网并联运行有那些条件?不满足这些条件将产生什么后果?如何满足这些条件? 2.三相同步发电机投入电网并联运行时怎样调节有功功率和无功功率?调节过程又是怎样的? 三.实验项目 1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时有功功率的调节。 3.三相同步发电机与电网并联运行时无功功率调节。 (1)测取当输出功率等于零时三相同步发电机的V形曲线。 (2)测取当输出功率等于0.5倍额定功率时三相同步发电机的V形曲线。 四.实验设备及仪器 1.MEL系列电机教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.三相可变电阻器90Ω(MEL-04)。 4.波形测试及开关板(MEL-05)。 5.旋转指示灯、整步表(MEL-07)。 6.同步电机励磁电源(位于主控制屏右下部)。 7.功率、功率因数表(或在主控制屏上,或在单独的组件MEL-20、MEL-24)。 五.实验方法及步骤 1.用准同步法将三相同步发电机投入电网并联运行。 实验接线如图4-4。

原动机选用直流并励电动机M03(作他励接法)。 mA、A1、V1选用直流电源自带毫安表、电流表、电压表(在主控制屏下部)。 R st选用MEL-04中的两只90Ω电阻相串联(最大值为180Ω)。 R f选用MEL-03中两只900Ω电阻相串联(最大值为1800Ω)。 R选用MEL-04中的90Ω电阻。 开关S1、S2选用MEL-05。 交流电压表、电流表、功率表的选择同实验3.1(异步电动机的工作特性)。 同步电机励磁电源固定在控制屏的右下部。 工作原理:三相同步发电机与电网首联运行必须满足以下三个条件。 (1)发电机的频率和电网频率要相同,即f II=f I; (2)发电机和电网电压大小、相位要相同,即E oII=U I; (3)发电机和电网的相序要相同; 为了检查这些条件是否满足,可用电压表检查电压,用灯光旋转法或整步表法检查相序和频率。

风力发电场运行规程DLT666-

风力发电场运行规程DL/T666 1999 所属分类:企业运行管理规范 性质:强制性 有效性:现行 状态:制定 发文单位:中华人民共和国国家经济贸易委员会 文号:DL/T666 1999 发布日期:1999-08-02 实施日期:1999-10-01 1 范围 本规程规定了风力发电场设备和运行人员的要求,正常运行、维护的内容和方法及事故处理的原则和方法等。本规程适用于并网风力发电机组(以下简称风电机组)组成的总容量在1000kW及以上的、单机容量为100kW及以上定桨距或变桨距水平轴风电机组组成的风力发电场(以下简称风电场)。垂直轴式风电机组组成的风电场或容量在1000kW以下的风电场可参照执行。 2 引用标准及参考文件 GB/T1.1-2000 标准化工作导则 GB/T15498-1995 企业标准体系管理标准和工作标准的构成和要求 GL/T800-2001 电力行业标准编制规则DL/T600-2001 电力标准编写的基本规定 GB14285—1993 继电保护和安全自动装置技术规程 DL408—1991 电业安全工作规程 DL/T572—1995 电力变压器运行规程 DL/T596—1996 电力设备预防性试验规程 DL/T620—1997 交流电气装置的过电压保护和绝缘配合

DL5027—1993 电力设备典型消防规程 SD 292—1988 架空配电线路及设备运行规程(试行) 3 职责 3.1 运行管理部门是本规程的归口管理部门。 3.2 运行管理部门负责规程的制订、修订等工作。 4 管理内容与要求 4.1 对设备的基本要求 4.1.1 风电机组: 4.1.1.1 风电机组及其附属设备:风电机组及其附属设备均应有设备制造厂的金属铭牌,应有风电场自己的名称和编号,并标示在明显位置。 4.1.1.2 塔架和机舱:塔架应设攀登设施,中间应设休息平台,攀登设施应有可靠的防止坠落的保护设施,以保证人身安全。机舱内部应有消音设施,并应有良好的通风条件,塔架和机舱内部照明设备齐全,亮度满足工作要求。塔架和机舱应满足到防盐雾腐蚀、防沙尘暴的要求,机舱、控制箱和筒式塔架均应有防小动物进入的措施。 4.1.1.3 风轮:风轮应具有承受沙暴、烟雾侵袭的能力,并有防雷措施。 4.1.1.4 制动系统:风电机组至少应具有两种不同原理的能独立有效制动的制动系统。 4.1.1.5 调向系统:调向系统应设有自动解缆和扭缆保护装置。在寒冷地区,测风装置必须有防冰冻措施。

风力发电机组设计与制造课程设计精编版

风力发电机组设计与制 造课程设计 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

课程设计(综合实验)报告 ( 2012 – 2013 年度第二学期) 名称: 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数: 成绩: 日期:2013年 7月3日 目录

任务书设计内容

风电机组总体技术设计 目的与任务 主要目的: 1. 以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2. 熟悉相关的工程设计软件; 3. 掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1. 确定风电机组的总体技术参数; 2. 关键零部件(齿轮箱、发电机和变流器)技术参数; 3. 计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 4. 完成叶片设计任务; 5. 确定塔架的设计方案。 6. 每人撰写一份课程设计报告。 主要内容 每人选择功率范围在至6MW之间的风电机组进行设计。 1.原始参数:风力机的安装场地50米高度年平均风速为s,60米高度年平均风速为s,70米高度年平均风速为 m/s,当地历史最大风速为49m/s,用户希望安装 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为m3。 2.设计内容

(1)确定整机设计的技术参数。设定几种风力机的C p 曲线和C t 曲线,风力机 基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p 曲线和C t 曲线,计算几种 关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。进度计划 设计(实验)成果要求 提供设计的风电机组的性能计算结果;

三相同步发电机并网运行实验

三相同步发电机并网运行 一. 实验目的 1. 学习三相同步发电机投入并网运行的方法。 2. 测试三相同步发电机并网运行条件不满足时的冲击电流。 3. 研究三相同步发电机并网运行时的静态稳定性。 4. 测试三相同步发电机突然短路时的短路电流。 二. 实验原理 1. 同步发电机的并网运行 把同步发电机并联至电网的手续称为整步亦称为并列或并车。在并车的时候必须避免产生巨大的冲击电流,以防止同步电机损坏,避免电力系统受到严重的干扰。双方应有相同的相序,相同的电压,相同的或接近相同的频率,相同的电压初相位。 2. 同步发电机的静态稳定性 所谓同步发电机的静态稳定性是指发电机在某个运行下,突然受到任意的小干扰后,能恢复到原来的运行状态的能力。同步发电机在并网运行中受到较小的扰动后,若能自动保持同步运行,则该机就具有静态稳定的能力。 发电机输出的电磁功率与功角的关系为:δδsin sin max 0P X E P s E U = = 发电机的功角特性曲线如图所示 假定在某一正常运行情况下,发动机向无限大系统输送的功率为P 0,由于忽略了发动机内部损耗及机组的摩擦、风阻等损耗假定在某一正常运行情况下,,风阻等损耗,P0即等于原动机输出的机械功率Pr .。由图可见,当输送P0时 有两个运行点a 和b 。考虑到系统经常不断受到各种小的扰动,从下面的分析可以看到,只有a 点是能保持静态稳定的实际运行点,而b 点是不可能维持稳定运行的。 先分析a 点的运行情况。如果系统中楚湘某种顺势的微小扰动,使功角增加了一个微小增量 ,则发呆年技术处的电磁功率达到与图中a ’相对应的值。这是,由于原

风力发电机组的运行特性

第四章风力发电机组的运行特性 4.1风力发电系统的一般构成及分类 (1) 4.2风力机的功率调节原理 (3) 4.2.1风力机的输出功率 (3) 4.2.2风力机功率调节原理 (5) 4.2.3风力机相关技术参数 (5) 4.3三相交流异步电机的基本电磁理论 (7) 4.3.1三相交流异步电机的结构 (7) 4.3.2三相交流异步电机的基本工作原理 (8) 4.3.3静止坐标系下的三相交流异步电机的数学模型 (10) 4.3.4 dq旋转坐标系下的三相交流异步发电机的数学模型 (13) 4.4 电压源型变流器工作原理及运行特性 (17) 4.4.1 三相电压源型变流器的基本工作原理 (17) 4.4.2 三相电压源型变流器联网运行特性 (19) 4.4.3 背靠背四象限电压源型变流器联网运行特性 (20) 4.5定速型风电机组的运行特性 (23) 4.5.1鼠笼式感应风电机组的运行原理 (23) 4.5.2 鼠笼式感应风电机组的风速-功率特性 (26) 4.5.3鼠式笼感应风电机组的运行控制 (27) 4.6变速型风电机组的运行特性 (31) 4.6.1双馈感应式发电机组的转速调节原理 (31) 4.6.2双馈感应式风电机组的运行控制原理 (33) 4.6.3双馈感应式风电机组的功率传输特性 (34) 4.6.4双馈感应式异步风电机组的撬杠保护 (36) 4.6.5双馈感应式异步风电机组的运行操作 (38) 4.7直驱式永磁同步风电机组的运行特性 (40) 4.7.1永磁同步发电机的数学模型 (40) 4.7.2永磁同步发电机的外特性 (41) 4.7.3直驱式永磁同步风电机组的运行控制原理 (42) 4.7.4直驱式永磁同步风电机组的运行操作 (44) 参考文献 (46)

相关文档
相关文档 最新文档