文档库 最新最全的文档下载
当前位置:文档库 › 盾构掘进主要参数计算方式

盾构掘进主要参数计算方式

盾构掘进主要参数计算方式
盾构掘进主要参数计算方式

目录

1、纵坡 (1)

2、土压平衡盾构施工土压力的设置方法 (1)

2.1深埋隧道土压计算 (3)

2.2浅埋隧道的土压计算 (3)

2.2.1主动土压力与被动土压力 (3)

2.2.2主动土压力与被动土压力计算: (4)

2.3地下水压力计算 (4)

2.4案例题 (5)

2.4.1施工实例1 (5)

2.4.2施工实例2 (7)

3、盾构推力计算 (9)

4、盾构的扭矩计算 (9)

1、纵坡

隧道纵坡:隧道底板两点间数值距离除以水平距离

如图所示:隧道纵坡=(200-100)/500=2‰

注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0%

2、土压平衡盾构施工土压力的设置方法

根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋);

b、根据判断的隧道类型初步计算出地层的竖向压力;

c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力;

d、根据隧道所处的地层以及施工状态,确定地层水压力;

e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力;

f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为:

σ初步设定=σ水平侧向力+σ水压力+σ调整

式中,

σ初步设定-初步确定的盾构土仓土压力;

σ水平侧向力-水平侧向力;

σ水压力-地层水压力;

σ调整--修正施工土压力。

g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中;

h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

2.1深埋隧道土压计算

深埋隧道σ水平侧向力= q ×0.41×1.79S ω

q —水平侧向力系数见表1

i=0.2,当B>5m ,取i=0.1;

S —围岩级别,如Ⅲ级围岩,则S=3

2.2浅埋隧道的土压计算 2.2.1主动土压力与被动土压力

盾构隧道施工过程中,刀盘扰动改变了原状天然土体的静止弹性平衡状态,从

而使刀盘附近的土体产生主动土压力或被动土压力。

盾构推进时,如果土仓内土压力设置偏低,工作面前方的土体向盾构刀盘方向产生微小的移动或滑动,土体出现向下滑动趋势,为了抵抗土体的向下滑动趋势,土体的抗剪力逐渐增大。当土体的侧向应力减小到一定程度,土体的抗剪强度充分发挥时,土体的侧向土压力减小到最小值,土体处于极限平衡状态,即主动极限平衡状态,与此相应的土压力称为主动土压力Ea ,如图1所示。

盾构推进时,如果土仓内土压力设置偏高,刀盘对土体的侧向应力逐渐增大,刀盘前部的土体出现向上滑动趋势,为了抵抗土体的向上滑动趋势,土体的抗剪力逐渐增大,土体处于另一极限平衡状态,

即被动极限平衡状态,与此相应的土压力称为被动土压力Ep ,如图2所示。

2.2.2主动土压力与被动土压力计算:

根据盾构的特点及盾构施工原理,结合我国铁路隧道设计、施工的具体经验,采用朗金理论计算主动土压力与被动土压力。

盾构推力偏小时,土体处于向下滑动的极限平衡状态。此时,土体内的竖直

应力σ

z 相当于大主应力σ

1

,水平应力σ

a

相当于小主应力σ

3

。水平应力σ

a

为维

持刀盘前方的土体不向下滑移所需的最小土压力,即土体的主动土压力:

σ

a =σ

z

tan2(45°-φ/2)-2ctan(45°-φ/2)

式中,

σ

z

-深度z处的地层自重应力;

c-土的粘着力;

z-地层深度;

φ-地层内部摩擦角。

盾构的推力偏大时,土体处于向上滑动的极限平衡状态。此时,刀盘前方的

土压力σ

p 相当于大主应力σ

1

,而竖向应力σ

z

相当于小主应力σ

a

σ

p =σ

1

z

tan2(45o+φ/2)+2ctan(45o+φ/2)

式中,

σ

z

-深度z处的地层自重应力;

c-土的粘着力;

z-地层深度;

φ-地层内部摩擦角。

2.3地下水压力计算

地下水位高于隧道顶部时,由于地层孔隙、裂隙的存在,形成侧向地下水压。地下水压力的大小与水力梯度、地层渗透系数、管片背后的砂浆凝结时间、渗透系数及渗透时间有关。由于地下水流经土体时受到土体的阻力产生水头损失,因此作用在刀盘上的水压力一般小于该地层处的理论水头压力。

掘进过程中,随着刀盘的不断向前推进,土仓内的压力处于原始土压力值附近,考虑水在土中流动时的阻力,掘进时地层中的水压力可以根据地层的渗透系

数酌情考虑。

盾构因故停机时,由于地层中压力水头差的存在,地下水必然会不断向土仓内流动,直至将地层中压力水头差消除为止。此时土仓的水压力为:σw

刀盘前

=q ×γh

式中,

q-根据土层渗透系数确定的经验数值,砂土q=0.5~1.0,粘性土q=0.1~0.5,风化岩层q=0~0.5;

γ-水的容重;

h-地下水位距刀盘顶部的高度。

施工中,如果管片顶部的注浆不太密实,地下水可能会沿隧道衬砌外部的空隙形成过水通道。当盾构长时间停机时,必将形成一定的压力水头。此时的地下水压:

σw

盾尾后=q

砂浆

×γh

W

式中,

q

砂浆

-根据砂浆的渗透系数和注浆的饱满程度确定的经验数值,一般取q=0.5~1.0;

γ-水的容重;

h

W

-补强注浆处与刀盘顶部的高差。

计算水压力时,盾尾后部的水压力与刀盘前方的水压力按取大值考虑。(根据笔者的经验,在掘进过程中,一般按刀盘前方的地层水压力进行计算,在盾构停机过程中,按盾尾后部的水压力进行计算。)

2.4案例题

2.4.1施工实例1

1工程概况

广州地铁二号线越~三区间隧道盾构工程位于广州市越秀区和白云区,全长3926.034m,区间隧道开挖直径6300mm,采用装配式钢筋砼管片衬砌,衬砌环外径6000mm,内径5400mm,管片宽度1500mm,管片厚度300mm;管片与地层间的空隙采用同步注浆(水泥砂浆)回填。隧道上覆土厚度最大约28m,最小约9m。区间隧道穿越地层大部分是中风化岩〈8〉、强风化岩〈7〉和微风化岩〈9〉,其

次为全风化岩〈6〉和残积土层〈5-2〉,各种地层参数见表2。地层地下水主要为第四系空隙水与基岩裂隙水,地下水位为地表以下1~2m。

表2 主要地层物理力学参数表

2盾构穿越建筑物密集群地段

自YDK17+200至YDK17+050,盾构进入建筑物密集群下施工。在此区段隧道穿过的地层主要为全风化(6)和残积土层(5-2)地层,隧道埋深20~22m。

盾构在此段地层施工时,为确保地表建筑物安全,根据地层状况,确定根据占隧道施工影响范围数量较多的不利地层考虑土压力。隧道埋深以20m考虑,围岩以残积土层(5-2)地层考虑,水平侧向力系数q取1/3~1/2,初步确定采用深埋隧道土压力计算土压。

地层的水平侧向力为:

σ

水平侧向力

= q×0.41×1.79Sω

=(1/3~1/2)×0.41×1.792(1+0.1(6.3-5))kg/cm2

=0.049~0.074Mpa

由于全风化泥质粉砂岩以及残积土层的透水性差,在考虑地层水压力时q 取0.1,

σw

刀盘前

=q ×γh=0.1×1×20=0.2 kg/cm2=0.02 Mpa

考虑0.010~0.020Mpa的压力值作为调整值来修正施工土压力,即σ

调整=0.010~0.020Mpa。

σ

初步设定=σ

水平侧向力

+σ

水压力

+σ

调整=0.079~0.10 Mpa。

采用此土压力值,盾构穿越该区段的地表沉降监测结果如图3所示:

从监测结果可以看出,地表最大沉降-7.6mm,远远小于合同规定的-30mm,同时少数点位在掘进过程有隆起现象,个别点隆起1.3mm。这说明在地质条件相对较好的地层之中,采用深埋隧道土压力计算土压土压力选择偏大,趋于保守。

3盾构穿越地下人行通道

根据现场施工调查,盾构在YDK16+230位置穿越一座地下人行通道,此人行通道为广州火车站、广州汽车总站和广州市流花汽车站之间的连接通道。此位置的地层主要为强风化(7)和残积土层(5-2)、(5-1)地层,隧道埋深8m,人行通道距隧道3.5m。

为保证盾构通过此段地层时的施工安全,计算施工土压力时,确定隧道埋深以8m考虑,围岩以残积土层(5-2)考虑,采用浅埋隧道的土压力计算方法计算土压。

地层的水平侧向力为:

σ

水平侧向力=σ

z

tan2(45°-φ/2)-2ctan(45°-φ/2)

=1.99×8×tan2(45°-17.3°/2)-2×0.40tan(45°-17.3°/2)

=0.803 kg/cm2=0.0803 Mpa

在残积土层中考虑地层水压力时q 取0.1,

σw

刀盘前

=q ×γh=0.1×1×8=0.08 kg/cm2=0.008 Mpa

考虑0.010~0.020Mpa的压力值作为调整值来修正施工土压力,即σ

调整=0.010~0.020Mpa。

σ

初步设定=σ

水平侧向力

+σ

水压力

+σ

调整

=0.101~0.111 Mpa。

采用此土压力值,盾构在该段地层施工时的地表沉降监测结果如图4所示:施工完成后最终实测地表说明,施工过程采用浅埋隧道的土压力计算方法进行土压计算是合理的。

2.4.2施工实例2

盾构机穿越广州火车站站场

越~三区间右线隧道YCK16+745.5~

YCK16+910.5长165m区段穿越广州火车站站场的十四股轨道;左线ZCK16+768~ZCK16+925.5长157.5m区段穿越广州火车站站场的十四股轨道。隧道在此位置穿越的主要地层为中风化(8)地层和强风化(7)地层,隧道埋深15~20m。

在施工过程中,为了达到施工招标文件“盾构掘进通过火车站时,轨面沉降值不得超过10mm,两股钢轨水平高差不得超过4mm”及“在任何情况下,最大隆起量不得超过+10mm”的地表沉降规定,确定根据地层状况和隧道周边施工环境,隧道埋深以20m考虑,围岩以强风化(7)地层考虑,采用深埋隧道的土压力计算土压。

地层的水平侧向力为:

σ

水平侧向力

=q×0.41×1.79Sω

=(1/6~1/3)×0.41×1.792(1+0.1(6.3-5))kg/cm2

=0.025~0.049 Mpa

考虑到地表环境复杂,在计算土压力时σ

水平侧向力

=0.049 Mpa。

在强风化泥质粉砂岩中,计算地层水压力时q 取0.05,

σw

刀盘前

=q ×γh=0.05×1×20=0.1 kg/cm2=0.01 Mpa

考虑0.010~0.020Mpa的压力值作为调整值来修正施工土压力,即σ

调整=0.010~0.020Mpa。

σ

初步设定=σ

水平侧向力

+σ

水压力

+σ

调整

=0.069~0.079Mpa

考虑左右线施工的相互影响,左线土压比右线高0.01~0.02Mpa。盾构在穿

6所示:

盾构在施工完该段区间隧道后,最终实测地面最大沉降5.4mm,小于10mm 的控制标准,与理论计算的地表最大沉降值6.9mm基本接近;两条钢轨面高差为1㎜,小于4mm的施工要求,则说明在掘进过程中土压力的选择是科学合理的。

3、盾构推力计算

盾构的推力主要由以下五部分组成:

式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力

F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力 F5为后方台车的阻力

为水平土压力式中:d P ,)(2

D h P d +

=λγ 式中:C 为土的粘结力,C=4.5t/m 2

式中:W C 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,

当管片容重为2.5t/m3,管片宽度按1.5m 计时,每环管片的重量为24.12t ),两环管片的重量为48.24t 考虑。μC =0.3

4、盾构的扭矩计算

盾构配备的扭矩主要由以下九部分组成。在进行刀盘扭矩计算时: 式中:M 1为刀具的切削扭矩;

M 2为刀盘自重产生的旋转力矩

M 3为刀盘的推力荷载产生的旋转扭矩; M 4为密封装置产生的摩擦力矩 M 5为刀盘前表面上的摩擦力矩 ; M 6为刀盘圆周面上的摩擦力矩 M 7为刀盘背面的摩擦力矩 ; M 8为刀盘开口槽的剪切力矩 M 9为刀盘土腔室内的搅动力矩 a .刀具的切削扭矩M 1 式中:C г:土的抗剪应力,

C г=C+P d ×tg φ=4.5+14.52×tg20°=9.78t/m 2 h max :刀盘每转的最大切削深度,h max =8cm/转 R 0:最外圈刀具的半径,R 0=3.14m

b.刀盘自重产生的旋转力矩M2

M2=GRμg

式中:G:刀盘自重,计算时取刀盘的自重为G=55t

R:轴承的接触半径,计算时取为R=2.6m

μg:滚动摩擦系数,计算时取为μg=0.004

c.刀盘的推力荷载产生的旋转扭矩M3

M3=W p R gμz W p=απR c2P d

式中:W p:推力荷载;α:刀盘封闭系数,α=0.70

R g:轴承推力滚子接触半径,R g=1.25m ;R c:刀盘半径,R c=3.14

μz:滚动摩擦系数,μz=0.004 ;P d:水平土压力,P d=14.52t/m2

d.密封装置产生的摩擦力矩M4

M4=2πμm F(n1R m12+n2R m22)

式中:μm:密封与钢之间的摩擦系数,μm=0.2;F:密封的推力,F=0.15t/m n1、n2:密封数,n1=3n2=3;R m1、R m2:密封的安装半径,R m1=1.84m R m2=2.26m;

e.刀盘前表面上的摩擦力矩M5

式中:α:刀盘开口率,α=0.30;μP:土层与刀盘之间的摩擦系数,μP=0.15 R:刀盘半径,R=3.14m

f.刀盘圆周面上的摩擦力矩M6

M6=2πR2BP ZμP

式中:R:刀盘半径,R=3.14m;B:刀盘宽度,B=0.775m

P Z:刀盘圆周土压力

P Z=(P e+P01+P1+P2)/4=(26.83+33.37+14.89+18.3)/4=23.35t/m2 g.刀盘背面的摩擦力矩M7

M7=2/3[(1-α)πR3μP×0.8P d]

M7=2/3(0.70×π×3.143×0.15×0.8×14.52)=78.33t·m

h.刀盘开口槽的剪切力矩M8

:土的抗剪应力,因碴土饱和含水,故抗剪强度降低,可近似地式中:C

τ

取C=0.01Mpa=1 t/m2,φ=5°;C

=C+P d×tgφ=1+14.52×tg5=2.27 t/m2

τ

i.刀盘土腔室内的搅动力矩M9

M9=2π(R12-R22)LCτ

式中:d1:刀盘支撑梁外径;d2:刀盘支撑梁内径L:支撑梁长度

刀盘扭矩M为M1~M9之和

盾构主要参数的计算和确定

盾构主要参数的计算和确定 1、盾构外径: 盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t) 盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm; 结合五标地质取多少? 2、刀盘开挖直径: 软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的? 3、盾壳长度 盾壳长度L=盾构灵敏度ξx盾构外径D 小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2; 大型盾构D>9M;ξ=0.7—0.8; 4、盾构重量 泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷? 5、盾构推力 盾构总推力F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。 盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+ 切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6 盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的? 刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的? 管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定? 计算中土压力计算是按郎肯土压公式或库仑土压计算? 6、刀盘扭矩 刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋 转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘 背面摩擦力矩T7+刀盘开口槽的剪切力矩T8 刀盘切削扭矩T1中的切削土的抗压强度q u如何确定? 刀盘轴向推力形成的旋转反力矩T3 计算中土压力计算是按郎肯土压公式或库仑土压计算? , 刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算? 刀盘背面摩擦力矩T7中土仓压力P W如何确定? 7、主驱动功率 主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定? 8、推进系统功率 推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW 功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定? 推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率 9、同步注浆能力 每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L 推进一环的最短时间t=管片长度L/最大推进速度v 理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t 额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η 地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构掘进主要参数计算方式

目录 1、纵坡 (1) 2、土压平衡盾构施工土压力的设置方法 (1) 2.1深埋隧道土压计算 (3) 2.2浅埋隧道的土压计算 (3) 2.2.1主动土压力与被动土压力 (3) 2.2.2主动土压力与被动土压力计算: (4) 2.3地下水压力计算 (4) 2.4案例题 (5) 2.4.1施工实例1 (5) 2.4.2施工实例2 (7) 3、盾构推力计算 (9) 4、盾构的扭矩计算 (9) 1、纵坡 隧道纵坡:隧道底板两点间数值距离除以水平距离 如图所示:隧道纵坡=(200-100)/500=2‰ 注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0% 2、土压平衡盾构施工土压力的设置方法 根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋); b、根据判断的隧道类型初步计算出地层的竖向压力; c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力; d、根据隧道所处的地层以及施工状态,确定地层水压力; e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力; f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中, σ初步设定-初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力-地层水压力; σ调整--修正施工土压力。 g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中; h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

盾构机掘进工程简介

盾构机掘进工程简介 1.1 工程概况 某轨道交通三号线省博物馆站~文化宫站盾构区间拟采用2台小松盾构机施工,由文化宫站下井组装调试向省博物馆站始发掘进,在省博物馆站解体、吊出退场,盾构区间平面位置图见图 1.1-1。区间线路右线起讫里程为YDK14+710.325~YDK15+845.944,右线全长1135.619m。左线起讫里程为ZDK14+710.325~ZDK15+845.944,左线全长1130.577m(短链5.042m)。本区间在YDK15+290.00处设一处带废水泵房的联络通道。 区间轨顶标高1860.104~1869.653m,地面标高为1890.17~1891.87m,南太桥盘龙江河底标高1886.5m,近日隧道路面标高1885.4m,盾构覆土厚度为19.2~27.7m。区间线间距13-17m,平面由R=420m及R=450m的曲线及直线构成,区间线路坡度右线为-0.2%、-1.5%、-0.3%、1.1%、0.2%,左线为-0.2%、-1.5%、-0.3%、1.1%、0.2%。在YDK15+290处设置一座联络通道(带排水泵房)。

图1.1-1 盾构区间平面位置图 1.2 工程地质 根据本区间《某市轨道交通3号线省博物馆站至文化宫站区间岩土工程勘察报告》,本工程场地勘探范围内的土层划分为新生代第四系全新统人工堆积层(Q4ml ),新生代第四系全新统冲洪积层(Q4al+pl ),第四系全新统冲湖积层(Q4al+l ),新生代第四系上更新统冲湖积层(Q3al+l ),寒武系中统陡坡寺组(? 2d )五大层。沿线各地层的结构特征自上而下依次如附表一《地层岩性特征一览表》。 1.1.1本区间下穿地质情况 盾构机主要穿越地层为<9-2>粘土、<9-2-2>粘土、<9-3> 盘龙江 近日隧道 正 义路

盾构分体始发掘进专项施工方案

第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。

第3讲 盾构掘进及参数控制

盾构施工关键 技术讲座之三 盾构掘进及参数控制 讲座人:张厚美 讲座人张厚美 广州市盾建地下工程有限公司 2011722 2011---

本节主要内容: 3.1 盾构掘进模式 3.2 掘进参数的设定 3.3 土仓渣土改良 3.4 盾构掘进时效分析 16:32广州盾建2

3.1 盾构掘进模式 盾构机的掘进模式有土压平衡模式、敞开模式、土压与气压混合(半敞开)模式等三种模式。 敞开模式:适用于自稳、地下水少的岩层。 半敞开模式:适用于具有一定自稳能力和地下水 压力不太高的地层。 土压平衡模式: 适用于不能自稳的软土和富水地层。 11:25广州盾建3

323.2 掘进参数的设定 (1) 土仓压力P1 土仓压力P1按深埋隧道与浅埋隧道两种情况进行计算。当隧道埋深H<2D 时,为浅埋隧道;否则,为深埋隧道。 在浅埋隧道中上覆水土产生的压力全部作用 ①在浅埋隧道中,上覆水土产生的压力全部作用于开挖面。一般取刀盘中心处的水土压力为准,按式计算按下式计算: 11:25 广州盾建4

(1)(1) 土仓压力P1计算 P1=k0×γ×h ; 式中:P1P1——k0k0———式中土仓压力;0侧压力系数;γ土的容重;D —为盾构外径。可按参考值选取砂土的 侧压力系数ko 可按参考值选取;砂土的ko 值为0.35~0.45;粘性土的ko 值为0.5~0.7,也可利半经验公式 用半经验公式: ko ko=1=1--sin a 其中a 为土的有效内摩擦角,一般为12°~25° 11:25 广州盾建5

土仓压力P1计算示意图 ±0.00 h 盾构机 D 隧道外径6.0 盾构外径φ6.25 11:25广州盾建—6—

盾构掘进施工技术交底

穗莞深城际轨道交通SZH-3标虎长盾构区间 盾构掘进施工技术交底 一、概况 虎长盾构区间采用两台直径8810mm的日本奥村土压平衡盾构机掘进施工。左右线两台盾构机先后从明挖段工作井始发,掘进至虎门商贸城站南端头井吊出。区间左线长度为2893.084m、右线长度为2894.2m,衬砌结构为C50钢筋混凝土预制管片,内径7700mm、外径8500mm。 盾构掘进施工分为始发,掘进和接收三个阶段,施工中根据每个阶段施工特点采取针对性的技术措施,保证施工安全,满足质量和环保要求。在盾构起始段200m进行试掘进,并根据试掘进调整,确定掘进参数。在盾构到达接收工作井100m前,对盾构轴线进行测量并作调整,保证盾构准确进入接收洞门。 二、施工准备 1、人员准备: ⑴项目部管理人员:工区长,副工区长,工区总工,现场工程师。 ⑵盾构掘进队:带班员,拼装员,电瓶车司机,注浆员等。 ⑶盾构地面队:搅拌站调度、搅拌手,龙门吊司机、司索工,电瓶车充电员等。 ⑷盾构机修队:盾构机械维修员。 ⑸盾构电工队:盾构电气检修员。 ⑹盾构吊装队:广东力特吊装公司。 ⑺盾构组装队:上海力行公司。 ⑻盾构测量队:地面沉降测量员,盾构姿态测量员,管片姿态测量员等。 2、施工机具准备: ⑴两台直径8810mm日本奥村土压平衡盾构机 ⑵搅拌站一座 ⑶电瓶车两台 ⑷循环水箱一个 ⑸发电机一台及配套发电机房一座 ⑹电瓶车充电房一座 ⑺龙门吊四台

⑻350吨履带吊一台 ⑼地面自生产加工房一座 三、施工工艺 1、盾构吊运与组装 根据盾构部件情况、场地情况,制定详细的盾构组装放啊,然后根据相关安全操作规程使用350吨履带吊,200吨汽车吊,60吨龙门吊将盾构机各部件吊运至基坑内,并由力行组装队对盾构机进行组装。 2、盾构机现场调试 根据盾构机主要功能及使用要求制定调试大纲,主要调试内容如下: ⑴盾构壳体 ⑵切削刀盘 ⑶管片拼装机 ⑷螺旋运输机 ⑸皮带运输机 ⑹同步注浆系统 ⑺集中润滑系统 ⑻液压系统 ⑼铰接装置 ⑽电气系统 ⑾渣土改良系统 ⑿盾尾密封系统 对各系统进行空载调试,然后进行整机空载调试,详细记录盾构运转状况,并进行评估。 3、盾构始发 制定详细的始发方案,使用反力架作为盾构机的推进支撑面,精确确定盾构始发标高等已定参数,始发掘进前对洞门土体进行质量检查,对洞门加固的旋喷桩做抽芯检测,制定洞门密封破除方案,使用止水帘布扇形压板对洞门进行密封,确保始发安全。始发掘进时对盾构姿态进行复核。在负环管片定位时,确保管片环面与隧道轴线垂直。始发掘进时重点保护6,7号台车之间的延长管线,对盾构掘进,壁后注浆,管片拼装,出土及材料运输进行工序磨合,尽量在正常掘进时做到环环相扣,工序衔接得当。始发掘进时严格控制盾构的姿态和推力,加大检测力度,根据监控结果调整掘进参数。

复杂条件下的大直径泥水盾构掘进参数控制

万方数据

万方数据

构转向困难,应该更换边滚刀和周边刮刀。隧道最小转弯半径550nl,如通过以上步骤还不能转向,就需要使用仿型刀,设定开挖角度范围,增大开挖面直径辅助盾构转向。 图1掘进方向控制 Fig.1Excavationdirectioncontrol 2.3同步注浆量及压力的控制 在掘进过程中,控制好同步注浆量及注浆压力,及时填充掘进留下的空隙,保证管片的稳定性,提高隧道的防水性能,是控制地面沉降的必要手段。盾构机同步注浆系统有6根注浆管,圆周方向分布在盾构机尾盾上,注浆量根据开挖直径、管片外径计算出理论注入量。实际则需根据地层特点、盾构姿态等来控制,基本原则是注入量不小于理论注入量,确保顶部两根管路的注入量。注浆压力通常大于同等水平位置开挖舱泥水压力0.02~0.03MPa,压力低则注入量不够,过高会损坏盾尾密封刷或通过地层空隙进入开挖仓。因砂浆凝固会导致注浆管路堵塞,因此每掘进1环,在掘进的最后20cm就停止注浆。在盾构机完成掘进拼装管片时,每隔45—75rain注一次,每次每根管注入0.01一O.02m3。盾构掘进时也应留意注浆量,如遇到松散砂卵石地层或有地下空洞等导致注入量增加时应放慢掘进速度以保证填充密实。因盾构自重,砂浆会向下流,一般盾构上部注浆量要占到总注入量的一半以上,只有保证顶部注入量,才能最大限度地减少地表沉降。 2.4盾尾密封油脂系统 盾尾密封有3道,前、中、后,每一道的压力设定非常重要,假如设定压力过小,油脂注入量少,盾尾密封刷易损坏出现漏浆涌水现象。压力过大,油脂消耗量增大,造成经济损失。3道密封的压力设定以开挖仓土压力及注浆压力为依据,最外层压力应比开挖仓底部压力高约0.1MPa,中层取开挖仓底部压力或等于外层设定压力,内层则比中间层压力减少0.1MPa或与之相同,压力设定完毕后还应统计油脂消耗,并适当调整注脂泵的压力。经计算,每掘进1环,盾尾油脂理论消耗量在100~110kg(视掘进时间而定),可以依据该值调整注脂泵压力保证注入量即可…。 2.5泥水循环系统的控制 根据目前掘进距离统计,盾构机停止掘进80%的原因来自泥水循环系统,包括泵站停机、管路破损、泵及管路堵塞、泥水处理设备故障等(见图2)。 图2泥水循环控制系统 Fig.2Controlsystemofslurrycycle 2010年第12卷第12期67万方数据

隧道盾构掘进施工主要工艺

隧道盾构掘进施工主要工艺 1、盾构始发与到达掘进技术 1.1 始发掘进 所谓始发掘进是指利用临时拼装起来的管片来承受反作用力,将盾构机推上始发台,由始发口贯入地层,开始沿所定线路掘进的一系列作业。本工程中每台盾构机都要经过两次始发掘进,第一次是盾构机组装、调试完后从三元里站始发,第二次是盾构机通过广州火车站后二次始发。 1.1.1 始发前的准备工作 (1)始发预埋件的设计、制作与安装 盾构机始发时巨大的推力通过反力架传递给车站结构,为保证盾构机顺利始发及车站结构的安全,需要在车站的某些位置预埋一些构件。同时盾构机盾尾进入区间后为减小地层变形需要立即进行回填注浆,为了防止跑浆也需要在车站侧墙上预埋构件以实现临时封堵。 三元里车站始发预埋件大样及预埋位置如图:隧盾-施组-SD01、02所示。 (2)洞门端头土体加固 三元里车站隧道端头上覆2米厚〈8〉类土(岩石中等风化带),开挖后侧壁基本稳定。始发前不对端头进行加固。 (3)端头围护桩的破除 始发前需要对洞门端头围护桩予 以拆除,确保盾构机顺利出站。三元里 站端头围护桩厚1.1米,洞门预留孔直 径6.62米。计划对围护桩进行分块拆除 如图7-1-1。 环形及横向拉槽宽度50cm,竖向 拉槽宽度20cm,竖向槽沿围护桩接缝凿 除。 盾构机推进前割断连接钢筋,拉开 钢筋砼网片,清理石碴并处理外露钢筋 头,避免阻挂盾壳。围护桩拆除后,快 速拼装负环管片,盾构机抵拢工作面,避免工作面暴露太久失稳坍塌。拉槽 图7-7-1 凿除分块示意图

1.2 盾构机始发流程 盾构机始发前首先将反力架连接在预埋件的位置,吊装盾构机组件在始发台上组装、调试;然后安装400宽的负环钢管片,盾构机试运转;最后拆除洞门端墙盾构机贯入开挖面加压掘进。 盾构机始发流程见下图: 盾构机始发时临时封堵操作工艺流程如下: 安装反力架、始发台 盾构机组件的吊装 组装临时钢管片、 盾构机试运转 拆除端头维护桩 盾构机贯入开挖面加压掘进(拼装临时管片) 盾尾通过入,压板加 固、壁后回填注浆 端头地层加固 检查开挖面地层 始发准备工作 拆除端头围护桩 掘 进 安装螺栓、橡胶帘布板及钢压板 上拉压板,置于盾构机通过位置 盾尾通过始发口 下拉压板 盾尾同步注浆

盾构分体始发掘进专项施工方案1

盾构分体始发专项施工方案 第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,

流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。 <6H>花岗岩全风化带(γ53-2) 呈黄褐色、褐灰色、红褐色、黑褐色等,原岩组织结构已基本风化破坏,但尚可辨认,岩芯呈坚硬土柱状,遇水易软化崩解。局部夹强风化花岗岩碎块。 <7H>花岗岩强风化带(γ53-2) 呈黄褐色、褐灰色、红褐色、黑褐色等,原岩组织结构已大部分风化破坏,矿物成分已显著变化,风化裂隙很发育,岩石极破碎,岩块可用手折断。钾长石用手捏成砂状,斜长石、云母多已风化成高岭土或粘土。局部夹全风化花岗岩。岩芯呈半岩半土状,岩芯遇水易软化崩解。 <8H>花岗岩中等风化带(γ53-2) 呈浅褐色、灰褐色等,中、细粒结构,块状构造,岩石组织结构部分破坏,矿物成分基本未变化,风化裂隙被铁染,并充填少量风化物。斜长石矿物风化较深,钾长石、云母矿物风化轻微。岩质硬,锤击声稍脆,不易击碎。局部夹强风化岩。岩芯较破碎,呈短柱状、碎块状。 <9H>花岗岩微风化带(γ53-2) 岩石组织结构基本未变化,断口处新鲜,岩质坚硬,锤击声脆。岩芯呈长柱状、短柱状。 ㈡工程水文 地下水按赋存方式分为第四系松散土层孔隙水,块状基岩裂隙水。第四系冲积—洪积砂层为主要潜水含水层,冲积—洪积砂层含粘粒较多,富水程度较差,渗透系数仅为0.5~2.0m/d。块状基岩裂隙水主要赋存在燕山期花岗岩强风化带及中等风化带,水力特点为承压水,地下水的赋存不均一。在裂隙发育地段,水量较丰富,属承压水,渗透系数为1.09m/d。 区间场地环境类别为Ⅱ类。地下水对混凝土结构无腐蚀性,对钢筋混凝土结构中的钢筋无腐蚀性,对钢结构具弱腐蚀性。

盾构关键参数计算

第七节 关键参数的计算 1.地质力学参数选取 MCZ3-HG-063A 7-7-1,作为该标段盾32.5m ,盾构机壳体计算38.75m ,地下稳定水位2.5m 。 地质要素表 表7-7-1 隧道基本上在<4-1>、<5Z-2>和<6Z-2>地层中穿过,为相对的隔水地层。按上述条件对选用盾构的推力、扭矩校核计算如下: 2.盾构机的总推力校核计算: 土压平衡式盾构机的掘进总推力F ,由盾构与地层之间的摩擦阻力F 1、刀盘正面推进阻力F 2、盾尾内部与管片之间的摩擦阻力F 3组成,即按公式 F=( F 1+F 2+F 3).K c 式中:K c ——安全系数, 2.1 盾构地层之间的摩擦阻力F1 计算可按公式 F1= *D*L*C C —凝聚力,单位kN/m 2 ,查表7-7-1,

取C= 30.6kN/m2 L—盾壳长度,9.150m D—盾体外径,D=6.25m 得: F 1 =π*D*L*?C=3.14159?6.25?9.15?30.6 = 5498 kN 2.2 水土压力计算 D——盾构壳体计算外径,取6.25m; L——盾构壳体长度,9.15m; p e1 ——盾构顶部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e1——盾构机拱顶受的水平土压;qf e1 =λ×p e1 p e2 ——盾构底部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e2——盾构底部的水平土压。qf e2 =λ×p e2 qf w1 ——盾构顶部的水压 qf w2 ——盾构底部的水压λ——侧压系数,取0.37; 计算qf e1 qf e2 qf w1 qf w2 p e1 =12×1.95×9.8+13×1.88×9.8+(32.5-12-13)×1.91×9.8 =609.2kN/m2 p e2 =609.2 +6.25×1.91×9.8 =726.2 kN/m2 qfe1=0.37×609.2 =225.4 kN/m2 qfe2=0.37×726.2 =268.7 kN/m2 qf W1 =(32.5-2.5) ×9.8 =294 kN/m2 qf W2 =294+6.25×9.8 =355.3 kN/m2

盾构掘进参数的意义与相互关系

第3—4 周工作报告 曾凡宇 一、工作概述 (一)工程现阶段进展香港路土体加固,赵家条站盾构始发工作,惠济路与赵家条段收尾段推进与 接受准备工作。 (二)主要工作内容 了解盾构推进各参数之间的关系,探讨工程实际中出现的问题与盾构参数的选定之间的因果关系。分析统计数据并与相关论文做对比,观察盾构出洞过程。 下文将所见所得分类逐一叙述。 二、盾构掘进参数的意义与相互关系 (一)盾构掘进各参数的概念 1.掘进参数的选择依据地质情况判断,盾构机当前状态,地面监测结果反馈,盾构机姿态。 2.掘进 (1)推进油缸的压力:控制盾构机前进和转向。 (2)推进油缸的行程:指油缸伸出的伸长量。 (3)速度:即掘进速度,以总推力和刀盘扭矩为参考量。 (4)总推力:推进油缸的总推力。 (5)出土量:43 方,可由盾构机开挖直径得出。 2.刀盘 (1)转速与扭矩:正常情况转速参考扭矩。 3.环流(略) 4.土舱压力

其设定应由工程师决定,有以下两个原则:密封土舱内的土压力应可以维持刀盘前方开挖面的稳定,不致于因土压偏低造成土体塌陷、地下水流失;也不致于因

土压偏高造成土体表面隆起、 地表建筑设施破坏等。 密封土舱内的土压力应尽可 能低,以降低掘进扭矩和推力,提高掘进速度,降低土体对刀具的磨损,最大限 度地降低掘进成本 (2)调整:若压力大时可以采取以下几个措施来降低压力:加快螺旋输送机的 转速,增加出渣速度,降低渣仓内渣土的高度;适当降低推进油缸的推力; 降低泡沫和空气的注入量, 适当的排出一定量的空气或水。 若压力小时可以采取 相反措施。 (二)统计分析 1. 扭矩与总推力的统计关系表 图1 图2 分析:

盾构掘进管片拼装等施工方案作业方案

盾构掘进管片拼装等施工方案作业方案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

盾构掘进、管片拼装、壁后注浆、成型隧道施工方案施工方案 盾构掘进 掘进流程见图2-1-1。 用于本合同段掘进施工的土压平衡盾构的开挖土仓由刀盘、切口环、隔板、土压传感器及膨润土添加、泡沫注入系统组成。根据本合同段隧道地层条件,需选择土压平衡模式进行本合同段区间隧道的掘进。土压平衡掘进模式中土仓压力 的保持首先需选定土仓压力,掘进过程中通过调整推进力实现推进速度控制、通过调整螺旋输送机转速实现出碴量控制。具体方法如下: (1)土仓压力值P的选定 P值应能与地层土压力和静水压力相平衡,设刀盘中心地层静水压力、土压力之和为P0,则P=KP0,K一般取~。掘进施工过程中土仓压力根据试掘进时取得的经验参数并结合盾构所在位置的埋深、土层状况及地表监测结果进行调整与控制。

(2)推进速度控制 图2-1-1 盾构掘进控制程序图 土压力设定 土压力控制 掘进速度控制 监视

为保持土仓压力的稳定,掘进速度必须与螺旋输送机的转速相符合,同时必须兼顾注浆,确保浆液能均匀填实管片与地层的空隙,根据施工的实际情况确定并调整掘进速度控制推进油缸的推力。 (3)出碴量的控制 每环掘进出碴量根据试掘进段取得的参数进行控制。出碴量控制可通过推进速度与螺旋输送机转速来实现。 (1)姿态监控系统 盾构姿态监控通过SLS-T自动导向系统和人工测量复核进行盾构姿态监测。随着盾构推进导向系统后视基准点需要前移,必须通过人工测量来进行精确定位。为保证推进方向的准确可靠,拟每30~50m进行一次人工测量,以校核自动导向系统的测量数据并复核盾构机的位置、姿态,确保盾构掘进方向的正确。 (2)调整与控制 盾构共16组推进油缸,分五区,每区油缸可独立控制推进油压。盾构姿态调整与控制便可通过分区调整推进油缸压力事项盾构掘进方向调整与控制。 (3)纠偏措施 1)滚动纠偏 刀盘切削土体的扭矩主要是由盾构壳体与洞壁之间形成的摩擦力矩来平衡,当摩擦力矩无法平衡刀盘切削土体产生的扭矩时将引起盾构本体的滚动。盾构滚动偏差可通过转换刀盘旋转方向来实现。 2)竖直方向纠偏 控制盾构机方向的主要因素是千斤顶的单侧推力,它与盾构机姿态变化量间的关系非常离散,需要靠人的经验来掌握。当盾构机出现下俯时,可加大下侧千斤顶的推力,当盾构机出现上仰时,可加大上侧千斤顶的推力来进行纠偏。同时还必须考虑到刀盘前面地质因素的影响综合来调节,从而到达一个比较理想的控制效果。 3)水平方向纠偏

盾构关键参数计算

第七节关键参数的计算 1.地质力学参数选取 根据广州市轨道交通三号线详勘阶段汉溪~市桥 盾构段Ⅱ段的岩土工程勘察报告,汉溪站南~市桥站北 区间隧道中,左线及右线的工程地质纵断面图,选择右 线里程YCK21+037.233处地质钻孔编号为MCZ3-HG-063A 的相关地层数据,见地质剖面图7-7-1,作为该标段盾 构机选型关键参数设计和校核计算的依据。该段面地表 标高为27.41m,隧道拱顶埋深32.5m,盾构机壳体计算 外径6.25m,盾壳底部埋深38.75m,地下稳定水位2.5m。 其它地质要素如表7-7-1所示。 地质要素表表7-7-1 代号地层厚度S (m) 天然密度 ρ(g/cm3) 凝聚力 C(KPa) 底层深度 H(m) <4-1> 粉质粘性土12.0 1.95 20.3 12.0 <5Z-2> 硬塑状残积土13.0 1.88 26.0 25.0 <6Z-2> 全风化混合岩、块石土14.0 1.91 30.6 39.0 隧道基本上在<4-1>、<5Z-2>和<6Z-2>地层中穿过,为相对的隔水地层。按上述条件对选用盾构的推力、扭矩校核计算如下: 2.盾构机的总推力校核计算: 土压平衡式盾构机的掘进总推力F,由盾构与地层之间的摩擦阻力F 1 、刀盘正面推 进阻力F 2、盾尾内部与管片之间的摩擦阻力F 3 组成,即按公式 F=( F 1 +F 2 +F 3 ).K c 式中:K c ——安全系数, 2.1 盾构地层之间的摩擦阻力F1 计算可按公式 F1= *D*L*C C—凝聚力,单位kN/m2,查表7-7-1,

取C= 30.6kN/m2 L—盾壳长度,9.150m D—盾体外径,D=6.25m 得: F 1 =π*D*L*?C=3.14159?6.25?9.15?30.6 = 5498 kN 2.2 水土压力计算 D——盾构壳体计算外径,取6.25m; L——盾构壳体长度,9.15m; p e1 ——盾构顶部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e1——盾构机拱顶受的水平土压;qf e1 =λ×p e1 p e2 ——盾构底部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e2——盾构底部的水平土压。qf e2 =λ×p e2 qf w1 ——盾构顶部的水压 qf w2 ——盾构底部的水压λ——侧压系数,取0.37; 计算qf e1 qf e2 qf w1 qf w2 p e1 =12×1.95×9.8+13×1.88×9.8+(32.5-12-13)×1.91×9.8 =609.2kN/m2 p e2 =609.2 +6.25×1.91×9.8 =726.2 kN/m2 qfe1=0.37×609.2 =225.4 kN/m2 qfe2=0.37×726.2 =268.7 kN/m2 qf W1 =(32.5-2.5) ×9.8 =294 kN/m2 qf W2 =294+6.25×9.8 =355.3 kN/m2

基于盾构掘进参数分析的隧道围岩模糊判别_宋克志

引言 近年来,隧道及地下空间的开发在国内已成为新 型的经济增长点。随着此类工程的快速发展,机械化隧道掘进以其安全、快速、优质等特点而得到广泛应 用。全断面机械化隧道掘进设备主要有TBM 、盾构 及顶管,是一种机械化程度很高、能进不能退的全断面施工技术,若在施工中突遇地质灾害,会产生塌方、涌水、掉块,使机器被埋、被淹、被卡,将会出现进退两难,难以处理的局面。轻则延误工期,增加施工费用,重则造成设备损坏和人员伤亡,后果不堪设想,大量工程实践让人们认识到做好超前地质预报对于保证其高效、安全施工具有非常重要的意义。为避免事故的发生,除提高勘察精度外,在隧道施工过 基金项目:中国博士后科学基金(NO.20060400670)作者简介:宋克志,男,博士,副教授收稿日期:2007-09-29 基于盾构掘进参数分析的隧道围岩模糊判别 宋克志1,2 袁大军3王梦恕3 (1.鲁东大学,山东烟台264025;2.同济大学,上海200092;3.北京交通大学,北京100044) 摘要:以重庆主城越江排水隧道工程的地层条件为背景,基于施工现场盾构掘进试验,运用模糊数学方法,对盾构掘进过程中隧道围岩状况判别的理论和方法进行了研究。结合盾构掘进的特点和刀盘切割岩石的基本原理,提出了比推力和比扭矩的概念,建立了不同围岩条件下的比推力( SF )和比扭矩(ST )模糊集合,探讨和揭示了刀盘比推力和比扭矩的关系,刀盘推力、扭矩及切深与地质条件的相关性及与不同围岩状况、盾构掘进状态的对应关系。研究表明,若比推力与比扭矩以较高的水平同步、均匀变化,说明盾构在较硬的均匀地层中掘进;若比推力与比扭矩均较小且同步、均匀变化,说明盾构在较软的均匀地层中掘进;若比推力与比扭矩的变化出现比例异常,则暗示盾构正在穿越断层破碎地段或遇到障碍物或盾构姿态不良等。该方法减少了盾构在此类地层下掘进的盲目性和停机次数,提高了掘进效率和施工安全度,可用于盾构隧道施工围岩状况的适时、定性判别。关键词:盾构;掘进参数;比推力;比扭矩;围岩;模糊判别中图分类号:U452U455 文献标识码:A 文章编号:1000-131X (2009)01-0107-07 Fuzzy identification of surrounding rock conditions based on analysis of shield tunneling data Song Kezhi 1,2 Yuan Dajun 3Wang Mengshu 3 (1.Ludong University,Yantai 264025China ;2.Tongji University,Shanghai 200092China ; 3.Beijing JiaoTong University,Beijing 100044China) Abstract :Considering the stratums surrounding the Chongqing Yangtze River tunnel,using field tests and fuzzy theory,the method to distinguish the surrounding rock conditions for shield tunneling are studied.Conceptions of specific thrust force (SF )and specific torque (ST )are presented,and fuzzy sets of SF and ST are established.The relationships between SF and ST ,shield performance and the geology are studied.The results indicate that shield tunneling parameters may be significantly influenced by rock conditions.Synchronous and homogeneous variations of SF and ST at high level indicate that the shield is driving through homogeneous and hard rock;if SF and ST vary synchronously and homogeneously at low level,it is an indication that the shield is driving in homogeneous and soft rock;and if the ratio of SF to ST varies abnormally,the shield may be obstructed by fault or fractured zones or poor shield attitudes.The proposed method may reduce the blindness and increase the efficiency of shield driving. Keywords :shield ;tunneling data ;specific thrust force ;specific torque ;surrounding rock ;Fuzzy identification Email:ytytskz@https://www.wendangku.net/doc/0914812467.html, 土 木 工 程 学 报 CHINA CIVIL ENGINEERING JOURNAL 第42卷第1期2009年1月 Vol.42No.1Jan. 2009 DOI:10.15951/j.tmgcxb.2009.01.007

盾构隧道施工组织设计

第一章地质描述 第一节概述 一、概述 二、线路段工程地质条件 (一)、地形、地貌 。 (二)、岩土体工程地质特征 (三)、水文地质特征 区间地质描述 区间地质描述详见表7-1-1、表7-1-2;土体主要物理力学性质指标表7-1-3、7-1-4。。 一、科技路站 第三节补充地质勘察

第二章工程特点 第一节工程主要技术难点及对策 第二节工程的主要特点 一、交叉多,干扰大 集中体现在结构交叉多、工序交叉多、接口界面交叉多、专业交叉多、前期与后期交叉多,施工相互干扰较大。执行关键工期计划所发生的各规定部分的工期偏差,会影响其它作业。结构的多交叉,存在空间效应与体系转换问题。 二、地处市区,环境特殊 主要体现在地面建筑物密集,施工对周围环境的影响必须严格控制,文明施工要求严格,环境保护标准高。 三、任务重,系统性强 全部工程要求在33个月内完成。其中,盾构机需要引进,鉴定、安装、调试,前期试掘进进度会放缓,中间加快,出洞又会放缓,还要调头、转场,工序复杂,任务重。采用盾构机施工,这是隧道工厂化施工的模式,其系统性特别强,环节与环节之间的衔接、匹配是否合理,直接影响施工效率,直接影响施工的安全、质量、速度。四、地质复杂,施工难度大 地铁隧道主要穿越Ⅱ4、Ⅲ1层。Ⅱ4层以上主要为砂性土,其渗透性强,富水性好,围岩稳定性极差。Ⅱ4、Ⅲ1层水平分层,盾构机易磕头;且局部地区覆盖层过浅。施工中容易造成地面隆起或沉降。 第三章施工准备 施工准备工作是否充分、到位,将直接影响施工总体安排,影响主体工程能否按时开工,影响到工程开工后能否顺利进行,施工前必须做好各项准备。我局中标后,迅速组成项目部开展各项工作。在最

掘进参数及盾构姿态

掘进参数及盾构姿态 盾构开挖过程中,掘进参数及盾构姿态是主要的控制项目,而这两方面又是相互影响的。掘进参数是手段,盾构姿态是目的。掘进参数决定了盾构姿态的发展趋势,盾构姿态又决定掘进参数的选择,二者相辅相成,共同促进盾构施工的质量。 一、掘进参数 小松TM632PMX盾构机属于土压平衡盾构机,主要由刀盘及刀盘驱动、盾壳、螺旋输送机、皮带输送机、管片安装机、推进油缸、同步注浆系统等组成(盾构机主体)。根据盾构机的组成,掘进参数主要有以下几方面。 1、土压 土压力主要由水压以及土体压力组成(还有渗透力的作用)。掘进中一般按照土体埋深考虑静水压力以及适当考虑土体压力,但都应根据具体地质考虑计算土压。实际掘进中的土压除考虑静水压力以及理论的土体压力外,应根据计算土压以及实际出土量以及地面沉降综合考虑。实际各种地层土压还应考虑地面建筑物状况以及隧道上方管线布置,通常,对于各种含水或富含水砂层并且地面有建筑物状况,土压应考虑高于隧道埋深静水压力并能够产生隆起以应对后期沉降;对于需要进行半仓气压掘进地层,土压也需高于隧道埋深的静水压力以保证正常出土量;对于弱含水地层,土压不必完全按照埋深静水压力考虑,可以根据出土量及地面沉降进行适当增减;对于富含粘粒质地层,即考虑半仓气压掘进但并非欠土压,以免刀盘粘结。 2、总推力 正常掘进推力由刀盘切削土体的推力,土仓压力对盾体的阻力,盾体与土体的摩擦力以及后配套拉力组成。在始发进洞阶段,由于盾构进入加固区时,正面土体强度较大,往往造成推进油压过高,加大了钢支撑承受的荷载,为了防止盾构后靠支撑及变形过大,必须严格控制盾构推力的大小。把盾构总推力控制在允许范围内,避免因盾构总推力过大,造成后靠变形过大或破坏,导致管片位移。在正常施工阶段,可适当加大推力,可以避免过多沉降(边推边注浆)。 3、掘进刀盘扭矩 刀盘扭矩指盾构机掘进过程中刀盘切削土体时需要刀盘驱动系统提供的作用力,刀盘扭矩由土体切削扭矩,土体搅拌需要的扭矩组成。影响刀盘扭矩变化的因素有:掘进速度;地质因素;渣土改良状况;刀具状况;刀盘状况。当掘进速度快时,刀盘对土体切削量增加,扭矩增加;当地层地质发生变化时,刀盘切削土体需要的切削力变化时,扭矩也会相应增大;当渣土改良效果发生变化时,如果土仓内渣土流动性变差,刀盘搅拌力矩增大;如果刀盘与掌子面之间渣土流动性变差时,刀盘与掌子面间摩擦力变化,刀盘扭矩也会发生明显变化;粘性土挤压粘结成泥饼,也会增加刀盘扭矩。 4、推进速度 盾构机单位转速内推进的长度为贯入度,单位时间内推进的长度为推进速度。在软土地层掘进时,盾构机推进速度应该是越快越好(可以减少土层的损失),较快的推进速度能够有效控制渣土出土量。当盾构机推进速度出现忽快忽慢周期性变化时,应考虑刀盘出现泥饼或中心部位刀具损坏。在强风化地层中,当盾构机掘进速度突然变慢时,应考虑是否土仓内渣土积土严重,避免发生泥饼。 5、螺旋输送机转速及扭矩 螺旋输送机转速具有调节土压,控制出土量的作用。螺旋输送机在富含水砂层中掘进时,如果喷涌严重,可以通过反转出土的方式掘进。螺旋输送机掘进中扭矩持续过大时,应考虑向螺旋管内注入泡沫或泥浆(膨润土)减小扭矩防止螺旋机积土卡死,也可加装高压喷水装

盾构掘进施工

三、盾构掘进流程及操作控制程序 3.1 盾构掘进作业工序流程 盾构掘进工作是盾构隧道施工的主要环节,掘进工作的各个环节是否顺利进行的关键,在施工中应使各个环节、工种密切配合,环环相扣,施工的进度、质量才可能满足总进度目标、质量目标的要求。盾构隧道施工的过程见图1。 图1 盾构掘进作业工序流程图 3.2 掘进控制程序 盾构隧道施工掘进过程的控制制约着各个后续的工作,隧道掘进关键的点在于①刀具充分切削、破碎地层,②被破碎、切削下来的地层能被顺利排出。故对于掘进参数的选择就显得十分重要,尤其是针对地层的不同选择不同的刀具布置方式、掘进推力、转速,渣土改良中泥水和泡沫的注入参数设定等。隧道掘进的主要控制程序如下图2所示。

图2 盾构掘进控制程序图 3.3 掘进模式的选择及控制 本次选用的盾构机根据地层的不同和掘进环境的差异在掘进中可选择敞开式(OPEN)、半敞开式(SEMI-OPEN)和土压平衡式(EPB)三种不同的掘进模式,掘进参数见表1。 表1 掘进模式参数表

3.3.1不同掘进模式的特点及适用条件 根据本工程的工程地质特点,对不同地层应采取不同的掘进模式,掘进模式和适用条件、应采取的技术措施见表2。 3.3.2 盾构隧道的掘进模式分段 根据本工程的隧道地质情况及周边环境条件,对采用的三种掘进模式的技术措施分述如下,左右线分段使用掘进模式的情况见表3。 ⑴敞开式掘进的技术措施: ①采用滚刀破岩为主,刀盘采用较高转速、低扭矩掘进。 ②采用敞开模式掘进时,盾构机易产生较大滚动和震动现象。此时适当降低转动的速度、同时适当增大推力以便在确保掘进速度的情况下防滚和减震。 ③同步注浆时浆液可能渗流到盾壳与周围岩体间的空隙甚至刀盘处,为避免此现象发生可适当增大浆液粘度、缩短浆液凝结时间、适当减低注浆压力等方法来解决。 ④在硬岩敞开式掘进时,刀具磨损较大,温度高,岩渣不具软塑性,因此,应注意观察、检查,及时换刀,视岩石的类别注入泡沫和水冷却、润滑,以降低磨耗。 ⑵半敞开式掘进技术措施 ①半敞开式掘进模式介于土压平衡和开敞式之间,采用滚刀或滚刀、刮刀混合破岩切削。在这种情况中,开挖室中渣土高度保持正好在螺旋输送机入口上方,以维持开挖室里空气压力的密闭性。 ②为既能稳定开挖面和防止地下水渗入,又能避免出渣时螺旋输送机发生喷涌,压缩空气压力应控制在0.1~0.15Mpa以内。 ③在该模式下掘进时,应重视注入泡沫对渣土进行改良。遇地层变换、涌水较大时,及时转换模式掘进。

相关文档
相关文档 最新文档