文档库 最新最全的文档下载
当前位置:文档库 › 数学知识点人教A版高中数学必修四 第三章两角和与差的正弦、余弦、正切公式教案-总结

数学知识点人教A版高中数学必修四 第三章两角和与差的正弦、余弦、正切公式教案-总结

数学知识点人教A版高中数学必修四 第三章两角和与差的正弦、余弦、正切公式教案-总结
数学知识点人教A版高中数学必修四 第三章两角和与差的正弦、余弦、正切公式教案-总结

§3.1.2 两角和与差的正弦、余弦、正切公式

一、教学目标

理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换

特点的过程,理解推导过程,掌握其应用.

二、教学重、难点

1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;

2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.

三、学法与教学用具

学法:研讨式教学

四、教学设想:

(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:

()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.

这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?

提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?

让学生动手完成两角和与差正弦和正切公式.

()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ??????????+=-+=-+=-+- ? ? ???????????????

sin cos cos sin αβαβ=+.

()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-????让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)

()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ

+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβα

βαβ++=-. 注意:,,()222k k k k z π

π

π

αβπαπβπ+≠+≠+≠+∈ 以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?

()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ

+---=+-==????--+ 注意:,,()222k k k k z π

π

π

αβπαπβπ+≠+≠+≠+∈.

(二)例题讲解

例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα??????-+- ? ? ??????

?的值. 解:因为3sin ,5αα=-

是第四象限角,得4cos 5α===, 3

sin 35tan 4cos 4

5ααα-

===- , 于是有

43sin sin cos cos sin 444252510πππααα????-=-=--= ? ?????

43cos cos cos sin sin 444252510πππααα????+=-=--= ? ???

?? 两结果一样,我们能否用第一章知识证明?

3tan tan

144tan 7341tan tan 144παπαπα---??-===- ?????++- ??? 例2、利用和(差)角公式计算下列各式的值:

(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15

+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.

(1)、()1sin 72cos 42cos 72sin 42sin 7242

sin 302-=-==; (2)、()cos 20cos 70sin 20sin 70cos 2070

cos900-=+==; (3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15

++==

+==-

-. 例3x x

解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?

)()1

cos sin 30cos cos30sin 22sin 302x x x x x x x ?-==-=-???

思考:=

于12和的. 小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.

作业:

1、 已知()21tan ,tan ,544πα

ββ??+=-= ???求tan 4πα??+ ???的值.(322) 2、 已知()33350,cos ,sin 4445413

ππππβ

ααβ????<<<<-=+= ? ?????,求()sin αβ+的值.

正余弦转换公式

诱导公式(口诀:奇变偶不变,符号看象限。)sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan^2α sin3α=3sinα-4sin^3α

高中数学:(一)正弦定理

课时达标训练(一) 正 弦 定 理 [即时达标对点练] 题组1 利用正弦定理解三角形 1.若△ABC 中,a =4,A =45°,B =60°,则b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 解析:选C 由正弦定理a sin A =b sin B ,得4sin 45°=b sin 60°,所以b =26,故选C. 2.在△ABC 中,A =60°,a =3,b =2,则B =( ) A .45°或135° B .60° C .45° D .135° 解析:选C 由正弦定理a sin A =b sin B , 得sin B =b sin A a =2sin 60°3=2 2. ∵a >b ,∴A >B , ∴B =45°. 3.在△ABC 中,cos A a =sin B b ,则A =( ) A .30° B .45° C .60° D .90° 解析:选B ∵sin A a =sin B b ,又cos A a =sin B b , ∴cos A a =sin A a , ∴sin A =cos A ,tan A =1. 又0°

5.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°. ∵a sin A =b sin B =c sin C =1 sin 30°=2,∴a =2sin A ,b =2sin B ,c =2sin C . ∴ a -2 b +c sin A -2sin B +sin C =2. ★答案★:2 6.已知b =10,c =56,C =60°,解三角形. 解:∵sin B = b sin C c =10·sin 60°56 =2 2, 且b =10,c =56,b 0,∴cos A =0,即A =π 2 ,∴△ABC 为直角三角形. ★答案★:直角三角形 8.在△ABC 中,a cos ????π2-A =b cos ????π 2-B ,判断△ABC 的形状. 解:法一:∵a cos ????π2-A =b ·cos ????π2-B , ∴a sin A =b sin B .由正弦定理,得a ·a 2R =b ·b 2R , ∴a 2=b 2,∴a =b , ∴△ABC 为等腰三角形. 法二:∵a cos ????π2-A =b cos ????π 2-B , ∴a sin A =b sin B . 由正弦定理,得2R sin 2A =2R sin 2B , 即sin A =sin B ,

两角和与差的正弦余弦正切公式练习题(答案)

两角和差的正弦余弦正切公式练习题 知识梳理 1. 两角和与差的正弦、余弦和正切公式 sin( a±3 = sin_a cos B±cos_osin 3 cos(a? 3 = cos _ocos_3sin 一 o (sin 3 tan a±a n 3 tan (a±3 = . 1?tan a an 3 2. 二倍角的正弦、余弦、正切公式 sin 2 a= 2sin_ a os_a 2 ■ 2 2 ■ 2 cos 2a= cos a — sin a= 2cos a — 1 = 1 一 2sin a 3. 有关公式的逆用、变形等 (1)ta n a±an 3= tan( a±3(1 ?tan_ a an_ 3. 4. 函数 f(M = asin a+ bcos o(a, b 为常数),可以化为 f( a = a 2 + b 2 sin(a+ ?,其中 tan 一、选择题 1.给出如下四个命题 ②存在实数a,3 ,使等式 cos( ) cos cos sin sin 能成立; ③公式tan( ) tan an 成立的条件是 k —(k Z)且 k —(k Z); 1 tan tan 2 2 ④不存在无穷多个 a 和3,使 sin( )sin cos co s ,sin ; 其中假命题是 ( ) A.①② B.②③ C. ③④ D. ②③④ 2 .函数 y 2sin x(sin x cosx)的最大值是 ( ) A. 1 . 2 B. .. 2 1 C. 、2 D. 2 ①对于任意的实数a 和3,等式cos( )cos cos sin sin 恒成立; tan 2 2ta n a 1 tan 2 a 2 (2)cos a= 1 + cos 2a 2 sin 2 a= 1 — COS 2a 2 - 2 (3)1 + sin 2 a= (sin a+ cos c), 1 — sin 2 a= (sin a — cos a )2 , sin a±cos a= 2sin a±4t .

两角和与差的正弦余弦正切公式练习题

两角和差的正弦余弦正切公式练习题 知 识 梳 理 1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(αβ)=cos_αcos_β±sin_αsin_β. tan(α±β)=tan α±tan β 1tan αtan β. 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α 1-tan 2α . 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1tan_αtan_β). (2)cos 2α= 1+cos 2α2,sin 2α=1-cos 2α2 . (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α= 2sin ? ?? ?? α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+≠ππβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2

高中数学复习必背知识点

高中数学复习必背知识点 第一章 集合与简易逻辑 含n 个元素的集合的所有子集有n 2个 第二章 函数 1、求)(x f y =的反函数:①解出)(1y f x -=②y x ,互换③写出)(1x f y -=的定义域; 2、对数:①负数和零没有对数 ②1的对数等于0:01log =a ③底的对数等于1:1log =a a , ④积的对数:N M MN a a a log log )(log +=, 商的对数:N M N M a a a log log log -=, 幂的对数:M n M a n a log log =;b m n b a n a m log log = , 第三章 数列 1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:???≥-===-)2() 1(111n S S n S a a n n n 2、等差数列 : ①定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; ②通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) ③前n 项和:2)(1n n a a n S += d n n na 2 ) 1(1-+= ④等差中项: A 是a 与b 的等差中项:2 b a A +=或b a A +=2, 三个数成等差常设:a-d ,a ,a+d 3、等比数列:

①定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。 ②通项公式:11-=n n q a a (其中:首项是1a ,公比是q ) ③前n 项和:??? ?? ≠--=--==) 1(,1)1(1)1(,111q q q a q q a a q na S n n n ④等比中项: G 是a 与b 的等比中项:G b a G = ,即ab G =2(或ab G ±=,等比中项有两个) 第四章 三角函数 1、弧度制:①π= 180弧度,1弧度'1857)180 ( ≈=π ; ②弧长公式:r l ||α= (α是角的弧度数) 2、三角函数定义: y r x r y x x y r x r y ====== ααααααcsc sec cot tan cos sin 3、特殊角的三角函数值 4、同角三角函数基本关系式: 1cos sin 22=+αα α α αcos sin tan = 1cot tan =αα

正弦余弦公式总结

正弦余弦公式总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)] tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)] 3.和差化积公式 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-1/2* [cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2* [sin(a+b)+sin(a-b)] cos(a)sin(b)=1/2* [sin(a+b)-sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 2sin2(a/2)=1-cos(a) 2cos2(a/2)=1+cos(a) tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)] tan2(a/2)= [1-cos(a)]/[1+cos(a)] 7.万能公式 sin(a)=2tan(a/2)/[1+tan2(a/2)] cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)] tan(a)=2tan(a/2)/[1-tan2(a/2)] 8.其它公式(推导出来的) a*sin(a)+b*cos(a)=2+b2其中 tan(c)=b/a a*sin(a)-b*cos(a)= √a2+b2cos(a-c) 其中 tan(c)=a/b

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形 1.两角和与差的正弦、余弦、正切公式 (1)公式 ①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β 1+tan αtan β(T (α-β)) ⑥tan(α+β)=tan α+tan β 1-tan αtan β(T (α+β)) (2)公式变形 ①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式 ①sin 2α=2sin_αcos_α, ②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α= 2tan α 1-tan 2α . (2)公式变形 ①cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2 ; ②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(π α±. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×) (4)公式tan(α+β)=tan α+tan β 1-tan αtan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意

正余弦定理及面积公式

正余弦定理及面积公式 一,,知识点回顾: 正弦定理:R C c B b A a 2sin sin sin === 余弦定理:a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 面积公式:B ac A bc C ab S ABC sin 21 sin 21sin 21 ===? 三角形内角和 π=++C B A ) tan(tan )sin(sin ) cos()cos(cos C B A C B A C B C B A +-=+=+-=--=π 二,基础训练: 1,在?ABC 中,已知23=a ,62=+c , 45=∠B ,求b 及A ; 2,在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 3,在?ABC 中,53 cos ,135 cos =-=B A , (1)求C sin 的值;(2)设BC=5,求?ABC 的面积 4,设锐角?ABC 的内角 A,B,C的对边分别为a,b,c, 且A b a sin 2= (1)求B ∠的大小 (2)若b c a 求,5,33== 5,在?ABC 中,已知54 cos ,3,2-===A a b (1)求B sin 的值 (2)求)62sin(π +B 的值 6,在?ABC 中,53 tan ,41 tan ==B A (1)求C ∠的大小 (2)若AB 的边长为17,求BC 边的长 7,设?ABC 的内角 A,B,C的对边分别为a,b,c,若 3,3,1π =∠==c c a ,则A ∠ 的值 8,设?ABC 的周长为12+,且C B A sin 2sin sin =+ (1)求边长AB 的长 (2)若?ABC 的面积为C sin 61 ,求角C 9,在?ABC 中,A,B,C的对边分别为a,b,c,若 55 22cos ,4,2==∠=B C a π,求?ABC 的面积。

人教版高中数学,正弦定理(一)

人教版高中数学同步练习 第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一) 课时目标 1.熟记正弦定理的内容; 2.能够初步运用正弦定理解斜三角形. 1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2 . 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C ,这个比值是三角形外接圆的直径2R . 一、选择题 1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2 答案 D 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =b sin B , 得4sin 45°=b sin 60° ,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A 解析 sin 2A =sin 2B +sin 2C ?(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形. 4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A > B B .A sin B ?2R sin A >2R sin B ?a >b ?A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°

二倍角正弦、余弦、正切公式教案

二倍角的正弦、余弦、正切 王业奇

α 1tan tan 二、提出问题:若β = α 让学生板演得下述二倍角公式:

一、例题: 例一、(公式巩固性练习)求值: 1.sin22 30’cos22 30’=4 2 45sin 21= 2.=-π 18 cos 22 224cos = π 3.=π -π8 cos 8sin 22 224cos - =π- 4.=ππππ12 cos 24cos 48 cos 48 sin 8 2 16sin 12cos 12sin 212cos 24cos 24sin 4=π=ππ=πππ 例二、 1.5555(sin cos )(sin cos )12121212ππππ +- 2 25553 sin cos cos 121262 πππ=-=-=

2.=α-α2sin 2cos 44 α=α -αα+αcos )2 sin 2)(cos 2sin 2(cos 2222 3. =α+-α-tan 11tan 11α=α -α 2tan tan 1tan 22 4.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+ 例三、若tan = 3,求sin2 cos2 的值。 解:sin2 cos2 = 57 tan 11tan tan 2cos sin cos sin cos sin 22 22222=θ +-θ+θ=θ+θθ-θ+θ 例四、 条件甲:a =θ+sin 1,条件乙:a =θ +θ2 cos 2sin , 那么甲是乙的什么条件? 解:= θ+sin 1a =θ +θ2)2 cos 2(sin 即a =θ +θ|2 cos 2sin | 当 在第三象限时,甲 乙;当a > 0时,乙 甲 ∴甲既不是乙的充分条件,也不是乙的必要条件。 例五、(P43 例一) 已知),2 (,135sin ππ ∈α= α,求sin2,cos2,tan2的值。 解:∵),2 (,135sin ππ ∈α=α ∴1312 sin 1cos 2-=α--=α ∴sin2 = 2sin cos = 169 120 -

高中数学学业水平考试复习必背知识点

高中数学会考复习必背知识点 第一章 集合与简易逻辑 1、含n个元素得集合得所有子集有个 第二章 函数 1、求得反函数:解出,互换,写出得定义域; 2、对数:①:负数与零没有对数,②、1得对数等于0:,③、底得对数等于1:, ④、积得对数:, 商得对数:, 幂得对数:;, 第三章 数列 1、数列得前n 项与:; 数列前n项与与通项得关系: 2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它得前一项得差等于同一个常数; (2)、通项公式: (其中首项就是,公差就是;) (3)、前n项与:1、(整理后就是关于n 得没有常数项得二次函数) (4)、等差中项: 就是与得等差中项:或,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它得前一项得比等于同一个常数,()、 (2)、通项公式:(其中:首项就是,公比就是) (3)、前n项与: (4)、等比中项: 就是与得等比中项:,即(或,等比中项有两个) 第四章 三角函数 1、弧度制:(1)、弧度,1弧度;弧长公式: (就是角得弧度数) 2、三角函数 (1)、定义: y r x r y x x y r x r y ======ααααααcsc sec cot tan cos sin 4、同角三角函数基本关系式: 5、诱导公式:(奇变偶不变,符号瞧象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五: 6、两角与与差得正弦、余弦、正切 : : : : : : 7、辅助角公式:??? ? ?? ++++=+x b a b x b a a b a x b x a cos sin cos sin 2 22222

正余弦公式

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式(上面公式反过来就得到了) sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)] cos(a)cos(b)=12?[cos(a+b)+cos(a-b)] sin(a)cos(b)=12?[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1 -2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的) a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan(c)=ba

两角和与差的正弦、余弦和正切公式word版本

两角和与差的正弦、余弦和正切公式

《两角和与差的正弦、余弦和正切公式》复习学案 自主梳理1.(1)两角和与差的余弦 cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)两角和与差的正弦 sin(α+β)=_____________________________________________, sin(α-β)=_____________________________________________. (3)两角和与差的正切(α,β,α+β,α-β均不等于kπ+π 2,k∈Z) tan(α+β)=_____________________________________________, tan(α-β)=_____________________________________________. 其变形为:tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β).2.辅助角公式:a sin α+b cos α=a2+b2sin(α+φ),其中 ?? ? ??cos φ=, sin φ=, tan φ= b a, 角φ称为辅助角(考试只要求特殊角). 【基础自测】 1.计算sin 43°cos 13°-cos 43°sin 13°的结果等于 () A. 1 2 B. 3 3 C. 2 2 D. 3 2 2.已知cos???? α- π 6+sin α= 43 5,则sin? ? ? ? α+ 7π 6的值是 () A.- 23 5 B. 23 5C.- 4 5 D. 4 5 3.函数f(x)=sin 2x-cos 2x的最小正周期是 () A. π 2B.πC.2πD.4π4.设0≤α<2π,若sin α>3cos α,则α的取值范围是 () A.???? π 3, π 2 B.? ? ? ? π 3,π C.???? π 3, 4π 3 D.? ? ? ? π 3, 3π 2 5.已知向量a r =(sin x,cos x),向量b r =(1,3),则|a r +b r |的最大值为() A.1 B. 3 C.3 D.9 【考点巩固】 探究点1给角求值问题(三角函数式的化简、求值) 例 收集于网络,如有侵权请联系管理员删除

半角的正弦余弦正切公式

半角的正弦、余弦和正切 学习目标: 1.了解由二倍角的变形公式推导半角的正弦、余弦和正切公式的过程; 2. 掌握半角的正弦、余弦和正切公式,能正确运用这些公式进行简单三角函数式的化简、求值和证明恒等式. 学习重点: 掌握半角的正弦、余弦、正切公式的结构特点,灵活用公式. 学习难点:半角与倍角公式之间的内在联系及运用公式时正负号的选取. 知识链接: 1. 复习二倍角的正弦、余弦、正切公式 sin 2α= ; cos 2α= = = ; tan 2α= . 一、预习案: 问题1:若7cos 25α=,且α为锐角,则sin 2 α= , cos 2α = ,tan 2α = . 1?在α-=α2sin 212cos 中,以α代2α,2α代α即得2sin 2 α= 2?在1cos 22cos 2-α=α 中,以α代2α,2α代α即得2cos 2 α= 3?以上结果相除得2tan 2α= 半角公式:sin 2 α= (1) cos 2α= (2) tan 2α = = = (3) 问题2:半角公式的特点及使用公式时应该注意什么问题?

问题3:你能根据上面的公式解答下列问题吗? 1、求值:(1)sin15 (2)cos15 (3)tan 8π 二、学习案: 例1:已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2 的值. 跟踪训练:已知sin φcos φ=60169,且π4<φ<π2 ,求sin φ,cos φ的值. 例2:化简: 1. (1+sin α+cos α)? ????sin α2-cos α22+2cos α (180°<α<360°) 2.cot tan 1tan tan .222αααα????-+? ??????? 跟踪训练: 化简: 1cos sin 1cos sin 1cos sin 1cos sin αααααααα +---+--+-

正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b A R a R R C c B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin = = = ======变形有:为外接圆的半径 三角形的面积公式: A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 ab c b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a 2cos 2cos 2cos cos 2cos 2cos 22222 222 22222222222-+= -+= -+= -+=-+=-+=变形有: 判断三角形的形状: 为锐角三角形 ,为直角角三角形 为钝角三角形 ABC b a c c a b c b a ABC c b a ABC c b a ?+<+<+2222222222 222 22,, 三角形中有: 形为正三角形 成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A C B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+? 两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+ cos()cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n αβα βαβ+=- ()βαβαβαt a n t a n 1t a n t a n t a n +-=- ()tan tan tan 1tan tan αβ αβαβ ++=- 二倍角公式: α α ααβ β ααααα2 22 2 2t a n 1t a n 22t a n 1 c o s 2s i n 21s i n c o s 2c o s c o s s i n 22s i n -= -=-=-== 半角公式:

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

两角和与差的正弦、余弦函数(答案)

课时跟踪检测(二十四) 两角差的余弦函数两角和与差的正弦、 余弦函数 一、基本能力达标 1.已知α∈? ????0,π2,cos α=3 3,则cos ? ????α+π6=( ) A.12-66 B .1-66 C .-12+66 D .-1+6 6 解析:选A ∵α∈? ????0,π2,cos α=33,∴sin α=63, ∴cos ? ????α+π6=cos αcos π6-sin αsin π 6 =33×32-63×12=12-66 . 2.满足cos αcos β=3 2 -sin αsin β的一组α,β的值是 ( ) A .α=13π12,β=3π4 B .α=π2,β=π 3 C .α=π2,β=π6 D .α=π3,β=π 4 解析:选B ∵cos αcos β=3 2 -sin αsin β, ∴cos αcos β+sin αsin β=32,即cos(α-β)=3 2, 经验证可知选项B 正确. 3.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .三者都有可能 解析:选C ∵sin A sin B <cos A cos B , ∴cos A cos B -sin A sin B >0,∴cos(A +B )>0,

∴A +B <90°,∴C >90°,∴△ABC 是钝角三角形. 4.已知3cos x -sin x =-6 5,则sin ? ?? ??π3-x = ( ) A.45 B .-45 C.35 D .-3 5 解析:选D 3cos x -sin x =2? ?? ??sin π3cos x -cos π 3sin x =2sin ? ????π3-x =-65,故sin ? ?? ??π3-x =-3 5. 5.已知0<α<π2<β<π,又sin α=35,sin(α+β)=3 5,则sin β 等于( ) A .0 B .0或2425 C.2425 D .±24 25 解析:选C 由0<α<π2<β<π得,π2<α+β<3π 2 , 又sin α=35,sin(α+β)=35,∴cos α=45,cos(α+β)=-4 5, ∴sin β=sin[(α+β)-α] =sin(α+β)cos α-cos(α+β)sin α=35×45-? ????-45×35=24 25. 6.sin 15°+cos 165°的值是________. 解析:原式=sin(45°-30°)+cos(120°+45°) =sin 45°cos 30°-cos 45°sin 30°+cos 120°cos 45°-sin 120°sin 45° =22×32-22×12-12×22-32×22=-22.答案:-22 7.设a =2cos 66°,b =cos 5°-3sin 5°,c =2(sin 47°sin 66°

二倍角的正弦余弦和正切公式教案

§3.1.3二倍角的正弦、余弦和正切公式(1)教案 珠海市田家炳中学:温世明 一、知识与技能 1. 能从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;理解化归思想在推导中的作用。 2. 能正确运用(顺向、逆向、变形运用)二倍角公式求值、化简、证明,增强学生灵活运用数学知识和逻辑推理能力; 3.揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识,并培养学生综合分析能力. 4.结合三角函数值域求函数值域问题。 二、过程与方法 1.让学生自己由和角公式而导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识. 2.通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力;通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。 三、情感、态度与价值观 1.通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 2.引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质. 四、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 五、学法与教学用具 学法:研讨式教学,多媒体教学; 六、教学设想: (一)复习式导入:大家首先回顾一下两角和(差)的正弦、余弦和正切公式, ()βαβαβαsin sin cos cos cos =±;()βαβαβαsin cos cos sin sin ±=±; ()β αβ αβαtan tan 1tan tan tan ±= ±. (二) 复习练习: (三)公式推导: 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+= ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢 ?

相关文档
相关文档 最新文档