文档库 最新最全的文档下载
当前位置:文档库 › 数列综合讲义

数列综合讲义

数列综合讲义
数列综合讲义

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

(浙江专用)2020版高考数学 数列的综合应用讲义(含解析)

第2课时 数列的综合应用 题型一 数列和解析几何的综合问题 例1 (2004·浙江)已知△OBC 的三个顶点坐标分别为O (0,0),B (1,0),C (0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n ,P n +3为线段 P n P n +1的中点,令P n 的坐标为(x n ,y n ),a n =1 2 y n +y n +1+y n +2. (1)求a 1,a 2,a 3及a n 的值; (2)求证:y n +4=1-y n 4 ,n ∈N * ; (3)若记b n =y 4n +4-y 4n ,n ∈N * ,求证:{b n }是等比数列. (1)解 因为y 1=y 2=y 4=1,y 3=12,y 5=3 4, 所以a 1=a 2=a 3=2, 又由题意可知y n +3= y n +y n +1 2 , 所以a n +1=1 2y n +1+y n +2+y n +3 =12y n +1+y n +2+y n +y n +12 =1 2y n +y n +1+y n +2=a n , 所以{a n }为常数列, 所以a n =a 1=2,n ∈N * . (2)证明 将等式12y n +y n +1+y n +2=2两边除以2得14y n +y n +1+y n +2 2=1. 又因为y n +4= y n +1+y n +2 2 , 所以y n +4=1-y n 4,n ∈N * . (3)证明 因为b n +1=y 4n +8-y 4n +4 =? ????1- y 4n +44-? ?? ?? 1-y 4n 4 =-14(y 4n +4-y 4n )=-1 4b n , 又因为b 1=y 8-y 4=-1 4 ≠0,

最新整理初一数学教案七年级数学上规律探究——数列与循环专题复习讲义(浙教版).docx

最新整理初一数学教案七年级数学上规律探究——数列与循环专题复习讲义(浙教版) 专题:规律探究 重难点易错点解析 例题1 (1)已知一列数:1,4,7,10,13,16,…则该列数中第n个数与第n1个数的差是,这列数中第n个数是;(用含有n的代数式表示) (2)古希腊数学家把1,3,6,10,15,…叫做三角形数,则第16个三角形数与第15个三角形数的差是,第n个三角形数与第n1个三角形数的差是; (3)已知一组数:1,2,3,4,5,6,…则这组数中,第n个数是. 数列的规律 例题2 观察下面算式,用你所发现的规律得出32014的末位数字是. ,,,,… 循环中的规律 金题精讲 题一 QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490,…若某用户的空间积分为1000,则他的等级是第级,该

用户若要升入下一级,还需积分. 数列的规律 题二 下图是某年11月的日历,并且在日历中用一个长方形方框圈出任意的3×3个数.请根据图示,回答下列问题: (1)如果3×3的方框中,左下角与右上角“对角线”上的3个数字的和为42,这9个数的和为多少?这9个日期中最后一天是几号? (2)在这个月的日历中,能否用方框圈出总和为108的9个数?如果能,请求出这9个日期中的最大值;若不能,请推测下个月的日历中,能否用方框圈出,并推测圈出的9个日期中最后一天是周几. 日历中的数列与循环问题 题三 如图所示,电子跳蚤跳一步,可以从一个圆圈跳到相邻的圆圈,现有一只红跳蚤从标有“0”的圆圈开始按顺时针方向跳2050步,落在一个圆圈内;另一只黑跳蚤也从标有“0”的圆圈开始按逆时针方向跳2000步落在一个圆圈内,则这两个圆圈中两数的乘积是_________. 循环中的规律 题四 定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是.已知,,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,……以此类推,a2014=. 循环中的规律 思维拓展

数列专题复习教案设计

年级 数学 科辅导讲义(第 讲) 学生 授课教师: 授课时间: 数列专题复习 题型一:等差、等比数列的基本运算 例1、已知数列}{n a 是等比数列,且4622a a a =,则=53a a ( ) A .1 B .2 C .4 D .8 例2、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( ) A.58 B.88 C.143 D.176 变式 1、等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( ) A.1 B.2 C.3 D.4

2、若等比数列{}n a 满足2412 a a = ,则2 135a a a = . 3、已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。 题型二:求数列的通项公式 ⑴.已知关系式)(1n f a a n n +=+,可利用迭加法(累加法) 例1:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; 变式 已知数列{}n a 满足122a =,12n n a a n +-=,求数列{}n a 的通项公式. (2).已知关系式)(1n f a a n n ?=+,可利用迭乘法(累积法) 例2、已知数列{}n a 满足:111 (2),21 n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; 变式 已知数列{}n a 满足n n a n a 2 1=+,11=a ,求数列{}n a 的通项公式。

数学专题讲义---数列(完整资料)

一. 等差、等比数列的基本理论 ⑴等差、等比数列: ⑵判定一个数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). ⑶判定一个数列是不是等比数列有以下三种方法: ①1(2,)n n a a q n q -=≥为非零常数 ②112-+?=n n n a a a (2≥n ,011≠-+n n n a a a ) ③n n cq a =(q c ,为非零常数). ⑷数列{n a }的前n 项和n S 与其通项n a 之间的关系:???≥-===-)2()1(111n s s n a s a n n n 例1. 在等差数列{}n a 中,972S =。求249?a a a ++= 解:法一:因为9119(91)9936722 S a d a d -=+=+=

所以148a d += 249113123(4)3824a a a a d a d ∴++=+=+=?= 法二:因为91289...72S a a a a =++++= 而19285...2a a a a a +=+== 所以 5972a = 58a ∴= 249533824a a a a ∴++==?= 例2. 在等比数列{}n a 中,11a =,634S S =。求4?a = 解:因为634S S = 所以公比1q ≠(事实上,若1q =,则6166S a ==,3133S a ==此时显然不满足题设条件634S S =) 于是有 6311(1)(1)411a q a q q q --=-- 6314(1)q q ?-=- 又6331(1)(1)q q q -=+- 314q ∴+= 33q ∴= 341133a a q ∴==?= 例3. 在等差数列{}n a 中,535a a =。求95 ?S S = 解:法一:19551513319(91)999(4)992595(51)5(2)555 52a d S a a a d S a d a a a d -+ +====?=?=-++ 法二:因为95539,5S a S a == 所以95553399959555 S a a S a a ==?=?= 例4. 设数列{}n a 满足11a =,12n n a a +=, n *∈N 。求5?a =,8?S = 解:因为12n n a a +=

2020届高三第一轮复习讲义【22】-数列综合1

2020届高三第一轮复习讲义【22】-数列综合1(参数范围问题) 一、同步知识梳理 1、数列求单调性; 令()n f a n =,若()()01>-+n f n f ,则{}n a 递增;()()01<-+n f n f ,递减; 同理,已知0>n a ,令()n f a n =,若()()11>+n f n f ,则{}n a 递增;()() 11<+n f n f ,递减; 2、数列凸凹性; 若221+++≥ n n n a a a ,则{}n a 称之为上凸数列;若2 2 1+++≤n n n a a a ,则{}n a 称之为下凸数列; 上凸数列满足:()* +-∈<<≥≥≥≤≤≤≤N k n k a a a a a a n k k k ,11121ΛΛ,则k a 为最大值; 下凸数列满足:( ) * +-∈<<≤≤≤≥≥≥≥N k n k a a a a a a n k k k ,11121ΛΛ,则k a 为最小值; 3、数列周期性; 对于数列{}n a ,如果存在一个常数T (*T N ∈),使得对任意的正整数0n n >,恒有n T n a a +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列。若01n =,则称数列{}n a 为纯周期数列,若02n ≥,则称数列{}n a 为混周期数列,T 的最小值称为最小正周期,简称周期。周期数列主要有以下性质: ①周期数列是无穷数列,其值域是有限集; ②周期数列必有最小正周期(这一点与周期函数不同); ③如果T 是数列{}n a 的周期,则对于任意的*k N ∈,kT 也是数列{}n a 的周期; ④如果T 是数列{}n a 的最小正周期,M 是数列{}n a 的任一周期,则必有|T M ,即M kT =,*k N ∈; ⑤已知数列{}n a 满足n t n a a +=(,*n t N ∈,t 为常数),,n n S T 分别为{}n a 的前n 项的和与积,若n qt r =+,0r t ≤<, ,*q r N ∈,则n t r S qS S =+,()q n t r T T T =; 常见形式:可参照函数周期性进行类比! 例如:) (1 1)(x f a x f - =+,则()x f 是以a T 3=为周期的周期函数. 则数列:n k n a a 1 1-=+,则{}n a 是以k T 3=为周期的周期数列;

高中数学讲义微专题55 数列中的不等关系

第55炼 数列中的不等关系 一、基础知识: 1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点 2、如何判断数列的单调性: (1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性。由于n N * ∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N * ∈得到数列的单调性 (2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) 3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的 {}{},n n a b 是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识 来进行处理。比如:含n 的表达式就可以看作是一个数列的通项公式;某数列的前n 项和n S 也可看做数列{}12:,,,n n S S S S L 等等。 4、对于某数列的前n 项和{}12:,,,n n S S S S L ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定。进而把问题转化成为判断n a 的符号问题 二、典型例题 例1:已知数列{}1,1n a a =,前n 项和n S 满足()130n n nS n S +-+= (1)求{}n a 的通项公式 (2)设2n n n n c a λ?? =- ??? ,若数列{}n c 是单调递减数列,求实数λ的取值范围 解:(1)()113 30n n n n S n nS n S S n +++-+=? =

数列求和与综合(讲义)

数列求和与综合(讲义) 知识点睛 一、数列求和 1. 公式法: (1)等差数列前n 项和公式; (2)等比数列前n 项和公式. 2. 错位相减法: 适用于形如{}n n a b ?的数列,其中{}n a 是公差为d 的等差数列,{}n b 是公比q ≠1的等比数列. 方法: 设1122n n n S a b a b a b =+++… ① 则12231 n n n qS a b a b a b +=+++… ② ①-②得:11231(1)()n n n n q S a b d b b b a b +-=++++-…,转化为公式法求和. 3. 裂项相消法: 把数列的通项拆分为两项之差,使之在求和时产生前后相互抵消的项的求和方法.常见类型有: (1) 1111 ()()n n k k n n k =-++; (2) 21 111()4122121 n n n =---+; (31 k =; (4)1 log (1)log (1)log a a a n n n +=+-. 4. 其他方法: (1)分解法:分解为基本数列求和,比如数列{}n n a b +,其中{}n a 是等差数列,{}n b 是等比数列. (2)分组法:分为若干组整体求和,经常分为偶数项之和与奇数项之和, 比如通项公式为(1)n n a n =-的数列{}n a . (3)倒序相加法:把求和式倒序后两和式相加,适用于具有对称性质的数列求和. 二、 数列综合 1. 已知n S 求n a 的三个步骤: (1)先利用11a S =,求出1a ;

(2)用1n -替换n S 中的n 得到一个新的关系式, 利用1(2)n n n a S S n -=-≥求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式, 如果符合,则可以把数列的通项公式合写; 如果不符合,则应该分1n =与2n ≥两段来写,即 11 1 2n n n a n a S S n -=?=?-?≥, ,. 2. 非等差或等比数列的转化: (1 )转化为1{} n a 2 {}n a 、1{}n n a a +-等形式的等差、等比数列; (2)形如1=(010)n n a pa q p q ++≠≠,,的数列,转化为等比数列,设1+=()n n a p a λλ++,可解得= 1 q p λ-,则数列{}n a λ+为等比数列; (3)形如11=(010)n n n a pa qp p q +++≠≠,,的数列,转化为等差数列,两端同时除以1n p +,即得11n n n n a a q p p ++-=,则数列{}n n a p 为等差数列. 精讲精练 1. 在数列{}n a 中,1(1)n a n n = +,若它的前n 项和为2 014 2 015 , 则项数n 为( ) A .2 013 B .2 014 C .2 015 D .2 016

高三第一轮复习讲义【24】-数列综合3

2018届高三第一轮复习讲义【24】-数列综合3(简单的参数取整问题) 一、同步知识梳理 1、2个连续正整数的乘积一定是偶数; 2、奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数?偶数=偶数,奇数?偶数=偶数,奇数?奇数=奇数; 3、若正整数n k >,则1+≥n k ,同理:若n k <,则1-≤n k ; 4、若p 、q 、r 分别为三个正整数,且r q p <<,1≥-p q ,2≥-p r ; 5、奇数的平方都可以表示成18+m 的兴衰,偶数的平方可以表示成m 8或48+m 的形式; 6、若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;偶数的平方根若是整数,它必为偶数。 7、平方数的个位数字只可能是0,1,4,5,6,9; 8、偶数的平方数是4的倍数,奇数的平方数被8除余1 9、任何四个连续整数的乘积加1,必定是一个平方数。 10、1°0,1122==→+=n m n m ;2°1,2222==→+=n m n m ;以此类推…… 同理,3的指数也如此:1,2633==→+=y x y x 。 11、()( )1 2 111-++++-=-n n a a a a a ; 12、()() 121212 2+-=-n n n ; 13、质素:有且只有2个素因数,1和身;合数:除了1和本身之外还有第三个因素; 14、被2整除,末尾是2的倍数; 15、被3整除,数字之和是3的倍数; 16、被5整除,末尾数字是0或者5,或者最后2位数字组合为(00,25,50,75); 17、被7整除,①割尾法: 若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。 ②末三法: 这个数的末三位数与末三位以前的数字所组成的数之差(反过来也行)能被7、11、13整除。这个数就能被7、11、13整除。

数列专题讲义二

第2讲 数列求和及数列的简单应用 典型真题: 1.[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√ a n 2 b n ,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 2.[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知 a 1=4, b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k 1,且 a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{ b n }满足b 1=1,数列 {(b n+1-b n )a n }的前n 项和为2n 2+n. (1)求q 的值; (2)求数列{b n }的通项公式. 策略 解决数列解答题 1.解决已知某几个基本量求等差、等比数列的通项公式和前n 项和的问题:

关键一:通过列方程(组)求关键量a1和d(或q). 关键二:利用通项公式和前n项和公式求解. 2.解决数列的递推问题: 关键一:利用a n={S1,n=1, 得出关于a n与a n+1(或a n-1)的递推式. S n-S n-1,n≥2, 关键二:观察递推式的形式,采用不同方法求a n. 3.解决数列求和问题 关键一:利用等差数列、等比数列的前n项和公式. 关键二:利用分组求和法、错位相减法、裂项相消法. 4.(1)等差数列的判断方法:定义法、等差中项法、利用通项公式判断、利用前n项和公式判断. (2)等比数列的判断方法: =q(q是常数且q≠0),则数列{a n}是等比数列. (a)定义法:若a n+1 a n (b)等比中项法:若a n+1 2=a n a n+2(n∈N*),则数列{a n}是等比数列. (c)通项公式法:若a n=pq n(p,q为常数且p,q≠0),则数列{a n}是等比数列. 5.解决关于数列的不等式证明问题常用放缩法,解决数列的最值问题常用基本不等式法. 解答1等差、等比数列基本量的计算 1 已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列. (1)求数列{a n}的通项公式; (2)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.

第10讲 数列单调性问题-新高考数学之数列综合讲义

第10讲 数列单调性问题 一.选择题(共3小题) 1.已知数列{}n a 与{}n b 满足113()n n n n b b a a ++-=-,* n N ∈,在数列{}n a 中,2 163 n n a n =-,设数列{}n b 中 的最小项是第k 项,则k 等于( ) A .30 B .28 C .26 D .24 【解析】解:数列{}n a 与{}n b 满足113()n n n n b b a a ++-=-,* n N ∈,在数列{}n a 中,2 163n n a n =-, ∴叠加可得2147 3(16)33 n n b b n -=-+, 21(24)529n b n b ∴=--+, 24n ∴=,n b 最小, 故选:D . 2.在数列{}n a 中,22293n a n n =-++,则此数列最大项的值是( ) A .103 B . 865 8 C . 825 8 D .108 【解析】解:22293n a n n =-++对应的抛物线开口向下,对称轴为29291 72244 n =- ==-?, n 是整数, ∴当7n =时,数列取得最大值,此时最大项的值为27272973108a =-?+?+=, 故选:D . 3.设函数6(3)3,7 (),7x a x x f x a x ---?=?>? ,数列{}n a 满足()n a f n =,n N +∈,且数列{}n a 是递增数列,则实数a 的 取值范围是( ) A .(1,3) B .(2,3) C .9 (,3)4 D .(1,2) 【解析】解:函数6(3)3,7 (),7x a x x f x a x ---?=?>? , 数列{}n a 满足()n a f n =,n N +∈,且数列{}n a 是递增数列 ∴2130187a a a a >??->??>-?,解得:1 32,9a a a a >??<-? 或,

高中数学讲义微专题52 证明等差等比数列

微专题52 等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+ (等差) 2 12n n n a a a ++=? (等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 112133n n a a +=+,在考虑构造“1-”:112111 111333n n n a a a +??-=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列 思路二:代入法:将所证数列视为一个整体,用n b 表示:1 1n n b a = -,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换

高三数列专题复习讲义

高三数学二轮讲义:数列(1) 班级 姓名 1.已知等差数列}{n a 的公差为1,且9999=S ,则99963a a a a ++++ 等于( ) A .77 B .66 C .33 D .0 2.已知f (x )是偶函数,且)2()2(x f x f -=+,当-2≤x ≤0时,f (x )=2x ,若* N n ∈,)(n f a n =, 则=2007a ( ) A .2007 B .12 C .1 4 D .2 3.设等比数列}{n a 的公比为q ,前n 项和为n S ,若1+n S ,n S ,2+n S 成等差数列,则q 的值为 . 4.已知数列}{n a 的首项2 11=a ,n S 是其前n 项的和,且满足n n a n S 2 =,则此数列}{n a 的通项 公式为=n a . 5.设数列}{n a 的前n 项和2 n S n =,且n n n a b 3 =,记数列}{n b 的前n 项和为n T . (1)求数列}{n a 的通项公式; (2)求证:n T <1. 6.某地现有居民住房的总面积为a m 2,其中需要拆除的旧住房面积占了一半.当地有关部门决定在每年拆除一定数量旧住房的情况下,仍以10%的住房增长率建设新住房,计划10年后该地的住房总面积正好比目前翻一番. (1)试问每年应拆除的旧住房总面积x 是多少? (2)过10年还未拆除的旧住房总面积占当时住房总面积的百分比是多少?(保留到小数点后第一位)? 7.已知数列}{n a 的首项15,a =前n 项和为n S ,且)(52* 1N n n S S n n ∈++=+. (1)证明:数列{}1n a +是等比数列; (2)令212()n n f x a x a x a x =++ +,求函数()f x 在点1x =处的导数(1)f ',并比较2(1)f '与 22313n n -的大小.

必修五数列综合复习——高一数学讲义

高一数学 数列综合 知识点1. 数列的相关基本概念 数列:按照一定顺序排列着的一列数。(有穷数列,无穷数列)(数列{}n a ) 数列中的每一个数叫做项。 递增数列:d > 0 递减数列:d,< 0 常数列:d = 0 摆动数列 数列表示法: (1)通项公式:数列{}n a 的第n 项与序号n 之间的关系可用一个式子来表示。 (2)递推公式:若已知前项且任一项n a 与其他项之间的关系可用一式子表示的公式 (注意:有的数列无通项公式 有的数列有多个通项公式) 知识点2. 等差数列 等差数列:若一个数列从第二项起,每一项与它前一项的差为常数的数列。 等差中项:如,a ,A , b 组成等差数列可看成最简单的的等差数列,则A 为a ,b 的等差中项。 等差数列的通项公式: 1(1),()n n m a a n d a a n m d =+-=+- 知识梳理

知识点3.等差数列的相关应用和性质 1.等差数列的判定: (1)d a a n n =-+1(常数)?{}n a 是等差数列 (2)b kn a n +=(b,k 为常数)?{}n a 是等差数列 (3)212+++=n n n a a a (n ∈* N )?{}n a 是等差数列 2.等差数列的常用设法: (1)若有3个数成等差数列?(一般设为)b a a b a +-,, (2)若有4个数成等差数列?d a d a d a d a 3,,,3++-- 3.常用性质:(若{}n a 数列,d 公差) (1)0d >,递增数列;0

第12讲 数列周期性问题-新高考数学之数列综合讲义

第12讲 数列周期性问题 一.选择题(共7小题) 1.已知数列{}n a 满足13a =,28a =,2n a +等于1n n a a +的个位数,则2020(a = ) A .2 B .4 C .6 D .8 【解析】解:13a =,28a =,2n a +等于1n n a a +的个位数, 34a ∴=,42a =,58a =,66a =,78a =,88a =,94a =,? ∴该数列从第二项起构成周期为6的周期数列, 202042a a ∴==. 故选:A . 2.已知数列{}n a 满足:*11(2,)n n n a a a n n N +-=-∈,11a =,22a =,n S 为数列{}n a 的前n 项和,则2019(S = ) A .3 B .4 C .1 D .0 【解析】解:*11(2,)n n n a a a n n N +-=-∈,11a =,22a =, 可得3211a a a =-=,4121a =-=-,5112a =--=-,6211a =-+=-, 7121a =-+=,8112a =+=,?,可得数列{}n a 为周期6的数列, 且1260a a a ++?+=,则2019126123336()01214S a a a a a a =++?++++=+++=. 故选:B . 3.数列{}n a 满足12a =,111 1 n n n a a a ++-=+,其前n 项的积为n T ,则2020(T = ) A .1 B .6- C .2 D .3 【解析】解:由12a =,111 1 n n n a a a ++-=+, 可得111n n n a a a ++=-, 则212312a += =--,3131 132 a -==-+, 41 1121312a - ==+,51132113 a + ==-,6 12312a +==--,?, 可得数列{}n a 是周期为4的数列,且12341a a a a =, 而20205054=?,

专题:数列求和讲义

专题:数列求和 (一)主要知识: 1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式S n =???? ?na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.(切记:公比含字母时一定要讨论) 2.公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和. 222221 (1)(21) 1236 n k n n n k n =++=+++ += ∑ 2 3 333 3 1 (1)1232n k n n k n =+??=+++ +=? ???∑ 3.倒序相加法:类似于等差数列的前项和的公式的推导方法,如果一个数列{}n a 的前项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法,如等差数列的前项和公式即是用此法推导的. 4.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求,如等比数列的前项和公式就是用此法推导的. 若,其中是等差数列,是公比为等比数列,令 , 则 两式错位相减并整理即得. 5.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似 (其中 是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法 (1),特别地当时,; n n n n n n n

数列综合讲义

数列 数列的概念与简单表示法 一、数列的概念 按一定顺序排列的一列数,叫做数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项.所以 数列的一般形式可以写成,??n a a a a ,,,321简记为{}n a 注:①项与项之间用“,”隔开; ②{}n a 与n a 是两个不同的概念:{}n a 表示数列,??n a a a a ,,,321而n a 只表示数列{}n a 的第n 项; ③数列与数集是两个不同的概念:数列中的数是有顺序的,且同一个数在一个数列中可以重 复出现;数集中的元素具有无序性和互异性; 二、数列的表示 1.列举法:将每一项按一定顺序一一列举出来表示数列的方法. 2.图象法:在坐标系中描出(n ,an) 这些孤立的点. 3.通项公式法:a n =f(n) .n ∈N * . 4.递推公式法:给出数列{a n }的第1项(或前几项)及之后各项与它相邻的前一项(或前几项) 之间的关系式来表示数列. 四、数列的通项公式 1.数列与函数的关系 数列可以看成以正整数集*N (或它的有限子集{ }n ?,2,1)为定义域的函数a n =f(n),当自变量按照从小到大的顺序依次取值时,所对应的一列函数值.反过来,对于函数y=f(x),如 果f(i)(i=1,2,3,…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n),… ①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想来解题; ②数列的特殊性:由于它的定义域是* N 或它的有限子集,所以数列的图像是一系列孤立的点;

高中数学专题讲义:高考中的数列问题的热点题型

高中数学专题讲义:高考中的数列问题的热点题型 高考导航 对近几年高考试题统计看,全国卷中的数列与三角基本上交替考查,难度不大.考查内容主要集中在两个方面:一是以选择题和填空题的形式考查等差、等比数列的运算和性质,题目多为常规试题;二是等差、等比数列的通项与求和问题,有时结合函数、不等式等进行综合考查,涉及内容较为全面,试题题型规范、方法可循. 热点一 等差数列、等比数列的综合问题 解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用. 【例1】 已知首项为3 2的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式; (2)设T n =S n -1 S n (n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3 =1 4. 又{a n }不是递减数列且a 1=3 2, 所以q =-1 2 . 故等比数列{a n }的通项公式为a n =32×? ????-12n -1 =(-1)n -1·3 2n .

(2)由(1)得S n =1-? ???? -12n =?????1+12n ,n 为奇数,1-1 2n ,n 为偶数, 当n 为奇数时,S n 随n 的增大而减小, 所以1S n -1S n ≥S 2-1S 2=34-43=-7 12. 综上,对于n ∈N *, 总有-712≤S n -1S n ≤5 6. 所以数列{T n }最大项的值为56,最小项的值为-7 12. 探究提高 解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口. 【训练1】 (2017·济南模拟)已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列? ?????????1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1 b k 成立?若 存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴?????? ? ???5a 1+5×42d -2(a 1+d )=25, (a 1+3d )2=a 1(a 1+12d ), 解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9, ∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:

新高考数学考点20 数列的综合运用考点分类讲义练习题附解析3

考点20 数列的综合运用 1、掌握数列求和以及数列通项的一些常用的方法和技巧 2、掌握数列与不等式、函数的综合性问题的解决策略 3、掌握数列有关的证明以及参数 4、掌握与数列有关的定义型问题 5、纵观全国或者各地区的高考试题,数列的地位尤为突出,在许多地区出现在压轴题的位置,所涉及的知识点和题型主要为:1、数列与不等式、函数的综合性问题,2、数列有关的证明以及含参问题,3、与数列有关的定义型问题 数列在高考中主要体现在中档题和压轴题中,中档题主要考察数列的基本量等问题,压轴题体现在1、数列与不等式、函数的综合性问题,2、数列有关的证明以及含参问题,3、与数列有关的定义型问题等问题中,因此在平时复习中掌握常见题型的解题思路。 1、【2018年高考江苏卷】已知集合* {|21,}A x x n n ==-∈N ,* {|2,}n B x x n ==∈N .将A B 的所有 元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 2、【2020年全国2卷】0-1周期序列在通信技术中有着重要应用.若序列12 n a a a 满足{0,1}(1,2,)i a i ∈=, 且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12 n a a a ,1 1()(1,2, ,1)m i i k i C k a a k m m +===-∑ 是

第15讲 创新型数列问题-新高考数学之数列综合讲义

第15讲 创新型数列问题 一.选择题(共5小题) 1.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( ) A .10日 B .20日 C .30日 D .40日 【解析】解:设此数列为等差数列{}n a ,15a =,1n a =,90n S =. ∴ (15) 902 n ?+=,解得30n =. 故选:C . 2.著名的斐波那契数列{}:1n a ,1,2,3,5,8,?, 满足121a a ==,21n n n a a a ++=+,*n N ∈,若2020 211k n n a a -==∑,则(k = ) A .2020 B .4038 C .4039 D .4040 【解析】解:根据题意斐波那契数列{}n a 中:满足121a a ==,21n n n a a a ++=+,*n N ∈, 当n 为奇数时,11232462411n n n n n n n n n n n n n a a a a a a a a a a a a a a +--------=+=++=+++=?=+++?++. 则2020 21354039404011k n n a a a a a a -===+++?+=∑. 所以4040k =. 故选:D . 3.已知数列{}n a 满足11a =-,1|1|21n n n a a a +=-++,其前n 项和为n S ,则下列说法正确的个数为( ) ①数列{}n a 是等差数列; ②数列{}n a 是等比数列; ③23n n a -=; ④1332 n n S --=. A .0 B .1 C .2 D .3 【解析】解:数列{}n a 满足11a =-,1|1|21n n n a a a +=-++,可得21a =,33a =,49a =,所以数列不是等差数列,也不是等比数列,所以①②③不正确; 当2n 时,111 133311393 1132n n n n S -----=-++++?+=-+= -,当1n =时,也满足表达式,所以133 2 n n S --=,

相关文档
相关文档 最新文档