文档库 最新最全的文档下载
当前位置:文档库 › Received () Revised ()

Received () Revised ()

Received () Revised ()
Received () Revised ()

GLASSY STATES IN A SHAKEN SANDBOX

PETER F.STADLER

Institut f¨u r Theoretische Chemie und Molekulare Strukturbiologie,

Universit¨a t Wien,W¨a hringerstra?e17,A-1090Wien,Austria;and

The Santa Fe Institute,1399Hyde Park Rd.,Santa Fe NM87501,USA

ANITA MEHTA

S N Bose National Centre for Basic Sciences,Block JD Sector3,Salt Lake,Calcutta700098,

India;and

ICTP,Strada Costiera11,I-34100Trieste,Italy

JEAN-MARC LUCK

Service de Physique Th′e orique(URA2306of CNRS),CEA Saclay,

91191Gif-sur-Yvette cedex,France

Received()

Revised()

Our model of shaken sand,presented in earlier work,has been extended to include a more realistic‘glassy’state,i.e.,when the sandbox is shaken at very low intensities of vibration.We revisit some of our earlier results,and compare them with our new results on the revised model.Our analysis of the glassy dynamics in our model shows that a variety of ground states is obtained;these fall in two categories,which we argue are representative of regular and irregular packings.

1.Introduction

The test of a good lattice model of a complex system is whether it succeeds in capturing the essential physics of a real system in its bid to reduce its technical complexity.Areas as diverse as tra?c?ow[10],plate tectonics[12,13]and granular ?ow[28]are examples where lattice models have been used rather successfully despite their apparent simplicity,to describe at least a few of the salient features of some genuinely complex systems.

In this spirit,we present two versions of a model of shaken sand in the following; both models exhibit behaviour that is representative of shaken sand between the ?uidised and the glassy regimes.While the second model includes rather complex interactions between the‘grains’in the frozen state,in contrast to the?rst,the latter is nevertheless surprisingly successful in replicating at least some of the qualitative features associated with the glassy regime.One of the aims of this contribution is then to identify some of the essential features that are needed for a(discrete)

1

2Peter F.Stadler,Anita Mehta,Jean-Marc Luck

minimal model of the system in question.

The earlier model(‘old model’)[32]is the generalisation of a cellular-automaton (CA)model[4,28]of an avalanching sandpile.This model shows both fast and slow dynamics in the appropriate regimes:in particular,it reduces to an exactly solvable model of noninteracting grains in the frozen(‘glassy’)regime,and provides one with a toy model for ageing in vibrated sand[9,24].

Next,we present a more realistic version of the model(‘new model’)[26],which is the topic of ongoing research.While identical in the?uidised regime,the latter model is less of a toy model for the glassy state,in that the grains are no longer non-interacting,but are coupled to each other based on their orientations.Our analysis shows that a rich variety of ground states is obtained,which we analyse in terms of a particular parameter that has an interpretation in terms of the irregularity of the grains.

2.The Model

We consider a rectangular lattice of height H and width W with N≤HW grains located at the lattice points,shaken with vibration intensityΓ.Each grain is a rectangle with sides1and a≤1,respectively.Consider a grain(i,j)in row i and column j whose height at any given time is given by h ij=n ij?+an ij+,where n ij?is the number of vertical grains and n ij+is the number of horizontal grains below(i,j).

The dynamics of the model are described by the following rules:

(i)If lattice sites(i+1,j?1),(i+1,j),or(i+1,j+1)are empty,grain

(i,j)moves there with a probability exp(?1/Γ),in units such that the

acceleration due to gravity,the mass of a grain,and the height of a lattice

cell all equal unity.

(ii)If the lattice site(i?1,j)below the grain is empty,it will fall down.

(iii)If lattice sites(i?1,j±1)are empty,the grain at height h ij will fall to either lower neighbour,provided the height di?erence h ij?h i?1,j±1≥2.

(iv)The grain?ips from horizontal to vertical with probability exp(?m ij(?H+?h)/Γ),where m ij is the mass of the pile(consisting of grains of unit

mass)above grain(i,j).For a rectangular grain,?H=1?a is the height

di?erence between the initial horizontal and the?nal vertical state of the

grain.Similarly,the activation energy for a?ip reads?h=b?1,where

b=

Glassy states in a shaken sandbox3

Fig.1.Snapshots of a sandbox with W=30,H=100,n=2500grains with a=0.7,?h=0.05, and shaking intensitiesΓ=0.1(top row:glassy regime)and0.8(bottom row:?uidised regime), for times t=1(before tapping),t=2(each grain on average touched once by the MC simulation), t=5,10,30,and100.

are the mechanism for each particle to?nd local stability.In related work[7,8], this was associated with a threshold,called the single particle relaxation threshold (SPRT).

In line with recent investigations of compaction[1,2,3,11,16,19,20,27,30,31],we have examined the behaviour of the packing fraction of our model,as a function of the vibration intensityΓ.Let N?and N+be the numbers of vertical and horizontal grains in the box.The packing fractionφis:

N+?aN?

φ=

4Peter F.Stadler,Anita Mehta,Jean-Marc Luck

3.A Spin-Model for the Ordered Regime

The frozen regime is characterised by an absence of holes within the sandbox,and negligible surface roughness.Here,the earlier model[32]reduces to an exactly solvable model of W independent columns of H noninteracting grain orientations σn(t)=±1,withσ=+1denoting a horizontal grain,andσ=?1denoting a vertical grain.The orientation of the grain at depth n,measured from the top of the system,evolves according to a continuous-time Markov dynamics,with rates

w(?→+)=exp(?n?h/Γ),

(3.1)

w(+→?)=exp(?n(?H+?h)/Γ),

as m ij=n=H+1?i.The parameters?H and?h correspond to two characteristic lengths of the model,

ξeq=Γ/?H,ξdyn=Γ/?h.(3.2) The equilibrium lengthξeq is the typical depth below which all grains are frozen into their horizontal ground-state orientation,while the dynamical lengthξdyn is characteristic of the divergence of the relaxation time with depth,τ~exp(n/ξdyn). As a consequence,any perturbation propagates only logarithmically slowly down the system,over an ordering lengthΛ(t)≈ξdyn ln t.

The detailed analysis of this model in earlier work,despite its‘toy model’nature, was remarkably successful in reproducing certain features of the glassy state.In this work,we present an improved version where the spins are no longer noninteracting, in the frozen regime.They are in fact coupled in a rather complex way;these more realistic interactions lead to a rich variety of ground states depending on the analogue of the aspect ratio a,which we argue is representative of the shape of the grains.We present this model in the next section.

4.A Generalisation

The generalisation of our earlier model involves the insertion of eq.(2.1)into the transition rates of the system.We thus require that,for a given value of a,the transitions are such that the packing fraction of the system is locally minimised. We now allow a to take arbitrary values(while always remaining positive):1?a can then be visualised as the size of the‘void’associated with the‘wrong’orientation of the grain.For convenience,we write these rules in a more general form below.

Thus,the dynamical rules(iv)and(v)of the rectangular grain model may be regarded as a special case of a more general model with transition rates

w(?→+)=exp(?(λij+ηij)/Γ),

w(+→?)=exp(?(λij?ηij)/Γ),(4.1) where

ηij=Am ij++Bm ij?,λij=Cm ij++Dm ij?,(4.2)

Glassy states in a shaken sandbox5 are,respectively,the ordering?eld and the activation energy felt by grain(ij).In these expressions,m ij±is the number of horizontal and vertical grains above the grain(i,j),respectively.Note that grains are only counted from(i,j)to the?rst void above level j.Thus m ij=m ij++m ij?.

The earlier model is recovered by setting

A=B=?H/2,C=D=?H/2+?h.(4.3) In the general situation where the equalities A=B,C=D are not obeyed, the rates(4.1)depend on the orientations of all the grains above the grain under consideration.Our new model is therefore a fully directed model of interacting grains,where causality acts both in time and in space,as the orientation of a given grain only in?uences the grains below it and at later times.

The key parameter which governs the statics and dynamics of the model at low shaking intensity turns out to be the dimensionless ratioε=A/B.Consider the ordered regime,where there are no holes,in the zero-temperature limit(Γ→0). In this regime,the steady-state values of the grain orientations are given by the deterministic,recursive equation

σn=sign(εn+(n)+n?(n)),(4.4) where n±(n)is the number of horizontal and vertical grains at depths0,...,n?1, so that n+(n)+n?(n)=n=1,2,...We assumeσ0=+1.

As long asε≥0,(4.4)leads to the trivial ground state where all the grains are horizontal(σn=+1),generalising thus the case of the earlier model(ε=1).

In the frustrated regime(ε<0),ground states have a richer structure.They contain non-trivial fractions of horizontal and vertical grains,

f+=1/(1?ε),f?=?ε/(1?ε).(4.5) The grain orientations are distributed in a way which depends,rather unexpectedly, on whetherεis rational or not.

?Rational case:ifε=?p/q is a negative rational number(in irreducible

form),(4.4)determines the grain orientationσn whenever the depth n is

not a multiple of r=p+q.The orientations of the latter grains are left free.

We thus obtain an extensively degenerate set of ground states,each of them

being a random sequence of two types of r-mers,i.e.,clusters of r grains.

The associated con?gurational entropy per grain readsΣ=(ln2)/r.The

simplest example isε=?1,hence r=2and f?=1/2,where the clusters

are+?and?+,so that the ground states are all the dimerised grain

con?gurations.Two examples consist of trimers(r=3),namelyε=?1/2,

with f?=1/3and clusters+?+and?++,andε=?2,with f?=2/3

and clusters+??and?+?.

?Irrational case:ifεis a negative irrational number,(4.4)determines all

the grain orientations,so that the model admits a unique,non-degenerate

6Peter F.Stadler,Anita Mehta,Jean-Marc Luck

ground state,where the grain orientations are distributed in a quasiperi-

odic fashion.The rule(4.4)is indeed equivalent to the cut-and-project algo-

rithm used to build quasiperiodic binary chains,which are one-dimensional

analogues of perfect quasicrystals[15,17,18,21,22,23,25].For instance,for

?ε=(√

0.7in each case.For the old model(left),A=B=0.35,C=D=0.4,while for the new model (right)A=?0.2,B=C=D=0.4.The shaking intensities are,for bottom to top,Γ=0.3(old model only),0.5,0.8,1,1.5,2,5,and10.

jamming limitφjam,identi?ed with a dynamical phase transition in related work[6].

While we have presented in earlier work[32]a full analysis of two-time correla-tion functions for the old model,work is currently in progress to investigate this in the rather more complex new model.

We?nally investigate the analogue of‘annealed cooling’,whereΓis increased and decreased cyclically,and the response of the packing fraction observed[30,31]. The results obtained here are similar to those[5]seen using more realistic models of shaken spheres,but the simplicity of the present lattice-based models allows for a greater transparency.

Starting with the sand in a?uidised state,as in the experiment[30,31],we submit the sandbox to taps at a given intensityΓfor a time t tap and increase the intensity in steps ofδΓ;at a certain point,the cycle is reversed,to go from higher to lower intensities.The entire process is then iterated twice.Fig.3shows the resulting behaviour of the volume fractionφas a function ofΓ,where an‘irreversible’branch and a‘reversible’branch of the compaction curve are seen,which meet at the ‘irreversibility point’Γ?[30,31].The left-and right-hand side of Fig.3correspond respectively to high and low values of the‘ramp rate’δΓ/t tap[30,31],while the upper and lower panels correspond respectively to the old and new versions of our model.As the ramp rate is lowered,we note that:

?the width of the hysteresis loop in the so-called reversible branch decreases,

in both cases.The‘reversible’branch is thus not reversible at all;more

realistic simulations of shaken spheres[2,3,27]con?rm the?rst-order,irre-

versible nature of the transition,which allows the density to attain values

pointΓ?to the‘shoulder’Γjam,as the ramp rateδΓ/t tap is lowered.The packing fraction tends to its close-packing limit in the limit of low intensities for the old model,while it asymptotes towards the jamming limit for the new model(see text).

that are substantially higher than random close packing,and quite close to

the crystalline limit[29].Precisely such a transition has also recently been

observed experimentally in the compaction of rods[34].

?In both panels,the‘irreversibility point’Γ?approachesΓjam(the shaking

intensity at which the jamming limitφjam is approached),in agreement

with results on other discrete models[14].However,in the upper panel,

the packing fraction at low intensities tends towards close-packing(the so-

called dynamical transition referred to in[8]);this is at odds with the results

of real experiment,which models with a greater degree of complexity[7]

have been able to replicate.In the lower panel,which corresponds to our

new model,we see tentative indications of an improvement in this respect

vis-a-vis the old model;the packing fraction here asymptotes towards the

jamming limit,rather than rising inde?nitely towards the close-packing

limit[7,30].

6.Discussion

We have presented in the above two models of shaken sandboxes;while their design was such that they would show identical behaviour in regimes where there were a ?nite density of voids,the modelling of the densely packed regime was completely

Glassy states in a shaken sandbox9 distinct in each case.In the?rst case,the model reduced to a model of noninteract-ing spins,while in the second,the insistence that all allowed transitions minimised a suitably de?ned local packing fraction led in fact to an intricate coupling between the grains.This physically motivated interaction was extremely nonlocal as well as directional.In this way we were able to generate a model that,despite being one-dimensional,has an extremely complex ground-state structure,depending on the regularity of the grain shape.Our present investigations,to be published else-where[26],concern the e?ect of zero-temperature and?nite-temperature tapping of this system;our preliminary studies indicate that for regularly shaped grains, strong metastability in the achievable ground states is observed.For irregularly shaped grains,as in reality,a far better packing is achievable,since orientations of irregularly shaped grains are much better able to?ll space[33].

It is however a rather salutary exercise to see that despite the relative sophis-tication of the new model in its inclusion of non-trivial interactions,most of the qualitative behaviour of the packing fraction as a function of steady as well as annealed tapping,remains unchanged.We expect that quantitative features such as two-time correlation functions will be far more non-trivial in the second model than the?rst,although we expect their overall features to be rather similar.It is tempting to speculate that the directionality due to gravity(which leads to strongly non-Hamiltonian behaviour,since grain couplings are propagating down the pile) which unites both?rst and second models might well be the most important ingre-dient that is needed to describe such lattice-based models of shaken sand. References

[1]Aradian A.,Rapha¨e l E.,and de Gennes P.G.Thick surface?ows of granular materials:

E?ect of the velocity pro?le on the avalanche amplitude.Phys.Rev.E,60,2009–2019 (1999).

[2]Barker G.C.and Mehta A.Vibrated powders–structure,correlations and dynamics.

Phys.Rev.A,45,3435–3446(1992).

[3]Barker G.C.and Mehta A.Transient phenomena,self-di?usion and orientational

e?ects in vibrated powders.Phys.Rev.E,47,184–188(1993).

[4]Barker G.C.and Mehta A.Avalanches at rough surfaces.Phys.Rev.E,61,6765–6772

(2000).

[5]Barker G.C.and Mehta A.Inhomogeneous relaxation in vibrated granular media:

consolidation waves(2001).Phase Transitions,to appear;cond-mat/0010268.

[6]Berg J.M.and Mehta A.See contribution in this volume.

[7]Berg J.M.and Mehta A.Glassy dynamics of granular compaction:Sand on random

graphs(2001).Phys.Rev.E,to appear;cond-mat/0108225.

[8]Berg J.M.and Mehta A.On random graphs and the statistical mechanics of granular

matter(2001).Europhys.Lett.,to appear;cond-mat/0012416.

[9]Berthier L.,Cugliandolo L.F.,and Iguain J.L.Glassy systems under time-dependent

driving forces:Application to slow granular rheology.Phys.Rev.E,63,051302(2001).

[10]Biham O.,Middleton A.A.,and Levine D.Self-organization and a dynamical transi-

tion in tra?c-?ow models.Phys.Rev.A,46,R6124–6127(1992).

[11]Boutreux T.,Rapha¨e l E.,and de Gennes P.G.Surface?ows of granular materials:A

modi?ed picture for thick avalanches.Phys.Rev.E,58,4692–4700(1998).

10Peter F.Stadler,Anita Mehta,Jean-Marc Luck

[12]Burridge R.and Knopo?L.Model and theoretical seismicity.Bull.Seis.Soc.Am.,

57,341–371(1967).

[13]Carlson J.M.and Langer J.S.Mechanical model of an earthquake fault.Phys.Rev.

A,40,6470–6484(1989).

[14]Coniglio A.and Nicodemi M.The jamming transition of granular media.J.Phys.

Cond.Matt.,12,6601–6610(2000).

[15]de Bruijn N.G.Sequences of zeros and ones generated by special production rules.

Nederl.Akad.Wetensch.Proc.A,84,27–37(1981).

[16]de Gennes P.G.Tapping of granular packs:A model based on local two-level systems.

J.Coll.Int.Sci.,226,1–4(2000).

[17]Duneau M.and Katz A.Quasiperiodic patterns.Phys.Rev.Lett.,54,2688–2691

(1985).

[18]Duneau M.and Katz A.Quasiperiodic patterns and icosahedral symmetry.J.Phys.

(France),47,181–196(1986).

[19]Edwards S.F.The role of entropy in the speci?cation of a powder(1994).In Granular

Matter:An Interdisciplinary Approach,ed.A.Mehta(Springer-Verlag,New York).

[20]Edwards S.F.and Grinev D.V.Statistical mechanics of vibration-induced compaction

of powders.Phys.Rev.E,58,4758–4762(1999).

[21]Elser V.Indexing problems in quasicrystal di?raction.Phys.Rev.B,32,4892–4898

(1985).

[22]Kalugin P.A.,Kitayev A.Y.,and Levitov L.S.Al0.86Mn0.14:A six-dimensional crys-

tal.J.E.T.P.Lett.,41,145–149(1985).

[23]Kalugin P.A.,Kitayev A.Y.,and Levitov L.S.Six-dimensional properties of Al0.86

Mn0.14alloy.J.Phys.(France)Lett.,46,L601–L607(1985).

[24]Kurchan J.Emergence of macroscopic temperatures in systems that are not thermo-

dynamical microscopically:towards a thermodynamical description of slow granular rheology.J.Phys.Cond.Matt.,12,6611–6617(2000).

[25]Luck J.M.,Godr`e che C.,Janner A.,and Janssen T.The nature of the atomic surfaces

of quasiperiodic self-similar structures.J.Phys.A,26,1951–1999(1993).

[26]Luck J.M.,Stadler P.F.,and Mehta A.(2001).

[27]Mehta A.and Barker G.C.Vibrated powders–a microscopic approach.Phys.Rev.

Lett.,67,394–397(1991).

[28]Mehta A.and Barker G.C.Disorder,memory and avalanches in sandpiles.Europhys.

Lett.,27,501–506(1994).

[29]Mehta A.and Barker G.C.Glassy dynamics of granular compaction.J.Phys.Cond.

Matt.,12,6619–6628(2000).

[30]Nowak E.R.,Knight J.B.,Ben-Naim E.,Jaeger H.M.,and Nagel S.R.Density?uc-

tuations in vibrated granular materials.Phys.Rev.E,57,1971–1982(1998). [31]Nowak E.R.,Knight J.B.,Povinelli M.,Jaeger H.M.,and Nagel S.R.Reversibility

and irreversibility in the packing of vibrated granular material.Powder Technology, 94,79–83(1997).

[32]Stadler P.F.,Mehta A.,and Luck J.M.Shaking a box of sand(2001).Cond-

mat/0103076.

[33]Torquato S.and Chaikin P.(unpublished).

[34]Villarruel F.X.,Lauderdale B.E.,Mueth D.M.,and Jaeger https://www.wendangku.net/doc/0b12372522.html,paction of rods:

Relaxation and ordering in vibrated,anisotropic granular material.Phys.Rev.E,61, 6914(2000).

[35]Weeks E.R.,Crocker J.C.,Levitt A.C.,Scho?eld A.,and Weitz D.A.Three-dimen-

sional direct imaging of structural relaxation near the colloidal glass transition.Sci-ence,287,627–631(2000).

一榀框架结构荷载计算书

毕业设计 题目一榀框架计算书 班级土木工程2006级高本学生姓名孟凡龙 指导老师

2011.5 摘要 本工程为济南某综合教学楼楼,主体三层,钢筋混凝土框架结构。梁板柱均为现浇,建筑面积约为3000m2,宽35米,长为60米,建筑方案确定。建筑分类为乙类公共类建筑,二类场地,抗震等级三级。 .

目录 第一章框架结构设计任务书 (1) 1.1工程概况 (1) 1.2设计资料 (2) 1.3设计内容 (2) 第二章框架结构布置及结构计算图确定 (2)

2.1梁柱界面确定 (2) 2.2结构计算简图 (2) 第三章荷载计算 (5) 3.1恒荷载计算: (5) 3.1.1屋面框架梁线荷载标准值 (5) 3.1.2楼面框架梁线荷载标准值 (5) 3.1.3屋面框架节点集中荷载标准值 (6) 3.1.4楼面框架节点集中荷载标准值 (7) 3.1.5恒荷载作用下结构计算简图 (8) 3.2活荷载标准值计算 (9) 3.2.1屋面框架梁线荷载标准值 (9) 3.2.2楼面框架梁线荷载标准值 (9) 3.2.3屋面框架节点集中荷载标准值 (9) 3.2.4楼面框架节点集中荷载标准值 (10) 3.2.5活荷载作用下的结构计算简图 (10) 3.3风荷载计算 (11) 第四章结构内力计算 (15) 4.1恒荷载作用下的内力计算 (15) 4.2活荷载作用下的内力计算 (25) 4.3风荷载作用下内力计算 (33) 第五章内力组合 (34) 5.1框架横梁内力组合 (38) 5.2柱内力组合 (46) 第六章配筋计算 (60) 6.1梁配筋计算 (60) 6.2 柱配筋计算 (75) 6.3楼梯配筋计算 (80) 6.4基础配筋计算 (84) 第七章电算结果 (80) 7.1结构电算步骤 (86) 7.2结构电算结果 (87) 参考文献 (112)

最实用、最简单英语口语

最实用最简单的英语口语Any day will do?哪一天都可以? Any messages for me?有我的留言吗? Are you by yourself?你一个人来吗? All right with you?你没有问题吧? Are you free tomorrow?明天有空吗? Are you kidding me?你在跟我开玩笑吧? As soon as possible!尽可能快! Back in a moment!马上回来! Believe it or not!信不信由你! Better luck next time!下次会更好! Boy will be boys本性难移! Come to the point!有话直说! Do you accept plastic?收不收信用卡? Does it keep long?可以保存吗? Don't be so fussy!别挑剔了! Don't count to me!别指望我! Don't fall for it!不要上当! Don't get me wrong!你搞错了! Don't give me that!少来这套! Don't let me down!别让我失望! Don't lose your head!别乐昏了头!

Don't over do it!别做过头了! Don't sit there daydreaming!别闲着做白日梦!Don't stand on ceremony!别太拘束! Drop me a line!要写信给我! Easy come easy go!来得容易去得也快! First come first served!先到先得! Get a move on!快点吧! Get off my back!不要嘲笑我! Give him the works!给他点教训! Give me a break!饶了我吧! Give me a hand!帮我一个忙! Great minds think alike!英雄所见略同! I'll treat you to lunch.午餐我请你! In one ear,out the other ear.一耳进,一耳出!I'm spaced-out!我开小差了! I beg your pardon!请你再说一遍! I can't afford that!我付不起! I can't follow you!我不懂你说的! I can't help it!我情不自禁! I couldn't reach him!我联络不上他! I cross my heart!我发誓是真的! I don't mean it!我不是故意的!

一榀框架计算内力计算

第8章 一榀框架计算 8.7框架内力计算 框架结构承受的荷载主要有恒载、活载、风荷载、地震作用。其中恒载、活载为竖向荷载,风荷载和地震为水平作用。手算多层多跨框架结构的内力和侧移时,采用近似方法。求竖向荷载作用下的内力采用分层法,求水平荷载作用下的内力采用反弯点法、D 值法。在计算各项荷载作用下的效应时,一般按标准值进行计算,然后进行荷载效应组合。 8.7.2框架内力计算 1.恒载作用下的框架内力 (1)计算简图 将图8-12(a )中梁上梯形荷载折算为均布荷载。其中a=1.8m ,l=6.9m , =1800/69000.26a l α==,顶层梯形荷载折算为均布荷载值: 2 3 2 3 12+=120.26+0.2621.31=18.8kN m q αα-?-??()(),顶层总均布荷载为18.8+4.74=23.54kN m 。其他层计算方法同顶层,计算值为21.63kN m 。中间跨只作用有均布荷载,不需折算。由于该框架为对称结构,取框架的一半进行简化计算,计算简图见8-19。 (2)弯矩分配系数 节点A 1:101044 1.18 4.72A A A A S i ==?= 111144 1.33 5.32A B A B S i ==?= 12120.940.94 1.61 5.796A A A A S i =?=??= ()0.622 1.3330.84415.836A S =++=∑ 1010 4.72 0.29815.836 A A A A A S S μ= ==∑

图8-19 恒载作用下计算简图(括号内数值为梁柱相对线刚度) 1111 5.32 0.33615.836 A B A B A S S μ= ==∑ 1212 5.796 0.36615.836 A A A A A S S μ= ==∑ 节点B 1:11112 1.12 2.24B D B D S i ==?= 18.076B S =∑

老外喜欢的简短的英语口语(很实用)

God works. 上帝的安排。 Not so bad. 不错。 No way! 不可能! Don't flatter me. 过奖了。 Hope so. 希望如此。 Go down to business. 言归正传。 I'm not going. 我不去了。 Does it serve your purpose? 对你有用吗? I don't care. 我不在乎。 None of my business. 不关我事。 It doesn't work. 不管用。 Your are welcome. 你太客气了。 It is a long story. 一言难尽。 Between us. 你知,我知。 Sure thin! 當然! Talk truly. 有话直说。 I'm going to go. 我這就去。 Never mind. 不要緊。 Why are you so sure? 怎么这样肯定? Is that so? 是这样吗? Come on, be reasonable. 嗨,你怎么不讲道理。 When are you leaving? 你什么时候走?

You don't say so. 未必吧,不至于这样吧。Don't get me wrong. 别误会我。 You bet! 一定,当然! It's up to you. 由你决定。 The line is engaged. 占线。 My hands are full right now. 我现在很忙。Can you dig it? 你搞明白了吗? I'm afraid I can't. 我恐怕不能。 How big of you! 你真棒! Poor thing! 真可怜! How about eating out? 外面吃饭怎样? Don't over do it. 别太过分了。 You want a bet? 你想打赌吗? What if I go for you? 我替你去怎么样? Who wants? 谁稀罕? Follow my nose. 凭直觉做某事。 Cheap skate! 小气鬼! Come seat here. 来这边坐。 Dinner is on me. 晚饭我请。 You ask for it! 活该! You don't say! 真想不到! Get out of here! 滚出去!

框架结构一榀框架手算计算书

某培训中心综合楼计算书 1 工程概况 拟建5层培训中心,建筑面积4500m 2,拟建房屋所在地的设防参数,基本雪压S 0=0.3kN ·m 2,基本风压ω0=0.45kN ·m 2地面粗糙度为B 类。 2 结构布置及计算简图 主体5层,首层高度3.6m,标准层3.3m,局部突出屋面的塔楼为电梯机房层高3.0m,外墙填充墙采用300mm,空心砖砌筑,内墙为200mm 的空心砖填充,屋面采用130mm ,楼板采用100mm 现浇混凝土板,梁高度按梁跨度的1/12~1/8估算,且梁的净跨与截面高度之比不宜小于4,梁截面宽度可取梁高的1/2~1/3,梁宽同时不宜小于1/2柱宽,且不应小于250mm,柱截面尺寸可由A c ≥ c N f N ][μ 确定本地区为四级抗震,所以8.0=c μ,各层重力荷载近似值 取13kN ·m -2,边柱及中柱负载面积分别为7.8 6.9226.91?÷=m 2 和7.8(6.92 2.72)37.44?÷+÷=m 2. 柱采用C35的混凝土(f c =16.7N ·mm 2,f t =1.57N ·mm 2) 第一层柱截面 边柱 A C = 31.326.9113105 1702810.816.7????=?mm 2 中柱 A C = 31.2537.4413105 2276950.816.7 ????=?mm 2 如取正方形,则边柱及中柱截面高度分别为339mm 和399mm 。 由上述计算结果并综合其它因素,本设计取值如下: 1层: 600mm ×600mm ; 2~5层:500mm ×500mm 表1 梁截面尺寸(mm)及各层混凝土等级强度 1 3.60.45 2. 2 1.10.1 5.05h m =++--=。

超级全的口语问题及答案

Oral Topic Stage One Q1-Q10 1. Yourself 1.Good morning, my name is ***. Could you tell me your full name please? My name is 2.What is your English name (or what shall I call you?) My English name is (you can call me ) 3.Can I see your identification please? Yes, here it is. Please. (Sure!) 4.Does your name have any special meaning? (What …s the meaning of your Chinese name?) Yeah, My Chinese name is***. The character “*” means health and “*” means many trees. It was given to me by my parents. They both hope me to grow up healthily. Besides, they cherish all kinds of plants, so they also hope me to protect nature everywhere. Now I always do as they expected. (Pig: My grandfather gave me the lovely name by looking into the dictionary. And “*” literally means “long and thin water”. My parents? names both include “water”, so my name also contains “water” to match theirs. My mother?s name is “*”, and it means “vast water”. My father?s name is “*”, which means “golden water”. Moreover, my grandf ather and my parents all hope me to trickle down for a long time and keep tender and peaceful like water. 5.Have you ever changed your names? Why or why not? No. Because the course of changing our names is quite complicated. If you want to change your name, you must inform all of your relatives and your friends. What's worse, you must notice the police station for changing your identification. And then you must wait for a long period to get your new identification. 6.Do Chinese people like changing their name in china? Why? No, I don?t think people like changing their name. 7.What is their purpose in changing their names? I think there are two main reasons for changing their names. The first reason is that their original names sound scrannel, and they want to get beautiful names. The other one is that they believe their new names may bring good luck to them. 2、Educational background 1.Are you with a job or are you studying? I am studying in Zhongshan University in Guangzhou. 2.What?s your major? Why do you choose it as your major? My major is Law. When I was a child, I adored judge and lawyer very much. They uphold justice for the people and I feel they are so brave. I hope to become a judge or a lawyer in the future. Now I believe that law is an important direction to develop for one country. The legal system of our country is developing, and it still has many disadvantages. I just hope to improve it in the future. So I chose Law as my major and tried to learn it well. 3.What do you learn from the major? All types of codes, legal thoughts and rigorous mind. 4.What are the main courses/ subjects you should learn? I mainly studied the basic courses of law, including the history of legal system, legal thoughts, legal

【建筑工程设计】一榀框架计算土木工程毕业设计手算全过程

【建筑工程设计】一榀框架计算土木工程毕业设 计手算全过程

一框架结构设计任务书 1.1 工程概况: 本工程为成都万达购物广场----成仁店,钢筋混凝土框架结构。梁板柱均为现浇,建筑面积约为5750m2,宽27米,长为45米,建筑方案确定。建筑分类为乙类公共类建筑,二类场地,抗震等级三级。 图1-1 计算平面简图 1.2 设计资料 1)气象条件: 基本风压3155KN/m2 2)抗震设防: 设防烈度7度 3)屋面做法: 20厚水泥砂浆面层 一层油毡隔离层 40厚挤塑聚苯板保温层 15厚高分子防水卷材 20厚1:3水泥砂浆找平 1:6水泥焦渣1%找坡层,最薄处30厚 120厚现浇钢筋混凝土板 粉底 4)楼面做法: 8~13厚铺地砖面层

100厚钢筋砼楼板 吊顶 1.3设计内容 1)确定梁柱截面尺寸及框架计算简图 2)荷载计算 3)框架纵横向侧移计算; 4)框架在水平及竖向力作用下的内力分析; 5)内力组合及截面设计; 6)节点验算。 二框架结构布置及结构计算简图确定 2.1 梁柱截面的确定 通过查阅规范,知抗震等级为3级,允许轴压比为[μ]=0.85

由经验知n=12~14kn/m2 取n=13kn/m2 拟定轴向压力设计值N=n?A=13kn/m2×81m2×5=5265KN 拟定柱的混凝土等级为C30,f c=14.3N/mm2柱子尺寸拟定700mm× 700mm μ===0.75<[μ]=0.85 满足 初步确定截面尺寸如下: 柱:b×h=700mm×700mm 梁(BC跨、CE、EF跨)=L/12=9000/12=750mm 取h=800mm,b=400mm 纵梁=L/12=9000/15=600mm 取h=600mm,b=300mm 现浇板厚取h=120mm

《工程力学》第4次作业解答(杆件的内力计算与内力图).

《工程力学》第4次作业解答(杆件的内力计算与内力图) 2008-2009学年第二学期 一、填空题 1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。 2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向与截面外法线方向相同,杆件受拉伸。 3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。 4.若传动轴所传递的功率为P 千瓦,转速为n 转/分,则外力偶矩的计算公式为9549P M n =?。 5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负,按右手螺旋法则确定。 6.剪力S F 、弯矩M 与载荷集度q 三者之间的微分关系是()()S dM x F x dx =、()()S dF x q x dx =±。 7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。 8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。 9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。 10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。 二、问答题 1.什么是弹性变形?什么是塑性变形? 解答: 在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。 如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。 2.如图所示,有一直杆,其两端在力F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。试问: (1)对于图示的三种受力情况,直杆的变形是否相同? (2)力的可传性原理是否适用于变形体? 解答: (1)图示的三种情况,杆件的变形不相同。图(a )的杆件整体伸长变形,图(b )的杆件只有局部伸长变形,图(c )的杆件是缩短变形。 (2)力的可传性原理,对于变形体不适用。因为刚体只考虑力的外效应,力在刚体上沿其作用线移动,刚体的运动状态不发生改变,所以作用效应不变;力在变形体沿其作用线移动后,内部变形效果发生了改变,与力在原来的作用位置对变形体产生的效果不同。 3.如上图所示,试判断图中杆件哪些属于轴向拉伸或轴向压缩。 解答:(a )图属于轴向拉伸变形;(b )图属于轴向压缩变形。 (c )、(d )两图不属于轴向拉伸或压缩变形。 4.材料力学中杆件内力符号的规定与静力平衡计算中力的符号有何不同? 【解答】 问答题2图 问答题3图

超经典英语日常高频常用口语

老友记中经典高频口语2008-07-2419:33 won’’t let her go without a fight!我不会轻易放过她的 1、I won 2、It could happen to anyone./It happens to anybody./That ha ppens.谁都可能会遇到这种情况 3、I’m a laundry virgin.(注意virgin的用法,体会老美说话之鲜活) 4、I hear you.我知道你要说什么。/我懂你的意思了 5、Nothing to see here!这里没什么好看的/看什么看! 6、Hello?Were we at the same table?有没有搞错?(注意hell hello o 的用法,用疑问语气表示“有没有搞错?”) 7、You are so sweet/that that’’s so sweet.你真好。 8、I think it works for me.(work为口语中极其重要的小词) 9、Rachel,you are out of my league(等级,范畴).你跟我不是

同一类人 10、You are so cute.你真好/真可爱 11、Given your situation,the options with the greatest chances f or success would be surrogacy.(given 表示考虑到的意思;非常简洁好用) 12、Let Let’’s get the exam rolling.现在开始考试了(get get………………rolling rolling 的用法) 13、Why don don’ ’t we give this a try?我们为何不试一下呢14、Bravo on the hot nanny!为那个性感的保姆喝彩!/赞一下那个性感的保姆!(重点是brave on sth/sb 这个句型,表示为……喝彩/赞叹的意思) 15、My way or the highway.不听我的就滚蛋!(很漂亮的习语,压后韵)

一榀框架结构设计手算+电算

一榀框架结构设计手算+电算

前言 毕业设计是学生在毕业之前在专业知识上面的一次检验,是学生从学校学习到工作岗位的过渡,在毕业设计阶段,要求要学会综合应用以前大学四年学到的专业课程,还有必要的设计规范和施工图集。通过学习、研究与实践,使理论深化、知识拓宽、专业技能延伸。通过毕业设计的实践,使学生能够深刻理解框架结构体系的布置特点、结构传力途径以及计算简图的确定方法,掌握风荷载及地震作用的计算方法、框架结构内力与位移计算的实用方法;掌握现浇多层框架结构的抗震概念设计,框架的截面设计原理、抗震构造要求及地基基础的设计方法;熟练阅读工程地质报告,熟悉施工图的内容、工作步骤及表达方法,培养学生综合运用所学专业知识来分析和解决实际工程问题的能力。 本次设计要求布图合理,图线清晰,尺寸齐全,注文工整,能最大程度的表达设计意图,符合国家制图标准及有关设计规范的规定。结构设计计算书要求方法合理,计算正确,排版工整,逻辑通顺。 由于时间和水平有限,不足之处,请各位专家、老师给予批评指正。

西南科技大学城市学院本科生毕业论文Ⅳ 目录 第1章设计资料 (1) 1.1工程概况 (1) 1.2工程地质条件 (1) 1.3气象资料 (2) 1.4抗震设防烈度 (2) 第2章结构布置及计算简图 (3) 2.1材料 (3) 2.2结构平面布置 (3) 2.2.1结构平面布置 (3) 2.3框架梁截面尺寸初步估算 (4) 2.3.1横向框架尺寸 (4) 2.3.2 纵向框架梁尺寸 (5) 2.3.3纵向次梁 (5) 2.3.4卫生间纵向次梁 (5) 2.3.5框架柱截面估算 (6) 第3章现浇楼板设计 (8) 3.1现浇楼板计算 (8)

最新服务器基础知识(初学者必看)

服务器基础知识【初学者必看】 1. 什么是服务器 就像他的名字一样,服务器在网络上为不同用户提供不同内容的信息、资料和文件。可以说服务器就是Internet网络上的资源仓库,正是因为有着种类繁多数量庞大内容丰富的服务器的存在,才使得Internet如此的绚丽多彩。 2. 服务器的种类和功能 (1) WWW服务器(WWW Server) WWW服务器也称为Web服务器(Web Server)或HTTP服务器(HTTP Server),它是Internet上最常见也是使用最频繁的服务器之一,WWW服务器能够为用户提供网页浏览、论坛访问等等服务。比如:我们在使用浏览器访问https://www.wendangku.net/doc/0b12372522.html,的时候,实际上就是在访问Discuz!的WWW服务器,从该WWW服务器获取需要的论坛资料和网页。 (2) FTP服务器(FTP Server) FTP服务器是专门为用户提供各种文件(File)的服务器,FTP服务器上往往存储大量的文件,例如:软件、MP3、电影、程序等等。用户只要使用FTP客户端软件登录到FTP服务器上就可以从FTP服务器下载所需文件和资源到自己的电脑上,同时,

你也可以把自己电话上的文件上传到FTP上供其他用户下载,以实现文件资源的共享。 (3) 邮件服务器(Mail Server) e-mail是Internet上应用最频繁的服务之一,而Internet上每天数亿百亿计的电子邮件的收发都是通过邮件服务器实现的。邮件服务器就像邮局一样,可以为用户提供电子邮件的接收存储和发送服务。 除了以上介绍的3种主要服务器之外,还有很多其他类型的网络服务器,例如:数据库服务器(DatabaseServer)、代理服务器(Proxy Server)、域名服务器(Domain Name Server)等等…… 3. 服务器的操作系统 目前服务器中使用的操作系统主要有两类:Windows和Unix。 (1) Windows Windows是美国微软公司(Microsoft)开发的操作系统,在服务器领域,主要有Windows2000Server/Advanced Server/Data Center与Windows2003 Standard Edition/EnterpriseEdition操作系统,Windows的优点是操作简 单,由于Windows使用图形界面进行操作,因而对各种服务器软件功能配置简

必背英文面试口语(超级实用!!!)

必背英文面试口语第1期:请做自我介绍Tell me about yourself Tell me about yourself 请做自我介绍 I currently work as a secretary to the General Manager in the sales office of a Japanesetelecommunications company. 目前我在一家日本电信公司的营业厅担任总经理秘书一职。 Since he doesn't speak Japanese, my main function is to act as liaison betw een him and eightJapanese staff members. 因为总经理不会说日语,所以我的主要任务就是协助总经理与八位日本同事进行沟通。In addition to general office duties, I also perform accounting, including pay rolls. 除了办公室的日常事务之外,我也做一些与会计相关的业务,包括做工资表。 My boss frequently travels and I effectively manage the office during his abs ence. 我的上司经常出差,在他出差期间,我就负责打理办公室的事物。 I'm a self-starter and he fully trusts my ability to work without his supervisio n and he valuesmy judgment in a variety of contexts. 我工作很主动,所以没有上司的监督,我也能做好一切,由此深得上司的信赖。此外,遇到各种情况,上司也很尊重我的判断。 必背英文面试口语第2期:你认为自己有哪些优点? What are some of your strengths? What are some of your strengths? 你认为自己有哪些优点? My biggest strength is tenacity. 我最大的优点是坚韧。 All my past employers and business associates have said I an tenacious.

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和力计算 5.1 水平地震作用下框架结构的侧移验算 5.1.1抗震计算单元 计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算 1、梁的线刚度: b /l I E i b c b = (5-1) 式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度 I 0—梁矩形部分的截面惯性矩 根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。 2、柱的线刚度: c c c c h I E i /= (5-2) 式中:Ic —柱截面惯性矩 hc —柱计算高度 一品框架计算简图: 3、横向框架柱侧移刚度D 值计算: 212c c c h i D α= (5-3) 式中:c α—柱抗侧移刚度修正系数

K K c +=2α(一般层);K K c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑= (一般层);c b K K K ∑=(底层) ① 底层柱的侧移刚度: 边柱侧移刚度: A 、E 轴柱:68.010 5.61045.41010=??==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:18.1105.6102.345.410 10=??+== ∑)(c b i i K ② 标准层的侧移刚度 边柱的侧移刚度: A 、E 轴柱:51.010 72.821045.4221010=????==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:88.01072.82102.345.42210 10 =???+?== ∑)(c b i i K

超全面的实用简洁英语口语大全

超全面的实用简洁英语口语大全 After you. 您先。 Allow me. 让我来。 Any day will do. 哪一天都行夕 Are you kidding 你在开玩笑吧! Are you sure 你肯定吗 Any messages for me 有我的留言吗 Any thing else 还要别的吗 Any urgent thing 有急事吗 As soon as possible! 越快越好! Absence makes the heart grow fonder. 小别胜新婚。Be careful! 注意! Be quiet! 安静点! Believe it or not! 信不信由你! Between us. 你知,我知。 Big mouth! 多嘴驴! Blast! 该死,讨厌! Bless you! 祝福你! Bottle it! 閉嘴! Bottoms up! 干杯(见底)! Boy! (表示惊奇,兴奋等)哇!好家伙!

Break the rules. 违反规则。 Can I have this. 可以给我这个吗 Can I help you 我能帮你吗 Can you dig it 你搞明白了吗 Can-do. 能人。 Cheap skate! 小气鬼! Cheer up! 振作起来! Chin up. 不气,振作些。 Close-up. 特寫鏡頭。 Clothes make the man. 人要衣装。 e on! 快点,振作起来! e on, be reasonable. 嗨,你怎么不讲道理。 e on. 来吧(赶快) e seat here. 来这边坐。 Congratulations! 祝贺你! Control yourself! 克制一下! Count me on 算上我。 Daring! 亲爱的! Dead end. 死胡同。 December heartbeat. 黄昏恋。 Did you miss the bus 你错过公共汽车了Dinner is on me. 晚饭我请。

毕业设计新规范框架内力计算

6.3.8 基础顶面恒载计算 由于本工程为五层框架结构,建筑高度较低,跨度基本相等,刚度比较均匀,风荷载影响较小。因此,为了简化计算,本设计的风荷载仅按一榀框架单独承担其受荷面积,忽略空间整体作用。 6.3.8.1 设计资料 基本风压:ω0=0.30KN/m 2,地面粗糙度类别为B 类。KJ6承受风荷载的计算宽度B =(6+6)÷2=6m 6.3.8.2 荷载计算 风荷载近似按阶梯形分布,首先应将其简化为作用在框架节点上的节点荷载。 作用在屋面梁和楼面梁节点处的集中风荷载标准值: ()/2k z s z o i j W h h B 式中 基本风压ω0=0.30KN/m 2 βZ —风振系数,因为建筑物高度H =21m<30m ,因此βZ =1.0; s μ—风荷载体型系数,根据建筑物体型查得 1.3s ; z μ—风压高度变化系数,建设地点位于城市郊区,所以地面粗糙度为B 类; h i —下层柱高; h j —上层柱高,对顶层取女儿墙高度的2倍,即1.24m ; B —迎风面宽度,B =(6+6)÷2=6m 。 计算过程如表6-1所示:

风荷载受荷简图见图6-26所示。 图6-26 框架风载受荷简图 6.3.8.3 框架柱D值计算 梁、柱的相对线刚度见表6-2 所示,侧移刚度D值计算如表6-2 、表6-3所示: 表6-2 KJ-3 2~5层柱D值计算 D 2 b c k K k2K K2 12 ** c D i h (KN/m) 边柱(A轴柱)2.08 2.08 1.68 2 1.24 1.68 0.457 2 1.68 4 2 12 0.457 1.24103855 4.2 中柱(C轴柱)2.082 5.582 6.18 2 1.24 6.18 0.756 2 6.18 4 2 12 0.756 1.24106377 4.2 中柱(D轴柱)2.082 5.582 6.18 2 1.24 6.18 0.756 2 6.18 4 2 12 0.756 1.24106377 4.2

弯曲的内力与强度计算 习题

弯曲的内力与强度计算 一、判断题 1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。() 图1 2.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。() 3、在集中力作用的截面处,Q图有突变,M连续但不光滑。() 4、梁在集中力偶作用截面处,M图有突变,Q图无变化。() 5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。() 6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。() 7.梁的内力图通常与横截面面积有关。() 8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q图,M图都不变。() 9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。() 10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。() 图 2 图 3 11.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。() 12.上题中,作用于B处的集中力大小为6KN,方向向上。() 13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。()

图 4 图 5 14.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。() 15.图5所示梁中,AB跨间剪力为零。() 16.中性轴是中性层与横截面的交线。() 17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。() 18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。() 19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。 () 20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。() 21.极值弯矩一定是梁上最大的弯矩。() 22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。() 23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。() 24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。() 25.对弯曲变形梁,最大挠度发生处必定是最大转角发生处。() 26.两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断: (1)最大正应力相同;() (2)最大挠度值相同;() (3)最大转角值不同;() (4)最大剪应力值不同;() (5)强度相同。() 27.两根材料、截面形状及尺寸均不同的等跨简支梁,受相同的荷载作用,则两梁的反力与内力相同。()

必背英文面试口语(超级实用!!!)

必背英文面试口语第 1 期:请做自我介绍Tell me about yourself Tell me about yourself 请做自我介绍 I currently work as a secretary to the General Manager in the sales office of a Japanesetelecommunications company. 目前我在一家日本电信公司的营业厅担任总经理秘书一职。 Since he doesn't speak Japanese, my main function is to act as liaison betw een him and eightJapanese staff members. 因为总经理不会说日语,所以我的主要任务就是协助总经理与八位日本同事进行沟通。 In addition to general office duties, I also perform accounting, including pay rolls. 除了办公室的日常事务之外,我也做一些与会计相关的业务,包括做工资表。 My boss frequently travels and I effectively manage the office during his abs ence. 我的上司经常出差,在他出差期间,我就负责打理办公室的事物。 I'm a self-starter and he fully trusts my ability to work without his supervisio n and he valuesmy judgment in a variety of contexts. 我工作很主动,所以没有上司的监督,我也能做好一切,由此深得上司的信赖。此外,遇到 各种情况,上司也很尊重我的判断。 必背英文面试口语第2 期:你认为自己有哪些优点? What are some of your strengths? What are some of your strengths? 你认为自己有哪些优点? My biggest strength is tenacity . 我最大的优点是坚韧。 All my past employers and business associates have said I an tenacious.

第五章.竖向荷载作用下的框架内力计算

5.1 计算单元的确定 取6号轴线一榀框架进行计算,计算宽度为(6.6+6.6)/2=6.6m 。如图下图所示 横向框架荷载传递图 5.2 荷载计算 5.2.1 恒荷载的计算 1、五层、 (1)q 、q 0、q 0′、q 0″分别为女儿墙、边跨横梁(走道纵梁)、走道横梁、次梁自重(扣除板自重),为均布荷载形式;β为考虑梁粉刷自重时的放大系数,取β=1.05。 女儿墙:q=3.47×0.9=3.12 kN/m 边跨横梁(走道纵梁):q 0=1.05×0.3×(0.6-0.1)×25=3.94kN/m 走道横梁:q 0′=1.05×0.3×(0.4-0.1)×25=2.36kN/m 次梁:q 0″=1.05×0.2×(0.5-0.1)×25=2.1kN/m (2)q 1、q 1′分别为屋面板自重传给横梁的梯形和三角形荷载等效为均布荷载值 q 1=[1-2×(3.3/6.6×2) 2+(3.3/6.6×2) 3]×4.38×3.3/2=6.44kN/m q 1′=8 5 ×4.38×3.0/2=4.11kN/m (3)q 2、q 2′分别为屋面板自重传给纵梁上的梯形和三角形荷载等效为均布荷载值 梯形:q 2=[1-2×(3.0/6.6×2) 2+(3.0/6.6×2) 3]×4.38×3.0/2=5.96kN/m 三角形:q 2′=8 5 ×4.38×3.3/2=4.52kN/m P 1为由板传给次梁及次梁自重传给纵梁的集中力 P 1= q 1×6.6+ q 0″×6.6/2=49.43kN P 2为由板传给外纵梁及外纵梁、女儿墙自重传给柱子的集中力 P 2=( q 2′+ q 0+q )×3.3×2=76.42 kN P 3为由板传给内纵梁及内纵梁自重传给柱子的集中力。

相关文档