文档库 最新最全的文档下载
当前位置:文档库 › 中英文翻译

中英文翻译

中英文翻译
中英文翻译

1 Fundamentals

This chapter describes the fundamentals of today’s wireless communications. First a detailed description of the radio channel and its modeling are presented, followed by the introduction of the principle of OFDM multi-carrier transmission. In addition, a general overview of the spread spectrum technique, especially DS-CDMA, is given and examples

of potential applications for OFDM and DS-CDMA are analyzed. This introduction is essential for a better understanding of the idea behind the combination of OFDM with the spread spectrum technique, which is briefly introduced in the last part of this chapter.

1.1 Radio Channel Characteristics

Understanding the characteristics of the communications medium is crucial for the appropriate selection of transmission system architecture, dimensioning of its components, and optimizing system parameters, especially since mobile radio channels are considered to be the most difficult channels, since they suffer from many imperfections like multipath fading, interference, Doppler shift, and shadowing. The choice of system components is totally different if, for instance, multipath propagation with long echoes dominates the radio propagation.

Therefore, an accurate channel model describing the behavior of radio wave propagation in different environments such as mobile/fixed and indoor/outdoor is needed. This may allow one, through simulations, to estimate and validate the performance of a given transmission scheme in its several design phases.

1.1.1 Understanding Radio Channels

In mobile radio channels (see Figure 1-1), the transmitted signal suffers from different effects, which are characterized as follows:

Multipath propagation occurs as a consequence of reflections, scattering, and diffraction of the transmitted electromagnetic wave at natural and man-made objects. Thus, at the receiver antenna, a multitude of waves arrives from many different directions with different delays, attenuations, and phases. The superposition of these waves results in

amplitude and phase variations of the composite received signal.

Doppler spread is caused by moving objects in the mobile radio channel. Changes in the phases and amplitudes of the arriving waves occur which lead to time-variant multipath propagation. Even small movements on the order of the wavelength may result in a totally

different wave superposition. The varying signal strength due to time-variant multipath propagation is referred to as fast fading.

Shadowing is caused by obstruction of the transmitted waves by, e.g., hills, buildings, walls, and trees, which results in more or less strong attenuation of the signal strength. Compared to fast fading, longer distances have to be covered to significantly change the shadowing constellation. The varying signal strength due to shadowing is called slow fading and can be described by a log-normal distribution [36].

Path loss indicates how the mean signal power decays with distance between transmitter and receiver. In free space, the mean signal power decreases with the square of the distance between base station (BS) and terminal station (TS). In a mobile radio channel, where often no line of sight (LOS) path exists, signal power decreases with a power higher than two and is typically in the order of three to five.

Variations of the received power due to shadowing and path loss can be efficiently counteracted by power control. In the following, the mobile radio channel is described with respect to its fast fading characteristic.

1.1.2 Channel Modeling

The mobile radio channel can be characterized by the time-variant channel impulse response h(τ , t ) or by the time-variant channel transfer function H(f, t), which is the Fourier transform of h(τ , t ). The channel impulse response represents the response of the channel at time t due to an impulse applied at time t ?τ . The mobile radio channel

is assumed to be a wide-sense stationary random process, i.e., the channel has a fading statistic that remains constant over short periods of time or small spatial distances. In environments with multipath propagation, the channel impulse response is composed of a large number of scattered impulses received over Np different paths,

Where

and ap, fD,p, ?p, and τp are the amplitude, the Doppler frequency, the phase, and the propagation delay, respectively, associated with path p, p = 0, . . . , Np ? 1. The assigned channel transfer function is

The delays are measured relative to the first detectable path at the receiver. The Doppler

Frequency

depends on the velocity v of the terminal station, the speed of light c, the carrier frequency fc, and the angle of incidence αp of a wave assigned to path p. A channel impulse response with corresponding channel transfer function is illustrated in Figure 1-2.

The delay power density spectrum ρ(τ ) that characterizes the frequency selectivity of the mobile radio channel gives the average power of the channel output as a function of the delay τ . The mean delay τ , the root mean square (RMS) delay spread τRMS and the maximum delay τmax are characteristic parameters of the delay power density spectrum. The mean delay is

Where

Figure 1-2 Time-variant channel impulse response and channel transfer function with frequency-selective fading is the power of path p. The RMS delay spread is defined as

Similarly, the Doppler power density spectrum S(fD) can be defined that characterizes the time variance of the mobile radio channel and gives the average power of the channel output as a function of the Doppler frequency fD. The frequency dispersive properties of multipath channels are most commonly quantified by the maximum occurring Doppler frequency fD max and the Doppler spread fDspread . The Doppler spread is the bandwidth of

the Doppler power density spectrum and can take on values up to two times |fD max|, i.e.,

1.1.3Channel Fade Statistics

The statistics of the fading process characterize the channel and are of importance for channel model parameter specifications. A simple and often used approach is obtained from the assumption that there is a large number of scatterers in the channel that contribute to the signal at the receiver side. The application of the central limit theorem leads to a complex-valued Gaussian process for the channel impulse response. In the absence of line of sight (LOS) or a dominant component, the process is zero-mean. The magnitude of the corresponding channel transfer function

is a random variable, for brevity denoted by a, with a Rayleigh distribution given by

Where

is the average power. The phase is uniformly distributed in the interval [0, 2π].

In the case that the multipath channel contains a LOS or dominant component in

addition to the randomly moving scatterers, the channel impulse response can no longer be modeled as zero-mean. Under the assumption of a complex-valued Gaussian process for the channel impulse response, the magnitude a of the channel transfer function has a Rice distribution given by

The Rice factor KRice is determined by the ratio of the power of the dominant path to thepower of the scattered paths. I0 is the zero-order modified Bessel function of first

kind.Th e phase is uniformly distributed in the interval [0, 2π].

1.1.4Inter-Symbol (ISI) and Inter-Channel Interference (ICI)

The delay spread can cause inter-symbol interference (ISI) when adjacent data symbols overlap and interfere with each other due to different delays on different propagation paths.

The number of interfering symbols in a single-carrier modulated system is given by

For high data rate applications with very short symbol duration Td < τmax, the effect of ISI and, with that, the receiver complexity can increase significantly. The effect of ISI can be counteracted by different measures such as time or frequency domain equalization. In spread spectrum systems, rake receivers with several arms are used to reduce the effect of ISI by exploiting the multipath diversity such that individual arms are adapted to different propagation paths.

If the duration of the transmitted symbol is significantly larger than the maximum delay Td τmax, the channel produces a negligible amount of ISI. This effect is exploited with multi-carrier transmission where the duration per transmitted symbol increases with the number of sub-carriers Nc and, hence, the amount of ISI decreases. The number of interfering symbols in a multi-carrier modulated system is given by

Residual ISI can be eliminated by the use of a guard interval (see Section 1.2).

The maximum Doppler spread in mobile radio applications using single-carrier modulation is typically much less than the distance between adjacent channels, such that the effect of interference on adjacent channels due to Doppler spread is not a problem for single-carrier modulated systems. For multi-carrier modulated systems, the sub-channel spacing Fs can become quite small, such that Doppler effects can cause significant ICI. As long as all

sub-carriers are affected by a common Doppler shift fD, this Doppler shift can be compensated for in the receiver and ICI can be avoided. However, if Doppler spread in the order of several percent of the sub-carrier spacing occurs, ICI may degrade the system performance significantly. To avoid performance degradations due to ICI or more complex receivers with ICI equalization, the sub-carrier spacing Fs should be chosen as

such that the effects due to Doppler spread can be neglected (see Chapter 4). This approach corresponds with the philosophy of OFDM described in Section 1.2 and is followed in current OFDM-based wireless standards.

Nevertheless, if a multi-carrier system design is chosen such that the Doppler spread

is in the order of the sub-carrier spacing or higher, a rake receiver in the frequency

domain can be used [22]. With the frequency domain rake receiver each branch of the

rake resolves a different Doppler frequency.

1.1.5Examples of Discrete Multipath Channel Models

Various discrete multipath channel models for indoor and outdoor cellular systems with different cell sizes have been specified. These channel models define the statistics of the

discrete propagation paths. An overview of widely used discrete multipath channel models is given in the following.

COST 207 [8]: The COST 207 channel models specify four outdoor macro cell propagation scenarios by continuous, exponentially decreasing delay power density spectra. Implementations of these power density spectra by discrete taps are given by using up to 12 taps. Examples for settings with 6 taps are listed in Table 1-1. In this table for several propagation environments the corresponding path delay and power profiles are given. Hilly terrain causes the longest echoes.

The classical Doppler spectrum with uniformly distributed angles of arrival of the

paths can be used for all taps for simplicity. Optionally, different Doppler spectra are defined for the individual taps in [8]. The COST 207 channel models are based on channel measurements with a bandwidth of 8–10 MHz in the 900-MHz band used for 2G systems such as GSM.

COST 231 [9] and COST 259 [10]: These COST actions which are the continuation

of COST 207 extend the channel characterization to DCS 1800, DECT, HIPERLAN and UMTS channels, taking into account macro, micro, and pico cell scenarios. Channel models with spatial resolution have been defined in COST 259. The spatial component is introduced by the definition of several clusters with local scatterers, which are located in a circle around the base station. Three types of channel models are defined. The macro cell type has cell sizes from 500 m up to 5000 m and a carrier frequency of 900 MHz or 1.8 GHz. The micro cell type is defined for cell sizes of about 300 m and a carrier frequency of 1.2 GHz or 5 GHz. The pico cell type represents an indoor channel model with cell sizes smaller than 100 m in industrial buildings and in the order of 10 m in an office. The carrier frequency is 2.5 GHz or 24 GHz.

COST 273: The COST 273 action additionally takes multi-antenna channel models into account, which are not covered by the previous COST actions.

CODIT [7]: These channel models define typical outdoor and indoor propagation scenarios for macro, micro, and pico cells. The fading characteristics of the various propagation environments are specified by the parameters of the Nakagami-m distribution. Every environment is defined in terms of a number of scatterers which can take on values up to 20. Some channel models consider also the angular distribution of the scatterers. They have been developed for the investigation of 3G system proposals. Macro cell channel type models have been developed for carrier frequencies around 900 MHz with 7 MHz bandwidth. The micro and pico cell channel type models have been developed for carrier frequencies between 1.8 GHz and 2 GHz. The bandwidths of the measurements are in the range of

10–100 MHz for macro cells and around 100 MHz for pico cells.

JTC [28]: The JTC channel models define indoor and outdoor scenarios by specifying 3 to 10 discrete taps per scenario. The channel models are designed to be applicable for wideband digital mobile radio systems anticipated as candidates for the PCS (Personal Communications Systems) common air interface at carrier frequencies of about 2 GHz. UMTS/UTRA [18][44]: Test propagation scenarios have been defined for UMTS and UTRA system proposals which are developed for frequencies around 2 GHz. The modeling of the multipath propagation corresponds to that used by the COST 207 channel models. HIPERLAN/2 [33]: Five typical indoor propagation scenarios for wireless LANs in the

5 GHz frequency band have been defined. Each scenario is described by 18discrete taps of the delay power density spectrum. The time variance of the channel (Doppler spread) is modeled by a classical Jake’s spectrum with a maximum terminal speed of 3 m/h.

Further channel models exist which are, for instance, given in [16].

1.1.6Multi-Carrier Channel Modeling

Multi-carrier systems can either be simulated in the time domain or, more computationally efficient, in the frequency domain. Preconditions for the frequency domain implementation are the absence of ISI and ICI, the frequency nonselective fading per sub-carrier, and the time-invariance during one OFDM symbol. A proper system design approximately fulfills these preconditions. The discrete channel transfer function adapted to multi-carrier signals results in

where the continuous channel transfer function H(f, t) is sampled in time at OFDM

symbol rate s and in frequency at sub-carrier spacing Fs . The duration

s is the total OFDM symbol duration including the guard interval. Finally, a symbol transmitted onsub-channel n of the OFDM symbol i is multiplied by the resulting fading amplitude an,i and rotated by a random phase ?n,i .

The advantage of the frequency domain channel model is that the IFFT and FFT operation for OFDM and inverse OFDM can be avoided and the fading operation results in one complex-valued multiplication per sub-carrier. The discrete multipath channel models introduced in Section 1.1.5 can directly be applied to (1.16). A further simplification of the channel modeling for multi-carrier systems is given by using the so-called uncorrelated fading channel models.

1.1.6.1Uncorrelated Fading Channel Models for Multi-Carrier Systems

These channel models are based on the assumption that the fading on adjacent data symbols after inverse OFDM and de-interleaving can be considered as uncorrelated [29]. This assumption holds when, e.g., a frequency and time interleaver with sufficient interleaving depth is applied. The fading amplitude an,i is chosen from a distribution p(a) according to the considered cell type and the random phase ?n,I is uniformly distributed in the interval [0,2π]. The resulting complex-valued channel fading coefficient is thus generated independently for each sub-carrier and OFDM symbol. For a propagation scenario in a macro cell without LOS, the fading amplitude an,i is generated by a Rayleigh distribution and the channel model is referred to as an uncorrelated Rayleigh fading channel. For smaller cells where often a dominant propagation component occurs, the fading amplitude is chosen from a Rice distribution. The advantages of the uncorrelated fading channel models for

multi-carrier systems are their simple implementation in the frequency domain and the simple reproducibility of the simulation results.

1.1.7Diversity

The coherence bandwidth of a mobile radio channel is the bandwidth over which the signal propagation characteristics are correlated and it can be approximated by

The channel is frequency-selective if the signal bandwidth B is larger than the coherence

bandwidth . On the other hand, if B is smaller than , the channel is frequency nonselective or flat. The coherence bandwidth of the channel is of importance for evaluating the performance of spreading and frequency interleaving techniques that try to exploit the inherent frequency diversity Df of the mobile radio channel. In the case of multi-carrier transmission, frequency diversity is exploited if the separation of sub-carriers transmitting the same information exceeds the coherence bandwidth. The maximum achievable frequency diversity Df is given by the ratio between the signal bandwidth B and the coherence bandwidth,

The coherence time of the channel is the duration over which the channel characteristics can be considered as time-invariant and can be approximated by

If the duration of the transmitted symbol is larger than the coherence time, the channel is

time-selective. On the other hand, if the symbol duration is smaller than , the channel

is time nonselective during one symbol duration. The coherence time of the channel is of importance for evaluating the performance of coding and interleaving techniques that try to exploit the inherent time diversity DO of the mobile radio channel. Time diversity can be exploited if the separation between time slots carrying the same information exceeds the coherence time. A number of Ns successive time slots create a time frame of duration Tfr . The maximum time diversity Dt achievable in one time frame is given by the ratio between the duration of a time frame and the coherence time,

A system exploiting frequency and time diversity can achieve the overall diversity

The system design should allow one to optimally exploit the available diversity DO.

For instance, in systems with multi-carrier transmission the same information should be transmitted on different sub-carriers and in different time slots, achieving uncorrelated faded replicas of the information in both dimensions.

Uncoded multi-carrier systems with flat fading per sub-channel and time-invariance

during one symbol cannot exploit diversity and have a poor performance in time and frequency selective fading channels. Additional methods have to be applied to exploit diversity. One approach is the use of data spreading where each data symbol is spread by a spreading code of length L. This, in combination with interleaving, can achieve performance

results which are given for by the closed-form solution for the BER for diversity reception in Rayleigh fading channels according to [40]

Where represents the combinatory function,

and σ2 is the variance of the noise. As so on as the interleaving is not perfect or the diversity offered by the channel is smaller than the spreading code length L, or MCCDMA with multiple access interference is applied, (1.22) is a lower bound. For L = 1, the performance of an OFDM system without forward error correction (FEC) is obtained,

which cannot exploit any diversity. The BER according to (1.22) of an OFDM (OFDMA, MC-TDMA) system and a multi-carrier spread spectrum (MC-SS) system with different spreading code lengths L is shown in Figure 1-3. No other diversity techniques are applied. QPSK modulation is used for symbol mapping. The mobile radio channel is modeled as uncorrelated Rayleigh fading channel (see Section 1.1.6). As these curves show, for large values of L, the performance of MC-SS systems approaches that of an AWGN channel. Another form of achieving diversity in OFDM systems is channel coding by FEC,

where the information of each data bit is spread over several code bits. Additional to the diversity gain in fading channels, a coding gain can be obtained due to the selection of appropriate coding and decoding algorithms.

中文翻译

1基本原理

这章描述今日的基本面的无线通信。第一一个的详细说明无线电频道,它的模型被介绍,跟随附近的的介绍的原则的参考正交频分复用多载波传输。此外,一个一般概观的扩频技术,尤其ds-cdma,被给,潜力的例子申请参考正交频分复用,DS - CDMA 系统被分析。这介绍是要点对更好地了解思想落后组合参考正交频分复用同扩频技术,哪个简要地介绍在最后部分这章。

1.1无线电信道特性

理解的特征通信媒体关键为传输的适当甄拔系统架构,它的元件的量纲,优化系统参数,特别是由于移动电台频道,被认为是最困难的途径,因为他们受到许多不完善的地方一样多

衰落,干扰,多普勒频移,和阴影。系统组件的选择完全不同是否,例如,多径传播同长期的回声主宰无线电波传播。

因此,一个准确信道模型描述无线电波传播的行为在不一样的环境例如移动/固定,室内/户外被需。这个可能允许一,通过模拟,估计,验证性能的一个给传动方案在它的几个设计阶段。

1.1.1了解无线电的的渠道

在移动电台渠道(见图1-1),发送信号受苦从不一样的影响,被表征——如下:

多径传播发生由于反射,分散,衍射的发送电磁波在自然,人造的物体。从而,在接收机天线,众多的波到达从许多不一样的方向同不同延迟,衰减,阶段。这些的迭加波导致振幅和阶段合成的变异接受信号。

图表1-1时变多径传播

都普勒展延被造成移动的物体在运动物体无线电频道。变动在阶段和振幅的到达波发生——导致时变多径传播。也小的运动的意思波长可能导致一个完全不一样的波迭加。变化信号强度由于时变多径传播被提到像快衰落。

翳被造成的梗阻发送波由,e。g。,山,建筑,墙,树,——导致或多或少强烈的衰减信号强度。比喻为快衰落,更长的距离,必须覆盖,大大改变阴影星座。信号强度的不同,由于阴影被称为慢衰落,可以通过对数正态分布来描述[36]。

路径损耗指示如何平均信号发射器之间的距离力量衰减和接收机。在自由空间中,平均信号功率下降与之间基站(BS)和终端站(TS)的距离的平方。在移动广播频道,在那里经常没有视线(LOS)的路径存在,具有功率更高的信号功率下降超过两个,并在三至五年为典型。

所收到的权力,由于路径损耗和阴影的变化可以有效地抵消了功率控制。在下面,移动无线电频道的描述就其快衰落特性。

1.1.2信道建模

移动通信信道的特点是可以时变信道冲激响应H(τ,t)或由时变信道传输函数H(楼吨),这是傅立叶变换的H(τ,t)的。信道冲击响应表示响应在时间T频道由于在时间t的应用一种冲动- τ。移动无线电频道假定是一个广义平稳随机过程,即有一个衰落信道统计剩下的超过时间或小的空间距离短的时间常数。在多径传播环境中,信道冲激响应是由一个大量分散的冲动收到超过镎不同的路径,

和AP,金融衍生工具,磷,υp和τp是振幅,多普勒频率,相位,以及传播延迟,分别与路径p,p值=0。。。,N - 对1。分配的通道传输功能是

有关的延误测量相对于第一个在接收器检测到的路径。多普勒频率

取决于终端站,光速c,载波频率fc的速度和发病路径分配给速度v波αp角度页具有相应通道传输信道冲激响应函数图1-2所示。

延迟功率密度谱ρ(τ)为特征的频率选择性移动无线电频道给出了作为通道的输出功能延迟τ平均功率。平均延迟τ,均方根(RMS)的时延扩展τRMS和最大延迟τmax都是延迟功率密度谱特征参数。平均时延特性参数为

图1-2时变信道冲激响应和通道传递函数频率选择性衰落是权力页的路径均方根时延

扩展的定义为

同样,多普勒频谱的功率密度(FD)的特点可以定义

在移动时变无线信道,并给出了作为一种金融衍生工具功能的多普勒频率通道输出的平均功率。多径信道频率分散性能是最常见的量化发生的多普勒频率和多普勒fDmax 蔓延fDspread最大。多普勒扩散是功率密度的多普勒频谱带宽,可价值观需要两年时间| fDmax|,即

1.1.3频道淡出统计

在衰落过程中的统计特征和重要的渠道是信道模型参数规格。一个简单而经常使用的方法是从假设有一个通道中的散射,有助于在大量接收端的信号。该中心极限定理的应用导致了复杂的值的高斯信道冲激响应过程。在对视线(LOS)或线的主要组成部分的情况下,这个过程是零的意思。相应的通道传递函数幅度

是一个随机变量,通过给定一个简短表示由瑞利分布,

是的平均功率。相均匀分布在区间[0,2π]。

在案件的多通道包含洛杉矶的或主要组件除了随机移动散射,通道脉冲响应可以不再被建模为均值为零。根据信道脉冲响应的假设一个复杂的值高斯过程,其大小通道的传递函数A的水稻分布给出

赖斯因素KRice是由占主导地位的路径权力的威力比分散的路径。I0是零阶贝塞尔函数的第一阶段是一致kind.The在区间[0,2π]分发。

1.1.4符号间(ISI)和通道间干扰(ICI)

延迟的蔓延引起的符号间干扰(ISI)当相邻的数据符号上的重叠与互相不同的传播路径,由于不同的延迟干涉。符号的干扰在单载波调制系统的号码是给予

对于高数据符号持续时间很短运输署<蟿MAX时,ISI的影响,这样一来,速率应用,接收机的复杂性大大增加。对干扰影响,可以抵消,如时间或频域均衡不同的措施。在扩频系统,与几个臂Rake接收机用于减少通过利用多径分集等,个别武器适应不同的传播路径的干扰影响。

如果发送符号的持续时间明显高于大的最大延迟运输署蟿最大,渠道产生ISI的微不足道。这种效果是利用多载波传输的地方,每发送符号的增加与子载波数控数目,因此,ISI的金额减少的持续时间。符号的干扰多载波调制系统的号码是给予

可以消除符号间干扰由一个保护间隔(见1.2节)的使用。

最大多普勒在移动无线应用传播使用单载波调制通常比相邻通道,这样,干扰对由于多普勒传播相邻通道的作用不是一个单载波调制系统的问题距离。对于多载波调制系统,子通道间距FS可以变得非常小,这样可以造成严重的多普勒效应ICI的。只要所有子载波只要是一个共同的多普勒频移金融衍生工具的影响,这可以补偿多普勒频移在接收器和ICI是可以避免的。但是,如果在对多普勒子载波间隔为几个百分点的蔓延情况,卜内门可能会降低系统的性能显着。为了避免性能降级或因与ICI卜内门更复杂的接收机均衡,子载波间隔财政司司长应定为

这样说,由于多普勒效应可以忽略不扩散(见第4章)。这种方法对应于OFDM的1.2节中所述,是目前基于OFDM的无线标准遵循的理念。

不过,如果多载波系统的设计选择了这样的多普勒展宽在子载波间隔或更高,秩序是在频率RAKE接收机域名可以使用[22]。随着频域RAKE接收机每个支部耙解决了不同的多普勒频率。

1.1.5多径信道模型的离散的例子

各类离散多与不同的细胞大小的室内和室外蜂窝系统的信道模型已经被指定。这些通道模型定义的离散传播路径的统计信息。一种广泛使用的离散多径信道模型概述于下。造价207[8]:成本207信道模型指定连续四个室外宏蜂窝传播方案,指数下降延迟功率密度谱。这些频道功率密度的离散谱的实现都是通过使用多达12个频道。与6频道设置的示例列于表1-1。在这种传播环境的几个表中的相应路径延迟和电源配置给出。丘陵地形导致最长相呼应。

经典的多普勒频谱与均匀分布的到达角路径可以用于简化所有的频道。或者,不同的多普勒谱定义在[8]个人频道。207信道的成本模型是基于一个8-10兆赫的2G,如GSM系统中使用的900兆赫频段信道带宽的测量。

造价231[9]和造价259[10]:这些费用是行动的延续成本207扩展通道特性到DCS1800的DECT,HIPERLAN和UMTS的渠道,同时考虑到宏观,微观和微微小区的情况为例。空间分辨率与已定义的通道模型在造价259。空间部分是介绍了与当地散射,这是在基站周围设几组圆的定义。三种类型的通道模型定义。宏细胞类型具有高达500?5000米,载波频率为900兆赫或1.8 GHz的单元尺寸。微细胞类型被定义为细胞体积约300米,1.2 GHz或5 GHz载波频率。细胞类型代表的Pico与细胞体积小于100工业建筑物和办公室中的10 m阶米室内信道模型。载波频率为2.5 GHz或24千兆赫。造价273:成本273行动另外考虑到多天线信道模型,这是不是由先前的费用的行为包括在内。

CODIT [7]:这些通道模型定义的宏,微,微微蜂窝和室外和室内传播的典型案例。各种传播环境的衰落特性是指定的在Nakagami - m分布的参数。每个环境是指在一个散射体数可以采取值高达20条款。有些信道模型还考虑了散射角分布。他们已经制定了3G系统的建议进行调查。宏小区信道类型模型已经开发出的载波频率约为900兆赫,7兆赫带宽。微型和微微小区通道类型模型已经开发出的载波频率为1.8千兆赫和2

千兆赫。把测量带宽都在10-100兆赫宏观细胞和细胞周围微微100 MHz范围内。

裕廊[28]:在裕廊通道模型定义指定3至10个场景离散水龙头室内和室外场景。该通道模型设计为宽带数字移动通信作为用于PCS(个人通信系统)在约2千兆赫的载波频率常见的空气接口候选人预期系统适用。

的UMTS /型UTRA [18] [44]:测试传播方案已确定为UMTS和

型UTRA系统,为约2千兆赫的频率发展建议。在多径传播模型对应于按成本207通道模型使用。

HIPERLAN / 2 [33]:5个典型的无线局域网在室内传播方案

5千兆赫频段已经确定。每个场景的描述是延误的功率密度谱18discrete水龙头。该通道(多普勒传播)的时间差异是模拟了一个经典的杰克的频谱以3米/小时的最高终

端速度

进一步的通道模型是存在,例如,在[16]中给出。

1.1.6多载波信道建模

多载波系统可以是模拟的时域或频域,更多的计算效率。在频域实现的前提条件是ISI 和ICI,频率选择性每个子载波的衰落,和时间在一个OFDM符号不变的情况下。适当的制度设计符合这些先决条件约。离散信道传递函数的适应多载波信号结果

在连续通道传输函数H(男,t)为时间采样的OFDM符号率和副载波间隔Fs

的频率。在历时为OFDM符号的持续时间,包括总的保护间隔。最后,一个符号

传播onsub通道的OFDM符号是由产生的衰落幅度的,我乘我n和一个随机相位蠒氮,我旋转。

在频域信道模型的优点是的IFFT和FFTOFDM系统的OFDM和反向操作,可避免和在一个复杂的值每个子载波衰落乘法运算结果。多径信道的离散1.1.5节中介绍的模型可以直接应用于(1.16)。作者:多载波系统的信道建模,给出进一步简化使用所谓的无关

衰落信道模型。

1.1.6.1不相关的多载波系统衰落信道模型

这些通道模型是基于这样的符号上相邻的数据后,逆OFDM和去交错衰落可以作为不相关[29]考虑的假设。这种假设成立的时候,例如,具有足够的频率和时间交错交织深度应用。振幅的衰减的,我是从分布P(一)根据所考虑的细胞类型和随机相位υn选中时,我是均匀分布在区间[0,2π]。由此产生的复杂的值通道衰减系数为由此产生的每个子载波和OFDM符号独立。对于没有住院的衰落幅度的,我是由一个瑞利分布,信道模型被称为一个不相关瑞利衰落信道在宏小区的传播情况。对于较小的细胞繁殖的地方往往是一个主导组件时,选择衰落幅度从水稻分布。对不相关衰落信道模型的优越性,多载波系统是他们在频域和对模拟结果的简单重复性的简单实现。

1.1.7多样性

带宽的一致性移动无线信道的带宽超过是其中信号的传播特性是相关的,它可以近似

该频道的频率选择性如果信号带宽B比的相干带宽.另一方面,如果B小于

时,通道的频率选择性或持平。信道的相干带宽是评估传播和频率交织技术,尝试利用固有频率的移动无线电测向性能的渠道多样化的重要性。在多载波传输的情况下,利用频率分集,如果是分发射相同的信息载体分离超过相干带宽。达到的最大频率分集,给出了东风之间的信号带宽B和相干带宽比,

信道的相干时间是指本频道特点,可随着时间不变的考虑时间,可以近似

如果发送符号的持续时间比相干时间较大,该通道时间选择性。另一方面,如果持续

时间小于符号时,通道是一个符号的时间期限内非选择性。信道的相干时间对

评估的编码和交织技术,尝试利用固有的时间分集的DO移动无线信道性能的重要性。时间分集可以被利用之间的时间,如果执行相同的信息分离槽超过相干时间。一个时段的NS连续数总和生育率持续时间创建一个时间框架。Dt的多样性的最长时间在一个时间框架,给出了实现之间的一个时间框架的持续时间,统一时间的比例,

一个系统开发的频率和时间分集能达到整体的多样性

该系统的设计应允许一对最佳利用现有的多样性做。例如,在多载波传输系统相同的信息应提交不同的子载波,在不同时段,实现不相关淡出在这两个方面的信息的副本。未编码的多载波系统的单位每个子通道和时间不变性衰落在一个符号不能利用多样性,有一个时间差的性能和频率选择性衰落信道。其它方法都被应用到开发多样性。一种方法是传播,其中每个数据符号的传播相结合的一个长度属此,扩频码与交织的

数据,使用它们可以达到的性能用于多样性,为在瑞利衰落信道接收误码率封闭形式按[40]解决方案

有代表组合的功能,

和σ2是噪声方差。只要不健全或交错的由通道提供多样性比扩频码长度为L,或MCCDMA应用于多址干扰,(1.22)小是一个下界。对于L=1,无前向纠错的OFDM 系统(FEC)的性能得到

图表1-3在OFDM和MC-SS系统多样性的影响瑞利衰落信道

不能利用任何的多样性。根据误码率(1.22)的一个OFDM(OFDMA的,三菱商事,时分多址)系统和多载波扩频(的MC - SS)的不同扩频码L是长度,如图1-3所示的系统。没有其他的分集技术被应用。QPSK调制用于符号映射。移动无线信道建模为不相关瑞利衰落信道(见1.1.6)。由于这些曲线显示,办法,AWGN信道的一对L 时,对MC - SS系统性能有很大价值。

另一种实现形式的OFDM系统的多样性是由前向纠错信道编码,

在这里,每个数据位的信息分散在几个代码位。附加在衰落信道分集增益,编码增益一个可因适当的编码和解码算法的选择。

【精选】翻译服务合同英文

翻译服务合同英文 合同翻译一般是指对国际贸易中的合同、章程、条款的翻译。以下是整理的翻译服务合同英文模板,欢迎参考阅读。 翻译服务合同英文模板一 Technical Cooperation Agreement 甲方:XX油脂化学有限公司 Party A: XX Grease Chemical Co. , Ltd. 地址: XX高新技术工业园 Address: XXHigh-tech Industrial Park 法定代表人:XXX Legal Representative: XXX 乙方: Party B: 地址: Address: 本协议合作双方就组建技术研发团队事项,经过平等协商,在真实、充分地表达各自意愿互惠互利的基础上,根据《中华人民共和国合同法》的规定,达成如下协议,并由合作各方共同恪守。 This Agreement, concerning the setting up of a technical research and development team, is made according to the Contract Law of PRC regulations and entered into through equal negotiation by both

Parties as the free and full expression of their own wishes to mutual benefits, and to this end both Parties shall abide by this Agreement as following. 第一条、甲方同意雇用乙方为新产品研发技术顾问。乙方同意为甲方提供技术 顾问服务。 Article 1: Party A hereby agrees to employ party B as the technical consultant for the new product research and development. Party B hereby agrees to offer technical consultation service to Part A. 第二条、甲方同意每月支付乙方的研究费用,包括:薪资、办公费、检测费、 差旅费以及其他相关费用。 Article 2: Party A hereby agrees to pay Party B for the research each month, including salaries, administrative expenses, detection cost, traveling expenses and other cost associated. 第三条、乙方有责任为甲方提供相关国内外技术及市场信息,并及时答复甲方 技术上所遇到的问题。 Article 3:Party B is responsible to provide relevant technical and market information home and abroad and is ready to answer any technical problem frequently asked by Party A. 第四条、乙方有义务向甲方提供有关个人简历和相关证明材料,甲方要尊重乙

spss软件的菜单及所有单词中英文翻译大全

SPSS 统计软件的主菜单及子菜单

spss软件的中英文翻译 Absolute deviation, 绝对离差 Absolute number, 绝对数 Absolute residuals, 绝对残差 Acceleration array, 加速度立体阵 Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度 Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度 Acceleration vector, 加速度向量 Acceptable hypothesis, 可接受假设 Accumulation, 累积 Accuracy, 准确度 Actual frequency, 实际频数 Adaptive estimator, 自适应估计量 Addition, 相加 Addition theorem, 加法定理 Additivity, 可加性 Adjusted rate, 调整率 Adjusted value, 校正值 Admissible error, 容许误差 Aggregation, 聚集性 Alternative hypothesis, 备择假设 Among groups, 组间 Amounts, 总量 Analysis of correlation, 相关分析 Analysis of covariance, 协方差分析 Analysis of regression, 回归分析 Analysis of time series, 时间序列分析 Analysis of variance, 方差分析 Angular transformation, 角转换 ANOVA (analysis of variance), 方差分析 ANOVA Models, 方差分析模型 Arcing, 弧/弧旋 Arcsine transformation, 反正弦变换 Area under the curve, 曲线面积 AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计 Arithmetic grid paper, 算术格纸 Arithmetic mean, 算术平均数

中英文翻译(修改)

建筑结构在冲击负载作用下连续倒塌分析方法 摘要:建筑物在冲击负载作用下的连续倒塌已经引起了全世界的极大关注。对于一个经济的,安全的,能够抵抗冲击负载作用下连续倒塌的建筑结构设计,连续倒塌分析是必不可少的。因为连续倒塌的灾难性特点,和为了抵抗它而潜在的建造和改造建筑物的高额费用,所以连续倒塌分析方法是绝对必要且可信的。对于工程师们而言,他们估算连续倒塌的方法不仅仅要求精确和简要,而且容易上手,立竿见影。因而,最近许多研究者都在发展可靠有效和直接的连续倒塌分析方法上花费了很多的精力。在最近的干物上,当前在文献资料中找得到的关于连续倒塌的分析方法被重新审阅。人们广泛讨论它们的适宜性、适用性和可靠性。我们也提出了最近刚刚完成的关于钢筋混凝土框架在爆破荷载下的连续倒塌新分析方法。 关键词:连续倒塌分析;建筑结构;爆炸荷载;冲击荷载 连续倒塌被定义为“由于一个基本的局部构件失效在构件之间扩散最终造成整个结构或者是不成比例的一大部分倒塌”。其含义为一个或者一组关键承重构件的失效造成周围构件的失效和部分或者是整个结构的倒塌。建筑结构的连续倒塌可能由一系列的意外和人为的因素造成,比如:错误的建造顺序,偶然过载造成的局部失效,爆炸和地震造成的关键组件的损坏。这篇论文仅仅研究了特殊荷载(如:爆炸和冲击),造成的建筑结构连续倒塌的分析。 随着最近Alfred P.Murrah联邦大楼和世界贸易中心(WTC)的倒塌,许多的研究更多的关注如何建造抵抗由于爆炸和冲击荷载造成连续倒塌的建筑。对于一个经济的,安全的,能够抵抗冲击负载作用下连续倒塌的建筑结构设计,连续倒塌分析是必不可少的。因为连续倒塌的灾难性特点,和为了抵抗它而潜在的建造和改造建筑物的高额费用,所以连续倒塌分析方法是绝对必要且可信的。对于工程师们而言,他们估算连续倒塌的方法不仅仅要求精确和简要,而且容易上手,立竿见影。因而,最近许多研究者都在发展可靠有效和直接的连续倒塌分析方法上花费了很多的精力。

专业英文合同翻译服务收费标准

专业英文合同翻译服务收费标准拨--打【4000-537-407】 精诚翻译提前您,找翻译服务时,请勿在收到翻译稿件之前进行银行转账,根据我们的经验,要求未做事之前银行卡付款的,很多是骗子,请你切记切记!精诚翻译五折优惠中六年经验!先翻译后付费学生客户送50元优惠券,可以搜索精诚翻译找到我们 英语中,比较结构的句型复杂,表现形式多样。在翻译的时候,需要仔细分析,在准确理解的基础上,才能进行贴切的表达。所以,从理解与表达的角度来看,比较的形式是次要的,真正重要的是意义上的比较。只要意义上表示比较,就属于比较句式。常见的比较结构的意义很容易理解,所以也比较容易翻译,如:I am taller than he.(我比他高)。因此,这里不再叙述基本比较结构的翻译方法,而主要介绍在意义上容易混淆的比较结构的翻译。 一、as…as…句型 (一)as…as…句型 as…as…句型是同级比较,表示两者比较程度一样。所以在翻译的时候,通常翻译为“…和….一样”。 My parcel is as heavy as yours. 我的包裹和你的包裹一样重。 She is as much interested in music as ever. 她和以前一样对音乐感兴趣。 The economic development in our country is as stable recently as formerly. 最近,我国的经济发展和以前一样稳定。 (二)not as (or so)…as…句型 跟as…as…句型相反的结构not as (or so)…as…表示两者的程度不一样,前者不如后者,所以,通常翻译为“…不如…”。 My uncle is not as (or so) tall as your father. 我叔叔不如你父亲高。 People are not so honest as they once were. 人们现在不如过去那样诚实了。 (三)not so much …as…句型 not so much …as…这个结构表示的基本意义和not as (or so)…as…一样,但是通常翻译为“与其说…不如说…”。 He was not so much angry as disappointed. 他与其说是生气,还不如说是失望了。(可以理解为:“他的生气不如失望多”,就是说“他

中英文翻译

多危害公路桥梁设计标准 George C. Lee1 , Mai Tong2 and Phillip Yen3 摘要: 根据AASHTO标准LRFD在哲学的研究方法,一项具有比例的作为危险比较的标准被作为联邦公路管理局和土木工程硕士研究的课题。本文介绍的一般做法是由MCEER进行建立各种灾害事件及其影响,预计公路桥梁适当比较的平台。 1.0介绍: 除了正常的功能要求外,多重危害(如:如地震、风的风味,洪水、船舶碰撞,交通超载事故,和恐怖主义袭击等)必须适当考虑在公路桥梁设计内,。当前的AASHTO桥梁设计规范提供了每个载荷危害的详细危险识别。为进一步研究抗多种灾害的桥梁,有必要建立桥梁对接的测量标准。例如在返回期间或在某一时间内发生的概率超出标准的各种危害就可以用一个简单的标准来考虑解决。然而,它并不完全合理运用这种标准来校准,因为许多其他有影响的因素,如危害持续时间的不确定性,桥梁设计荷载的危险,关键部件的脆弱性,风险危害引起的后果,影响潜力的地区和损伤的桥梁可能会有所不同。事实上,在目前的AASHTO 标准规范,设计地震灾害定为475的回报期,其中已经有50年超出标准10%的历史。从NEHRP(NEHRP 2000)最近建议的基础上,还打算增加对重大桥梁的回报期至2000-2500年。正确的设计地震重现期仍在研究和专业的社会讨论。根据ASCE的07-95,风危害的回报期定于50年,根据FHWA HEC 18 冲刷的回报期定为100年。相比之下,根据设计的生命桥跨度(戈恩等2003),活负载的最高年限定为75年,目前尚没有统一的对跨板灾害发生频率的设计要求。 2.0AASHTO标准LRFD致多灾害大桥设计改进 美国公路桥梁设计的主旨是在于将标准规格的AASHTO标准过渡到AASHTO标准的LRFD上。在认识到LRFD设计方法的优势基础上,又因为设计上主要的不确定性来自需求装载危险。所以适当的对公路桥梁设计的多重危险的比较是非常重要的。 从AASHTO标准LRFD设计方法论的角度看,每一个桥梁的设计应为指定的极限状态。低强度的危害桥梁的经验,定期和极端灾害事件这两个的设计标准是极限状态的设计代表。这意味着,桥梁结构系统,包括其部分和连接的设计必须首先达到失效机制。因此,过度意外的构件要尽量避免,因为它可能会在对结构产生不利影响,不良的位置 导致损坏(如塑料合页)。 AASHTO标准LRFD不同于AASHTO是因为LRFD的设计不同于传统的ASD,.应力设计方法。建筑署设计的一个主要弱点是,没有考虑到既高于预期负荷概率和低于预期的实力在同一时间和地点发生,而把所有载荷和载荷组合一视同仁的看待。因此,它具有很少或根本没有设计标准之间的假设,以及许多实际性成分的桥梁,或实际发生的事件的概率(Kulicki 1999年)有直接关系。 为了克服ASD方法的不足,LRFD在标准偏差或者变异系数的随机变量- 破坏指数β(这是一个失败的概率测量给定的负载设置,该元件的标称电阻正在设计。)的规范基础上建立。 β值直接关系到失败的概率大小。依据以往对剪力和弯矩规格模拟和实际的桥梁的设计, 可靠性指标对其进行了评价模拟。可靠性指标的范围涵盖了从小于2广泛高于4。正如(诺瓦克1999)编制的数据表明,过去的做法是由β= 3.5表示,该值被选中作为对LRFD规范校准目标。β= 3.5对应的安全统一的概率(1 - 对失败的概率),这是等于或大于99.98%。 AASHTO标准LRFD的优点是,它提供了一个统一的概率为基础的标准来衡量一个桥梁设计的安全水平。最好是,如果有相类似的统一标准能为多种灾害对桥梁的影响进行比较,那么它将加强AASHTO标准LRFD,并提供一个危险因子校正负载坚实的基础。可惜的是,似乎没有一个可以给予灾害事件和上述原因很好的解释。继LRFD和比较缺乏统一的危害的标准在目前的多个危险桥梁设计视图的基本方法后,FHWA的研究任务是探索和建立一些可能的和合理的非均匀commeasurable标准。 3.0COMMEASURABLE准则的多种危害公路桥梁设计 单词“commeasurable”是指根据“平等”的基础上比较。从多种灾害影响或危害桥梁载荷校准比较方面说,“平等”是相当复杂的。例如,危害分类上,commeasurable回收期基础确定是建立对个人发生危害的基础上设计荷载的。在这方面,commeasurable 标准只考虑了灾害发生的不确定性; 而没有考虑造成危害的电阻结构。船只的大小和重量在特定河流的物理限制到导致了船舶碰撞是一种不能得到妥善的风险投资。因此,碰撞的影响不会随着时间显著变化。据测定,每一年的总碰撞事故与事故位置无关。 commeasurable标准的目标是不是要审判桥梁设计本身,而是提供一个“平等”的基础来评估桥梁上的一个潜在危险的事件可能造成的影响。上文指出了“平等”的基础,可以解释“发生”,“安全”,“维修费用”,“中断服务”等的不同之处。

英文翻译工具

五分钟搞定5000字-外文文献翻译【你想要的工具都在这里】 五分钟搞定5000字-外文文献翻译 工具大全https://www.wendangku.net/doc/0f12606304.html,/node/2151 在科研过程中阅读翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:G oogle“翻译”频道、金山词霸(完整版本)和CNKI“翻译助手"。 具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。

另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只见树木,不见森林”的误导。 注: 1、Google翻译:https://www.wendangku.net/doc/0f12606304.html,/language_tools google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用吧 比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译, 首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着吧,把你的那支离破碎的翻译在google里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译:https://www.wendangku.net/doc/0f12606304.html, CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接

十个最流行的在线英汉翻译网站准确性评测对比

Facebook、Digg、Twitter、美味书签(https://www.wendangku.net/doc/0f12606304.html,)……很多名声大噪且已逐渐步入主流的网络服务都是从国外开始引爆的,而即便是抛却技术上的前瞻性,仅从资源上来看“外域”的也更丰富.当网友们浏览国外网站时,即使有些英文基础,也大都或多或少要使用到翻译工具.在线翻译显然是最便捷的方式,目前提供此类服务的网站有不少,但机器智能翻译尤其考验真功夫,翻译质量的优劣直接影响着用户的阅读效果.在这里我们将全面网罗十个颇有些关注度的在线翻译服务,试炼其翻译质量、速度等各方面的表现. 参评在线翻译 1、Google翻译 网址:https://www.wendangku.net/doc/0f12606304.html,/language_tools?hl=zh-CN 2、Windows Live在线翻译 网址:https://www.wendangku.net/doc/0f12606304.html,/Default.aspx 3、雅虎翻译 网址:https://www.wendangku.net/doc/0f12606304.html,/ 4、爱词霸 网址:https://www.wendangku.net/doc/0f12606304.html,/trans.php

5、百度词典 网址:https://www.wendangku.net/doc/0f12606304.html,/ 6、海词在线翻译 网址:https://www.wendangku.net/doc/0f12606304.html,/ 7、金桥翻译 网址:https://www.wendangku.net/doc/0f12606304.html,/ 8、谷词在线词典 网址:https://www.wendangku.net/doc/0f12606304.html,/ 9、木头鱼在线翻译 网址:https://www.wendangku.net/doc/0f12606304.html,/translation/ 10、nciku在线词典 网址:https://www.wendangku.net/doc/0f12606304.html,/ 一、翻译质量比拼 单词翻译 测试项1:日常用语 翻译单词:boil 参考释义:煮沸 测试结果: 1、Google翻译:沸腾、煮沸等 2、Windows Live在线翻译:煮沸

翻译服务合同(含英文译本)

翻译服务合同(含英文译本) 甲方:_________ 地址:_________ 乙方:_________ 地址:_________ 甲乙双方本着友好协商、共同发展的原则签订本翻译服务合同,其条款如下: 一、甲方委托乙方为其提供翻译服务,及时向乙方提交清晰、易于辨认的待译资料,提出明确要求,并对乙方的翻译质量进行监督。 二、乙方按时完成翻译任务(如发生不可抗力的因素除外),向甲方提供已翻译好的打印件及电子文件各一份。具体交稿日期由双方商定。对于加急稿件,交稿期限由双方临时商议。 三、乙方对甲方提供的任何资料必须严格保密,不得透露给第三方。 四、翻译工作量统计:电子译稿:按电脑统计的中文版字符数计算(中文版word2000中"不计空格的字符数");打印译稿:按中文原稿行数×列数统计计算(行×列)。 五、乙方按优惠价格向甲方收取翻译费用:英译汉为_________元/千字符(_________字以上)。

六、乙方可以在翻译开始前为甲方预估翻译费,甲方付款时则按实际发生的工作量支付给乙方翻译费用(工作量统计方法见本合同第四条)。 七、乙方承诺,交稿后,免费对翻译稿进行必要修改,不另行收取费用。 八、付款方式:甲方在收到乙方译稿的当日按实际费用先支付乙方翻译总费用的50%,余款应在交稿后的_________日内付清,如第_________日余款还未付清,则甲方每延误一天需要向乙方交纳翻译总费用_________‰的滞纳金。 九、乙方应当保证译文的翻译质量和翻译服务达到行业公允的水平,如对译文的翻译水平发生争议,应由双方共同认可的第三方评判,或者直接申请仲裁。 十、本合同一式两份,双方各执一份,经甲乙双方签章后生效。 甲方(盖章):_________ 乙方(盖章):_________ 代表(签字):_________ 代表(签字):_________ 签订地点:_________ 签订地点:_________ _________年____月____日_________年____月____日 附件: translation agreement

翻译(笔译)合同 (中英文)

合同编号:Contract No. 甲方: Party A: 乙方:Party B: 乙方为甲方提供翻译服务,甲乙双方确认提供的联系方式准确无误。经双方协商一致,特签订本合同,以资恪守。 Party B shall provide Party A with translation service and both parties confirm that the contact information provided hereunder is accurate. The parties, on the basis of consensus, have entered into the Agreement as follows: 一、翻译项目名称:Translation Project: 二、合作价格: Price: 字数计算办法及译件规格要求:WORD文档以字符数不计空格为准,书写稿以含标点 符号与阿拉伯字数的手工点数为准;文本框或图片中的文字另行计算。 Word count measures and source text specifications: Word count shall be subject to "Number of characters excluding spaces" for a WORD document; manual count of characters including punctuation and Arabic numbers for a manuscript; characters in text boxes and pictures shall be counted separately. 三、付款方式: 合同签订之日甲方预付50%定金,交稿三天内按实际翻译费用向乙方 支付余款 Payment Term: Party A shall pay Party B 50% of the contract amount as a deposit within three days from the date of signature, and pay the balance according to the actual translation fees within one week after delivery of the translation.

云技术和服务中英文对照外文翻译文献

中英文对照外文翻译文献 (文档含英文原文和中文翻译) 译文: 利用云技术和服务的新兴前沿:资产优化利用 摘要 投资回报最大化是一个主要的焦点对所有公司。信息被视为手段这样做。此信息是用来跟踪性能和提高财务业绩主要通过优化利用公司资产。能力和速度,这是可能的收集信息并将其分发到当前的技术该组织正在不断增加,事实上,有超过了行业的能力,接受和利用它。今天,生产运营商被淹没在数据的结果一种改进的监控资产的能力。智能电机保护和智能仪器和条件监控系统经常提供32多块每个设备的信息都与相关的报警。通常运营商没有装备来理解或行动在这个信息。生产企业需要充分利用标的物专门为这个目的,通过定位他们的工程人员区域中心。这些工程师需要配备足够的知识能够理解和接受适当的行动来处理警报和警报通过这些智能设备。可用的信息可以是有用的,在寻找方法增加生产,减少计划外的维护和最终减少停机时间。然而,寻找信息在实时,或在实时获得有用的信息,而不花了显着的非生产时间,使数据有用的是一个巨大的挑战。本文将介绍云技术作为一种获取可视化和报告的经济方法条件为基础的数据。然

后,它将讨论使用云技术,使工程资源与现场数据可通过网络浏览器访问的安全格式技术。我们将覆盖资产的方法多个云服务的优化和效益飞行员和项目。 当重工业公司在全球范围看,世界级运营实现整体设备效率(OEE)得分百分之91。从历史上看,石油和天然气行业的滞后,这得分十分以上(Aberdeen 集团“操作风险管理”十月2011)。OEE是质量的商,可用性和效率得分。这些,可用性似乎影响了石油和天然气行业的最大程度。在石油和天然气的可用性得分的根源更深的研究导致旋转资产作为故障的根本原因,在70%的情况下,失去的生产或计划外停机。鉴于这一行业的关键资产失败的斗争,但有方法,以帮助推动有效性得分较高,以实现经营效率的目标。. 在未来十年中,海上石油储量的追求将涉及复杂的提取方法和海底提取技术的广泛使用。提取下一波的储量将需要复杂的设施,在海底,以及更传统的表面生产设施的形式。面对日益复杂的生产系统,石油和天然气经营公司正在努力成功地经营这些复杂的设施与一个退休池的主题专业知识。 该行业的答复,这一现象是显着的使用智能设备组织的斗争,把数据转换成过程控制系统,成本很高,然后向工程师提出所有的数据,每一次发生的事件。工程师然后花时间挖掘数据,建立数据表和创建有用的信息,从桩。由此他们可以开始工作的问题或问题。不幸的是,这项工作需要的经验,资产和数据。 更换行业和组织的知识是一个挑战,推动生产企业探索定位主题的专业知识,在资源的枢纽,跨多个资产。挑战来自于2个方面。首先,生产系统,无论是在表面上,在海底,需要复杂的生产系统和子系统的许多组件。其结果是,操作这些设施的自动化系统是非常复杂的,往往需要运营商与200000多个标签的数据和由此产生的报警接口。 其次,将标的物专家在区域枢纽创建的安全风险,必须解决的设计自动化系统。启用24小时的实时数据访问远程定位的主题的专业知识,需要建立在互联网技术的隧道,使监控从远程办公室,平板电脑和移动设备。一个健全的安全策略是需要这种支持的一部分。 传统的方法继续影响停机时间。简而言之,如果工程或维护需要建立一个电子表格,查找数据,操纵它,然后通过它来查找真相,在采取行动时损失的时间会导致停机时间的增加。基于角色的可视化和报告,与非生产性工作的自动化配

软件工程中英文翻译

Internet of electronic information resources development and utilization The development and utilization of Internet richness of the electronic information resource, which can be directly consider E-mail, file transfer, Telnet approach, also can indirectly consider using several common information retrieval tool, the paper made a detailed introduction and analysis, aims to help help user well using the Internet. For information institutions or library is concerned, to learn and use well, not only can enlarge Internet information resources development and utilization of the scope, but also able to enhance the level of service to users. Keywords Internet electronic information resources development and utilization Exploitation andUtilization of Electronic Information Resources on Internet - The Internet can be extensive communication in the world every person, connect all the computer and provides a wealth of information resources, and provide A variety of service tool to obtain these resources. Information institutions or libraries in the Internet for information resources, retrieval electricity The son journals and newspapers, orders and electronic publications, retrieval online catalogue and union catalog, a searchable database system, access journals to discuss, through the file transfer (FTP) receiving documents. So we can use Internet richness of the information resources to expand its collection, still can use directly these information resources to carry on the information retrieval consulting services. In searching available in the email, database retrieval, file transfer, remote login, and information query tools etc. In order to enrich the exploitation and utilization of Internet information resources, the author thinks that should through the following ways. 1 directly use the Internet E-mail (hereinafter Email) Electronicmail, E-mail is a based on computer network to store, forward form various data, images, and exchange information in words of exchange System, sending and receiving and managementare in computer Internet E-mail systems management software. Email software generally provide teleport, browse, storage, transfer, delete, restore E-mail and the reply, and other functions, can match a communication, also can spread, each user has a particular coding mailbox, can with any users online information transmission, spontaneous since the received or forwardingletters. User simply equipped with a modem, a telephone lines and thcorresponding communication software, can in any part of the microcomputer with communication phase even on sending and receiving information, to realize communication. Email take storage, forwarding way, open E-mail program is adopted, the web server machine online way 24 hours working around-the-clock, always receive emails from all of the world, no matter what, when and where will the computer connected server only, can scoop out your E-mail. Need to send electronic information, users first the arbitrary length of letters for its input computer plus addressee address, and send button, the information being sent to the information high male road. On the other side of the addressee open

英译汉翻译服务合同(一)范本

甲方:_________ 地址:_________ 乙方:_________ 地址:_________ 甲乙双方本着友好协商、共同发展的原则签订本翻译服务合同,其条款如下: 一、甲方委托乙方为其提供翻译服务,及时向乙方提交清晰、易于辨认的待译资料,提出明确要求,并对乙方的翻译质量进行监督。 二、乙方按时完成翻译任务(如发生不可抗力的因素除外),向甲方提供已翻译好的打印件及电子文件各一份。具体交稿日期由双方商定。对于加急稿件,交稿期限由双方临时商议。 三、乙方对甲方提供的任何资料必须严格保密,不得透露给第三方。 四、翻译工作量统计:电子译稿:按电脑统计的中文版字符数计算(中文版Word2000中“不计空格的字符数”);打印译稿:按中文原稿行数×列数统计计算(行×列)。 五、乙方按优惠价格向甲方收取翻译费用:英译汉为_________元/千字符(_________字以上)。 六、乙方可以在翻译开始前为甲方预估翻译费,甲方付款时则按实际发生的工作量支付给乙方翻译费用(工作量统计方法见本合同第四条)。 七、乙方承诺,交稿后,免费对翻译稿进行必要修改,不另行收取费用。 八、付款方式:甲方在收到乙方译稿的当日按实际费用先支付乙方翻译总费用的50%,余款应在交稿后的______日内付清,如第___日余款还未付清,则甲方每延误一天需要向乙方交纳翻译总费用_________‰的滞纳金。 九、乙方应当保证译文的翻译质量和翻译服务达到行业公允的水平,如对译文的翻译水平发生争议,应由双方共同认可的第三方评判,或者直接申请仲裁。 十、本合同一式两份,双方各执一份,经甲乙双方签章后生效。 甲方(盖章):_________ 乙方(盖章):_________ 代表(签字):_________ 代表(签字):_________ 签订地点:_____________ 签订地点:_____________ _________年____月____日_________年____月____日

中英文在线翻译

英文翻译中文在线翻译 英文翻译中文在线翻译 (一)促进经济平稳较快发展 1. Promoting steady and robust economic development 扩大内需特别是消费需求是我国经济长期平稳较快发展的根本立足点,是今年工作的重点。 Expanding domestic demand, particularly consumer demand, which is essential to ensuring China’s long -term, steady, and robust economic development, is the focus of our economic work this year. 着力扩大消费需求。加快构建扩大消费的长效机制。大力调整收入分配格局,增加中低收入者收入,提高居民消费能力。完善鼓励居民消费政策。大力发展社会化养老、家政、物业、医疗保健等服务业。鼓励文化、旅游、健身等消费,落实好带薪休假制度。积极发展网络购物等新型消费业态。支持引导环保建材、节水洁具、节能汽车等绿色消费。

扩大消费信贷。加强城乡流通体系和道路、停车场等基础设 施建设。加强产品质量安全监管。改善消费环境,维护消费 者合法权益。 We will work hard to expand consumer demand. We will move faster to set up a permanent mechanism for boosting consumption. Wewill vigorously adjust income distribution, increase the incomes of low-and middle- income groups, and enhance people ’s ability to consume. We will improve policies that encourage consumption. We will vigorously develop elderly care, domestic, property management, medical and healthcare services. We will encourage consumer spending on cultural activities, tourism, and fitness; and implement the system of paid vacations. We will actively develop new forms of consumption such as online shopping; support and guide the consumption of green goods such as environmentally friendly building materials, water-saving sanitation products, and energy-efficient vehicles; and expand consumer credit. We will improve the urban-rural logistics system and infrastructural facilities, such as roads and parking lots, strengthen supervision over product quality and

售后服务相关中英文翻译

九、设备制作周期:Manufacture cycle: 设备制作周期:收到定金之日起150个天完工(制作时间100天、安装调试时间50天)。 Complete in 150 working days after receive down payment (manufacture time: 100 days, installation and commissioning time: 50 days) 十、售后服务及质量保证:After Sales Service & Warranty: 1、售后服务保证:After Sales Service & Warranty: A、设计图纸:Design Drawing 乙方在设备验收前,向甲方交付:文字版或电子版技术资料一套,包括: 设备主要性能、技术参数、主要机械结构图、网管图、电器原理图及接 线图。 Before acceptance of the equipment, HEKEDA will supply the following documents to the customer: 1 set English text version and Chinese version or an electronic version of the technical information, including: major equipment performance data, technical parameters, the main mechanical structure drawings, piping diagrams, electrical schematics and wiring diagram B、使用说明书Operation instruction 乙方在设备验收前,向甲方交付:设备使用手册及维护保养手册各一套。 Before acceptance of the equipment, HEKEDA will supply 1 set of equipment operation manual and maintenance manual in English version to the customer. C、易损件、关键部件Consumable Parts and main parts: 乙方在设备验收前,向甲方交付一套易损件、关键部件的清单。 Before the acceptance of the equipment, HEKEDA will supply the consumable and main parts list to the customer D、技术培训Technical Training 技术培训人员为机电工程师和现场操作工人,培训内容为机械及电气维 修、保养和生产线操作。 Provided technical training for the operators, training content is including mechanical and electrical repair, maintenance and plating line operation. E、质保期及服务方法Warranty Period & Service 乙方所提供的设备保修期为一年。保修期内,凡该生产线所出现的非人

相关文档