文档库 最新最全的文档下载
当前位置:文档库 › 变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应实验报告
变温霍尔效应实验报告

变温霍尔效应

摘要:本实验采用范德堡测试方法,通过控温的方式测量了碲镉汞单晶样品的霍耳系数随温度的变化,得到并分析了实验与理论对比的1ln H R T ??

-

???

曲线,还对电子迁移率与空穴迁移率的比值作了估算。

关键词:霍耳效应,霍耳系数,半导体,载流子,控温,变温测量。

1. 引言

对通电的导体或半导体施加一与电流方向垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,这个现象于1879年为物理学家霍尔所发现,故称为霍尔效应。在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,至今仍然是半导体材料研制工作中必不可少的一种常备测试手法。在本实验中,采用范德堡测试方法,测量样品霍尔系数随温度的变化。

2. 实验原理

2.1霍尔效应

2.1.1霍尔效应

霍尔效应是一种电流磁效应,如图1所示:

图 1霍耳效应示意图

当样品通以电流I ,并加一磁场垂直于电流,则在样品的两侧产生一个霍尔电位差:

H H

IB

U R d

=, H U 与样品厚度d 成反比,与磁感应强度B 和电流I 成正比。比例系数H R 叫做霍尔系数。

霍尔电位差是洛伦兹力和电场力对载流子共同作用产生的结果【1】。

2.1.2一种载流子导电的霍尔系数

P 型半导体:1

H

H p R pq μμ??=

? ???

, N 型半导体:1

H H n R pq μμ??=-

?

??

, 式中n 和p 分别表示电子和空穴的浓度,q 为电子电荷,n μ和p μ分别是电子和空穴的电导迁移率,H μ为霍尔迁移率,H H R μσ=(σ为电导率)【1】。

2.1.3两种载流子导电的霍尔系数

假设载流子服从经典的统计规律,在球形等能面上,只考虑晶体散射及弱磁场

(4

10B μ ,μ为迁移率,单位为()2cm V S ,B 的单位为T )的条件下,对于电子和

空穴混合导电的半导体,可以证明:

()2

2

38H p nb R p nb π-=+(1)

其中n

p b μμ=。

2.1.4P 型半导体的变温霍耳系数

P 型半导体与N 型半导体的霍耳系数随时间变化曲线对比如图2所示(见文献【1】);

其中曲线中各区间的物理意义将在后面结合本实验得到的曲线具体分析。

图 2P 型半导体和N 型半导体的ln

1H R T -曲线

2.2实验方法

本实验采用范德堡法测量单晶样品的霍耳系数,其作用是尽可能地消除各种副效应。 考虑各种副效应,每一次测量的电压是霍耳电压与各种副效应附加电压的叠加,即

1H E N RL H U U E E E E

=++++?实

其中,

H U 实

表示实际的霍耳电压,

E E 、N E 和RL E 分别表示爱廷豪森效应、能斯特效应、

和里纪-勒杜克效应产生的附加电位差,E ?表示四个电极偏离正交对称分布产生的附加电位差。

设改变电流方向后的测得电压为2H U ,再改变磁场方向后的测得电压为3H U ,再改变

电流方向后的测得电压为

4H U ,则有

234

H E N RL H H E N RL H H E N RL H U U E E E E U U E E E E U U E E E E

?=--++-??

=+---???=----+??实实实

所以有

()12341

4

H H H H E H U U U U U E -+-=+实,由于E E 与霍耳电压一样既与电流方向有关由于磁场方向有关,因此范德堡法测量霍耳系数不能消除爱廷豪森效应,即所测得到的所谓的“霍耳电压”实际上包括了真实的霍耳电压和爱廷豪森效应的附加电压,即

()12341

4

H H H H H E H U U U U U U E =

-+-=+实(2) 霍耳系数可由下面的公式(3)计算得出:

H H U t

R IB

=

(3) 式中H U 的单位为V ;t 是样品厚度,单位为m ;I 是样品电流,单位为A ;B 是磁感应强度,单位为T ;霍耳系数H R 的单位是3

m C 。

3. 实验仪器

VTHM -1型变温霍耳效应仪(包括DCT -U85电磁铁及恒流电源,SV -12变温恒温器,TCK -100控温仪,CVM -2000电输运性质测试仪,连接电缆,装在恒温器内冷指上的碲镉汞单晶样品),如图3所示

图 3变温霍耳效应系统示意图

4. 实验数据处理及分析

本实验中碲镉汞单晶样品的厚度为0.94mm ,样品通电电流大小为10I mA =,外磁感应强度大小为0.435B T =;改变温度测量各温度下的1H U 、2H U 、3H U 和4H U ,利用公式(2)和公式(3)即可计算H U 和H R 。

本实验中测量样品霍耳系数的温度范围为80T K =至300T K =,共测了42个点。其中在温度202.62T K =和255.22T K =的两个测量点由于恒温器读数的滞后,其示数跳动范围比较大,造成了比较大的偶然误差,使得这两点偏离整体趋势线比较远,在这里舍去不取。这样由剩下的40组比较可靠的点得到了实验的1ln H R T ??

-

???

曲线,如图4所示: -9

-8-7-6-5-4-3-2

-100

0.0020.0040.0060.008

0.01

0.0120.014

1/T

l n (|R H |)

图 4实验得到的样品的ln

1H R T -曲线

由得到的实验曲线可以看出此曲线包括以下四个部分:

1)83.01T K =至155.17T K =,这是杂质电离饱和区,所有的杂质都已经电离,载流子浓度保持不变。P 型半导体中p n ,在这段区域内有0H R >。本实验中测得到的杂质电离饱和区的霍耳系数为30.003686HS R m C =。

2)155.17T K =至182.99T K =(即180T K =左右),即温度逐渐升高时,价带上的电子开始激发到导带,由于电子迁移率大于空穴迁移率,即1b >,当温度升高到2p nb =时,有0H R =,如果取对数就会出现图中凹陷下去的奇异点。

3)182.99T K =至213.56T K =,即当温度再升高时,更多的电子从价带激发到导带,2p nb <而使0H R <,

随后H R 将会达到一个极值HM R 。此时,价带的空穴数A p n N =+(其中A N 表示受主杂质提供的空穴数),将此式代入公式(1),并求H R 对n 的导数,得到H R 的极值:

()

()

2

2

1131

844HM HS

A b b R R N q

b

b

π--=-

=-(4)

实验中测得的30.01823HM R m C =-(此时的温度为213.56T K =)。再将得到的HS R 和

HM R 值带入公式(4)可以解得电子迁移率和空穴迁移率b 的估算值,即

21.74n

p

b μμ=

≈。 4)213.56T K =至301.06T K =,即当温度继续升高时,到达本征激发范围内,载流子浓度远远超过受主的浓度,霍耳系数与导带中电子浓度成反比。因此,随着温度的上升,曲线基本上按指数下降。由于此时载流子浓度几乎与受主浓度无关,所以代表杂质含量不同的各种样品的曲线都聚合在一起。

5. 结论

本实验采用范德堡测试方法,通过控温的方式测量了碲镉汞单晶样品的霍耳系数随温度的变化,得到了实验上的1ln H R T ??

-

???

曲线,并结合理论分析了曲线中各区间的物理意义,还对电子迁移率与空穴迁移率的比值n p b μμ=作了估算。

参考文献

[1] 熊俊.近代物理实验.北京:北京师范大学出版社,2007 [2] 黄昆.固体物理学.北京:高等教育出版社,1988

霍尔效应实验

霍尔效应实验 【实验目的】 1.了解霍尔效应实验原理。 2.测量霍尔电流与霍尔电压之间的关系。 3.测量励磁电流与霍尔电压之间的关系。 4.学会用“对称测量法”消除负效应的影响。 【实验仪器】 QS-H霍尔效应组合仪(电磁铁、霍尔样品、样品架、换向开关和接线柱),小磁针,测试仪。 【实验原理】 1.通过霍尔效应测量磁场 霍尔效应装置如图1和图2所示。将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极、上施加电流I时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力F B的作用。 (1)

图1 实验装置图(霍尔元件部分) 图2 电磁铁气隙中的磁场 无论载流子是负电荷还是正电荷,F B的方向均沿着x方向,在洛伦兹力的作用下,载流子发生偏移,产生电荷积累,从而在薄片、两侧产生一个电位差,,形成一个电场E。电场使载流子又受到一个与方向相反的电场力, (2)

其中b为薄片宽度,F E随着电荷累积而增大,当达到稳定状态时=,即 (3) 这时在、两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极、称为霍尔电极。 另一方面,设载流子浓度为n,薄片厚度为d,则电流强度I与u 的关系为: (4) 由(3)和(4)可得到 (5) 令则 (6) 称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。 在应用中,(6)常以如下形式出现: (7) 式中称为霍尔元件灵敏度,I称为控制电流。 由式(7)可见,若I、已知,只要测出霍尔电压,即可算出磁场B的大小;并且若知载流子类型(n型半导体多数载流子为电子,P型半导体多数载流子为空穴),则由的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。

范德堡测试方法与变温霍尔效应

范德堡测试方法与变温霍尔效应 摘要:本实验采用范德堡测试方法,测量样品霍耳系数及电导率随温度的变化,可以确定一些主要特性参数——禁带宽度,杂质电离能,电导率,载流子浓度,材料的纯度及迁移率,从而进一步探讨导电类型,导电机理及散射机制。 关键词:霍尔效应、范德堡测试法、霍尔系数、电导率 引言:对通电导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。利用霍尔效应测量霍耳系数及电导率是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。 一、原理部分: (一)、半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。 1、本征激发 在一定的温度下,由于原子的热运动,价键中的电子获得足够的能量,摆脱共价键的束缚,成为可以自由运动的电子。这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的。 这种可以自由移动的空位被称为空穴。半导体不 仅靠自由电子导电,而且也靠这种空穴导电。半 导体有两种载流子,即电子和空穴。 从能带来看,构成共价键的电子也就是填充 价带的电子,电子摆脱共价键而形成一对电子和 空穴的过程,就是一个电子从价带到导带的量子 跃迁过程,如图1 所示。 纯净的半导体中费米能级位置和载流子浓 度只是由材料本身的本征性质决定的,这种半导 体称本征半导体。本征半导体中,在电子—空穴 对的产生过程中,每产生一个电子,同时也产生 一个空穴,所以,电子和空穴浓度保持相等, n表示,称为本征载流图1 本征激发示意图 这个共同的浓度用 i 子浓度。这种由半导体本身提供,不受外来掺杂影响的载流子产生过程通常叫做本征激发。 2.、杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性能,主要由浅杂质决定。浅杂质分为两种类型,一种是能够接收价带中激发的电子变为负离子,称为受主杂质。由受主杂质电离提供空穴导电的半导体叫做P 型半导体如图2(a)所示。还有一种可以向半导体提供一个自由电子而本身成为正离子,称为施主杂质。这种由施主杂质电离提供电子导电的半导体叫做n 型半导体,如图2(b)所示。

霍尔效应实验报告

霍耳效应实验报告 学号:200702050940 实验人:张学林 同组人: 杨天海 实验目的: 1、 观察霍耳效应; 2、 了解应用霍耳效应进行简单的相关测量的方法 实验内容: 1、确定样品导电类型; 2、测算霍耳系数、载流子浓度、霍耳灵敏度; 3、测算长螺线管轴线上的磁场分布。 实验原理: 一、关于霍耳效应 如图一所示。当电流通过一块导体或半导体制 成的薄片时,载流子会发生漂移。 而将这种通有电流的薄片置于磁场中,并使薄 片平面垂直于磁场方向。根据图一中的电流方向,并结合右手定则,我们可以看到:(1)无论导体中的载流子带正电荷还是负电荷,其受力均为F m 方向;(2)载流子均会沿X 轴方向运动,并最终靠在A 端。于是:(1)当载流子为正电荷时薄板A 端带正电荷,导致板A 端电势高于B 端;(2)当载流子为负电荷时薄板A 端带负电荷,导致板B 端电势高于A 端。 这就是霍耳效应。 二、关于霍耳效应性质的研究 如图一,关于霍耳效应的相关参量已如图所 示。 其中载流子所受的磁场力 m F qvB = (1) 载流子所受的电场力 e F qE = (2) 当其所受磁场力与电场力受力平衡时: (a B (b z y x (图一)

有关系, e m F F = (3) 且有, H H U E a vBa == (4) 我们又知道,(I v n nqab = 为载流子浓度) (5) 于是,由(1)~(3)可知 H IB E nqab = (6) 再结合(4)式可得 1 ()H IB U IB nqb nqb = = (7) 令 1 H R nq = (8) 为霍耳系数,并代入(7)式可得 H H B U R I b = (9) 那么,霍耳系数又可表示为 H H U b R IB = (10) 即, 1 H H U b R IB nq = = (11) 三、关于霍耳效应的应用 1、利用霍耳效应确定导体的类型 由(11)式可得,导体横向电势差与导体中载流子类型有关:当H U 为正时载流子为电子,导体为P 型半导体;反之,载流子为空穴,导体为N 型半导体。 2、利用霍耳效应计算霍耳系数 根据(9)式,可以固定B 、b ,改变I 得到U H ,多测几组U —I 值。然后根据几组U —I 值在直角坐标系中描 点,可根据拟合出来的直线的斜率求出霍耳系数。 3、 霍耳灵敏度的计算 若将(7)式中的括号以内的项定义为霍耳灵敏度,即令1 n H K R b nqb ==。于是,(二、2)中的霍耳系数计算出来,霍耳灵敏度也就计算出来了。 4、利用霍耳效应计算载流子浓度 由(7)、(11)式可得1H n R q = 。

霍尔效应实验

霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 二、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力 (1) 其中e 为载流子(电子)电量, 为载流子在电流方向上的平均定向漂移速率,B B v e F z V

霍尔效应原理与实验

霍尔效应 一、简介 霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。流体中的霍尔效应是研究“磁流体发电”的理论基础。 二、理论知识准备 1. 1. 霍尔效应 将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。H V 称为霍尔电压。 X (a) (b) 图1 霍尔效应原理图 实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即 d IB R V H H =(1) 或 IB K V H H =(2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。 如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B 中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为 j eVB B V e B V q F m -=?-=?=(3) 式中V 为电子的漂移运动速度,其方向沿X 轴的负方向。e 为电子的电荷量。m F 指向Y 轴的负方向。自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正 电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场H E (即霍尔电场),使运动电子受 到一个沿Y 轴正方向的电场力e F ,A 、B 面之间的电位差为H V (即霍尔电压),则 j b V e j eE E e E q F H H H H e ==-==(4)

变温霍尔效应

学号:PB07203143 姓名:王一飞院(系):物理系 变温霍尔效应 【实验目的】 1、通过该实验,学习利用变温霍尔效应测量半导体薄膜的多种电学性质的方法。 2、掌握霍尔系数、霍尔迁移率和电导率的测量方法,了解它们随温度的变化规律。 3、测定样品的导电类型和载流子浓度,并计算出禁带宽度和杂质电离能等。 【实验原理】 1、半导体的能带结构和载流子浓度 本征半导体中本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流 子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 若所掺杂质的价态大于基质的价态,即施主杂质,称为 n 型半导体;若所掺杂质的价态小 于基质的价态,即受主杂质,称为 p 型半导体。 当导带中的电子和价带中的空穴相遇后,电子重新填充原子中的空位,导致相应的电子 和空穴消失,这过程叫做电子和空穴的复合。在这一过程中,电子从高能态的导带回到低能态的价带,多余的能量以热辐射的形式(无辐射复合)或光辐射的形式(辐射复合)放出。 当温度在几十K左右时,只有很少受主电离,空穴浓度P远小于受主浓度,曲线基本上为 直线,由斜率可得到受主电离能Ei。 当温度升高到杂质全电离饱和区,载流子浓度与温度无关 当在本征激发的高温区,由曲线的斜率可求出禁带宽度Eg 2、电导率和迁移率 半导体中同时有两种载流子导电时,在过渡区及本征激发区电导率可写为: [p型半导体] 设p s 为杂质全部电离产生的空穴饱和浓度,p = p s + n 则 3、霍尔效应及其测量 如右图,霍尔系数 在考虑霍尔效用时,由于载流子沿y方向发生偏转,

造成在x方向定向运动的速度出现统计分布。 考虑载流子迁移率μ = v /E时,应采用速度的统计平均结果vH 稳态时,y 方向的电场力与罗伦兹力相抵消,故有 对p型半导体,当温度处在较低的杂质电离区时 在温度逐渐升高的过程中,电子由价带激发到导带的过程加剧,出现两种载流子导电机制。 温度进一步升高,更多的电子从价带激发到导带,使,故有。随后R H 将会 达到其极值R HM 。 3、范得堡法测量电阻率和霍耳效应 原理图如右图,在样品侧边制作四个电极,依次在一对相邻 的电极用来通入电流,另一对电极之间测量电位差。 电阻率 由于两霍尔电极位置不对称引起的,叫失排电压。 设B、D电极之间电压Vo,在 B、C电极间电压Vm,在理想范德堡样品中。电流线分布在磁场前后是不变的,因而加磁场后等位面的改变使B、D间电压改变(Vm-Vo)完全是由于霍尔效应引起的, 即电压改变量就是霍尔电压V H 。 4、霍尔效应测量中的副效应及其消除方法 在测量霍耳系数时,由于存在一系列电磁和热磁副效应,使得数字电压表测出的电位差V AB 并不 等于样品的霍耳电位差V H ,而是包括了由各种副效应引起的附加电位差与V H 之和。这些副效应主要 有以下几种。 ①由于电极A与B不能真正制作在同一等位面上,所以即使在没有加磁场B的情况下,A、B间也有一个电位差,其正负与电流I的方向有关。 ②由于载流子漂移速度有一定的分布范围,当它们在磁场作用下发生偏转时,速度快的高能粒子最早在y方向形成积累,于是在y方向两霍尔电极之间出现温度差,产生温差电压V E 。这就叫艾廷豪 森效应。不难看出,VE的极性总是与V H 一致,与B和I方向有关。 ③在沿x方向给样品加电流时,两个端电极与样品的接触电阻不同,产生的焦耳热不同,将造成沿电流方向的温差,有温度梯度就会有载流子的热扩散流。在横向磁场作用下,同样也要发生偏转,积累,产生附加的霍尔电压VN。这种效应叫能斯脱效应。VN的极性只随磁场方向改变。 ④上述热扩散速度也有个分布,从艾廷豪森效应的分析不难看出,热扩散的载流子在横向磁场作 用下向y方向积累的结果使霍尔电极间有温差电压VR。这叫里纪—勒杜克效应。V R 的极性只随磁场方向改变。

霍尔效应的应用实验报告

一、 目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is ,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作电流Is ,磁场应强度B 及励磁电流IM 之间的关系。 3.学习利用霍尔效应测量磁感应强度B 及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 二、 器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is 和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 三、 原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)() (N 0)(型型?>?

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

实验报告--霍尔效应原理及其应用

实验报告--霍尔效应原理及其应用

成都信息工程学院 物理实验报告 姓名:专业:班级:学号: 实验日期:2006-09-03一段实验教室: 5206 指导教师: 一、实验名称:霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s -曲线,了解霍尔 V I V I -、H m 电压H V与霍尔元件工作电流s I、直螺线管的励磁电流m I间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 - 2 -

三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力B f作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I,在z方向加磁场B u r,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场H E,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力E B <时电荷不断聚积,电场不断加 f f 强,直到E B =样品两侧电荷的积累就达到平衡,即 f f 样品A、A′间形成了稳定的电势差(霍尔电压) V。 H - 3 -

- 4 - 设H E 为霍尔电场,v 是载流子在电流方向上的 平均漂移速度;样品的宽度为b ,厚度为d ,载流子浓度为n ,则有: s I nevbd = (1-1) 因为E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中1/() H R ne =称为霍尔系数,是反映材料霍尔效 应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算 3(/) H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定 以下参数。

低温实验讲义_霍尔效应测量汇编

实验8—1变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2.掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温 下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3.掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲 线,了解霍尔系数和电导率与温度的关系。 4.了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得 n i=n=p=(N c N v)1/2exp(-E g/2k B T)=K’T3/2 exp(-E g/2k B T) 式中N c,N v分别为导带、价带有效状态密度,K’为常数,T为温度,E g为禁带宽度,k B为玻尔兹曼常数。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

变温霍尔效应.

变温霍尔效应 如果在电流的垂直方向加以磁场,则在同电流和磁场都垂直的方向上,将建立起一个电场,这种现象称为霍耳效应。霍尔效应是1879年霍耳在研究导体在磁场中受力的性质时发现的,对分析和研究半导体材料的电输运性质具有十分重要的意义。目前,霍耳效应不仅用来确定半导体材料的性质,利用霍耳效应制备的霍耳器件在科学研究、工业生产上都有着广泛的应用。 通过变温霍尔效应测量可以确定材料的导电类型、载流子浓度与温度的关系、霍耳迁移率和电导迁移率与温度的关系、材料的禁带宽度、施主或受主杂质以及复合中心的电离能等。 一 实验目的 1.了解和学习低温实验中的低温温度控制和温度测量的基本原理与方法; 2.掌握利用霍尔效应测量材料的电输运性质的原理和实验方法; 3.验证P型导电到N 型导电的转变。 二 实验原理 1. 半导体的能带结构和载流子浓度 没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。在这一周期势场的作用下,电子的能级展宽成准连续的能带。束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。当绝对温度为0 k时,电子全被束缚在原子上,导带能级上没有电子,而价带中的能级全被电子填满(所以价带也称为满带);随着温度升高,部分电子由于热运动脱离原子束缚,成为具有导带能量的电子,它在半导体中可以自由运动,产生导电性能,这就是电子导电;而电子脱离原子束缚后,在原来所在的原子上留下一个带正电荷的电子的缺位,通常称为空穴,它所占据的能级就是原来电子在价带中所占据的能级。因为邻近原子上的电子随时可以来填补这个缺位,使这个缺位转移到相邻原子上去,形成空穴的自由运动,产生空穴导电。半导体的导电性质就是由导带中带负电荷的电子和价带中带正电荷的空穴的运动所形成的。这两种粒子统称载流子。本征半导体中的载流子称为本征载流子,它主要是由于从外界吸收热量后,将电子从价带激发到导带,其结果是导带中增加了一个电子而在价带出现了一个空穴,这一过程成为本征激发。所以,本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 为了改变半导体的性质,常常进行人工掺杂。不同的掺杂将会改变半导体中电子或空穴的浓度。若所掺杂质的价态大于基质的价态,在和基质原子键合时就会多余出电子,这种电子很容易在外界能量(热、电、光能等)的作用下脱离原子的束缚成为自由运动的电子(导带电子),所以它的能级处在禁带中靠近导带底的位置(施主能级),这种杂质称为施主杂质。施主杂质中的电子进入导带的过程称为电离过程,离化后的施主杂质形成正电中心,它所放出的电子进入导带,使导带中的电子浓度远大于价带中空穴的浓度,因此,掺施主杂质的半导体呈现电子导电的性质,称为n型半导体。施主电离过程是施主能级上的电子跃迁到导带并在导带中形成电子的过程,跃迁所需的能量就是施主电离能;反之,若所掺杂质的价态小于基质的价态,这种杂质是受主杂质,它的能级处在禁带中靠近价带顶的位置(受主能级),受主杂质很容易被离化,离化时从价带中吸引电子,变为负电中心,使价带中出现空穴,呈空穴导电性质,这样的半导体为p型半导体。受主电离时所需的能量就是受主电离能。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

霍尔效应实验报告.doc

实验报告 姓名:学号:系别:座号: 实验题目 :通过霍尔效应测量磁场 实验目的 :通过实验测量半导体材料的霍尔系数和电导率可以判断材料的 导电类型、载流子浓度、载流子迁移率等主要参数实验内容 : 已知参数: b=4.0mm, d=0.5mm,l B 'C =3.0mm. 设 B KI M,其中K=6200GS/A; 1. 保持I M =0.450A 不变,测绘V H I S曲线 测量当 I M正(反)向时,I S正向和反向时 V H的值,如下表 调节控制电流I S/mA I S B 正向V H/mV 正 B 反向V H/mV 向 I S B 反向V H/mV 反 B 反向V H/mV 向 绝对值平均值 V H/mV 做出 V H I S曲线如下

v V m / b V 16 Linear fit of date v 14 12 10 8 6 4 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Linear Regression for Data1_V: Y=A+B*X Parameter Value Error ----------------------------- -------------- A B Is/mA 由 origin 得 V H 3.564( ) I S 由 R V H d 108 (cm 3 / C ) 和 B KI M 得 H I S B V H d 10 8 3.564 0.05 10 8 6.39 10 3 3 / C ) R H I S KI M 6200 0.450 (cm 2. 保持 I S 不变,测绘 V H I M 曲线 = 测量当 I S 正( 反) 向时, I M 正向和反向时 V H 的值 , 如下表 调节励磁电流 I M /A I S B 正向 V H /mV 正 B 反向 V H /mV I S B 反向 V H /mV 反 B 反向 V H /mV 绝对值平均值 V H /mV 做出 V H I M 曲线如下

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

霍尔效应(北京科技大学物理实验报告)完整版

霍尔效应 2019年10月8日一、实验目的 学习霍尔效应原理和霍尔效应实验中的副效应及其消除方法。 学习确定半导体试样的导电类型、载流子浓度以及迁移率的方法。 二、实验仪器 QS-H型霍尔效应实验组合仪,半导体(硅)样品,导线等。 三、实验原理 由于洛伦兹力的作用,电荷出现横向偏转并在样品边界处累积,产生一个横向的电场E。当载流子所受到的电场力与洛伦兹力相等时,样品两侧电荷累积达到动态平衡,此时,即 () 如果N型半导体薄片的载流子浓度为n,样品薄片宽度为b,厚度为d,则有 () 由(1)(2)可得 () 式中,称为霍尔系数,单位 若待测半导体材料只有一种载流子导电且所有载流子具有相同的漂移速度,则载流子浓度n为 () 若考虑载流子的速度统计分布,能带结构等因素,需引入的系数 载流子的迁移速率为 () 为样品的导电率 () 式中,为样品电阻率;为A、C电极间的距离(如图1所示);为样品的横截面积;为通过样品的电流;为在零磁场下A、C间的电压。

图(1) 输入输出输入 图(2) 四、实验步骤 1、线路连接,如图2所示

2、保持磁场(即励磁电流)大小不变,改变霍尔电流大小的大小,测绘霍尔电压与电流关系曲线。取,电压测量开关选择,分别改变和换向开关方向,将测量数据填入表1中。 3、保持样品电流不变()改变励磁电流的大小,测量霍尔电压与磁场的关系曲线。电压测量开关选择,分别改变和换向开关方向,将测量数据填入表2中。 4、根据以上和曲线验证在磁场不太强时霍尔电压与电流和磁场的关系。,已知。 5、根据测量电路中的电流、磁场、霍尔电压及测量数据的正负,判断导体的导电类型。 6、在零磁场()下,取,电压表开关合向测A、C间的电压,数据计入表3中。 五、数据处理

实验报告--霍尔效应原理及其应用

成都信息工程学院 物理实验报告 姓名: 专业: 班级: 学号: 实验日期: 2006-09-03一段 实验教室: 5206 指导教师: 一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直 螺线管的励磁电流 m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 B f 作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

半导体样品,若在x方向通以电流s I ,在z方向加磁场B u r ,则在y方向即样品A、A′电 极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然, 当载流子所受的横向电场力 E B f f <时电荷不断聚积,电场不断加强,直到E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。 设 H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度; 样品的宽度为b ,厚度为d , 载流子浓度为n ,则有: s I nevbd = (1-1) 因为 E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中 1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算3(/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由 H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 s I 和B 的方向(即测量中的+s I ,+B ),若测得的H V <0(即A′的电位低于A的电位), 则样品属N型,反之为P型。

相关文档
相关文档 最新文档