文档库 最新最全的文档下载
当前位置:文档库 › 空调制冷技术设计

空调制冷技术设计

空调制冷技术设计
空调制冷技术设计

目录

1设计概况 (1)

2设备选择 (1)

2.1制冷量的选择 (1)

2.2制冷机房负荷 (1)

2.3制冷系统设计工况 (2)

2.4制冷机组 (2)

2.5冷却塔 (3)

2.6膨胀水箱 (4)

3制冷机房布置 (4)

3.1制冷机房的技术要求 (5)

3.2制冷机房的建筑布局要求 (5)

3.3制冷机房的设备安装设计 (6)

3.4制冷设备的隔振与降噪 (6)

3.5防腐与保温 (6)

4水力计算 (7)

4.1水泵选择 (7)

4.1.1冷却水泵 (7)

4.1.2冷冻水泵 (9)

4.1.3补水泵 (10)

4.2管径选择 (11)

4.2.1冷却水管 (11)

4.2.2冷冻水管 (12)

4.2.3补水水管 (12)

5其他辅助设备的选择与计算 (13)

5.1膨胀阀的选择 (13)

5.2贮液器的选择计算 (13)

5.3油氨分离器的选择计算 (13)

5.4气液分离器的选择计算 (13)

5.5集油器的选择计算 (13)

5.6不凝性气体分离器的选择计算 (14)

5.7其余辅助设备 (14)

总结 (14)

参考文献 (14)

1设计概况

制冷机房所在地:重庆市星级宾馆

冷冻水供回水温度:供水温度7℃,回水温度12℃

冷却水:自来水最高温度28℃

冷冻水输送高度:4m

空调用户所需水头:5O mH 2

制冷机房与空调机房相距:20m

建筑:层高3.5m 、面积150002

m 室外气象资料:

最热月室外空气平均温度28.4℃

最热月室外空气平均露点温度22.1℃

夏季主导风向:西南 湿球温度:26℃

夏季室外平均风速:2.8s m

夏季的大气压力:=P 998.5Mbar

2设备选择

2.1制冷量的选择

制冷量:本建筑物的总建筑面积为150002m ,根据《空气调节技术》书中《国

内部分建筑空调冷负荷指标的统计值》查的:酒店的冷负荷指标(2m W ):160-250

2m W 。

《国内部分建筑空调冷负荷指标的统计值》中注明:当建筑物的总建筑面积在小于50002m 取上限值,大于100002m 时,取下限值。按建筑空调冷负荷指标确定的冷负荷即是制冷剂容量,不必再加系数。所以,在此我们选用1602m W 。

2.2制冷机房负荷

本设计用户的空调冷负荷:Q=2400kW

()%1010+Φ=Q (2-1)

()()kW Q 2640%1012400%1010=+?=+Φ=

2.3制冷系统设计工况

冷却水进出口温度:℃281=w t 冷却水出口温度:℃332=w t 进出口温度:℃5=?t

冷凝温度:38℃℃101=+=w k t t

冷冻水进出口温度:℃121=t 冷冻水出口温度:℃72=t 进出口温度:℃5=?T

蒸发温度:4℃℃320=-=t t

冷凝器热负荷k Q

由 冷凝温度:℃38=k t 蒸发温度:℃70=t

08.1=?

Q Q k ?=?(2-2)

kW Q Q k 2.2851264008.1=?=?=?

2.4制冷机组

活塞式冷水机组适用于中、小型空调制冷系统中。其结构紧凑、占地面积小、操作简单,单机容量小,运动部件多,使用寿命不长。

螺杆式冷水机组适用于大、中型空调制冷系统中。其单机制冷量较大、运行可靠、能量调节方便,润滑油系统复杂。

离心式冷水机组适用于大、中型空调制冷系统中。其单机制冷量大、运行可靠、能量调节方便,变工况适应能力不强,易发生喘振现象。

选两台制冷机组,则一台机组冷凝器热负荷为:

kW Q Q k K 6.14255.0==

一台机组蒸发器热负荷为:

kW Q Q O 13205.0==

选两台145-XZ 螺杆式水冷机组。

制冷量1450kW 制冷剂R22

压缩机型式:半封闭螺杆压缩机,输入功率290kW

冷凝器:进出水管接口尺寸DN200水流量300h m 3

蒸发器:进出水管接口尺寸DN100水流量200m 3

外形尺寸:长×宽×高=5000mm ×2460mm ×2500mm

2.5冷却塔

冷却塔的作用是为从制冷机吸收出来的冷却水降温,使得冷却水可以循环使用,它有逆流式、横流式、喷射式和蒸发式等四种型,其型号主要依据工作温度条件和冷却水流量来选择。

冷却塔的设置位置应通风良好,远离高温或有害气体,避免气流短路以免建筑物高温高湿排气或非洁净气体对冷却塔的影响。同时,也应避免所产生的飘逸水影响周围环境。冷却塔内的填料多为易燃材料,应防止产生冷却塔失火事故。冷却塔的设置位置可分为三种:(1)、制冷站设在建筑物的地下室,冷却塔设在通风良好的室外绿化地带或室外地面上。(2)、制冷站为单独建造的单层建筑时,冷却塔可设置在制冷站的屋顶上或室外地面上。(3)、制冷站设在多层建筑或高层建筑的底层或地下室时,冷却塔设在高层建筑裙房的屋顶上。如果没有条件这样设置时,只好将冷却塔设在高层建筑主楼的屋顶上,应考虑冷水机组冷凝器的承压在允许范围内。

冷却塔的台数根据冷水机组的台数确定,一般应与冷水机组的台数相同,即“一塔对一机”不设置备用冷却塔。

冷却塔冷却水量:L=1.2 L 1=1.2×300=360h m 3

进水温度:2w t =33℃ 出水温度:1w t =28℃ 湿球温度:w t =26℃

选择DBNL 3-400低噪音型逆流冷却塔

冷却水量:400h m 3 水温降:℃5=?t 电机功率:26kW 外形尺寸:高:4450mm 直径:3580mm 自重:5610kg

运行重量:12370kg

2.6膨胀水箱

膨胀水箱的容积根据系统的水容量和最大的水温变化幅度来确定。它可以容纳水温升高时水膨胀增加的体积和水温降低时补充水体积缩小的水量,同时兼有放气和稳定系统压力的作用。

分水器和集水器筒身直径的计算可以用两种方法来计算,①按各个并联接管的总流量通过筒身时的断面流速确定,并应大于最大接管开口直径的2陪。②按经验公式计算,D=(1.5-3.0)d max ,d max 为各支管中的最大管径。

水箱容积:

S p V T V ???=α (2-3)

α--水的体积膨胀系数 0.0006℃L

T ?--最大水温变化值 5℃

S V --系统内水容量

本设计采用的是开式膨胀水箱,其有效容积

p V =0.0006×

5×15000×0.7=31.5L=0.03153m 一般的膨胀水箱有效容积为0.5-1.03m ,此系统的膨胀水量较小。则本系统的膨胀水箱有效容积可取0.53m 。那么膨胀水箱的选择见表2-1

表2-1膨胀水箱参数

3制冷机房布置

制冷剂房布置在夏季主导风向的下风侧,房高3.5m ,每小时不少于3次的自然

空调制冷站应该靠近冷负荷中心,可以设置在建筑物的地下室、设备层或屋顶上。当由于条件所限不宜设在地下室时,也可设在裙房中火与主建筑分开独立设置。

3.1制冷机房的技术要求

(1)制冷机房应有良好的通风,以便排出冷水机组、变压器、水泵等设备运行时产生的大量余热、余湿。

(2)机房应考虑噪声与振动的影响。冷水机组的噪声,不管是电动型机组或溴化锂吸收式机组,一般均在80dB(A)以上。若主机房在地面上,噪声会通过窗户、门缝通风口等隔声薄弱环节向外传出,即使主机房位于半地下室,噪声也会通过采光窗户传出去。此外,冷水机组以及水泵的振动都会通过建筑物围护结构向室外传递。所以,必须重视噪声与振动对建筑物外部与、内部环境的影响,事先应做出影响评估,施工时采取有效的减振、降噪措施。

(3)机房应有排水措施。机房中的许多设备在运行、维修过程中都会出现排水或漏水现象。为使机房内保持干燥与清洁,应设计有组织排水。通常的做法是在水泵、冷水机组等四周做排水沟,集中后排出。在地下室常设集水坑,再用潜水泵自动排水。

3.2制冷机房的建筑布局要求

机房面积、净高和辅助用房等应根据系统的集中和分散、冷源设备类型等设置。

(1)机房面积的大小应保证设备安装有足够的间距和维修空间。同时,机房面积大小的确定,应了解机房不同时期的发展规划,考虑机房扩建的余地。

(2)制冷机房的净高应根据制冷机的种类和型号而定,机房高度应比制冷机高出1-2m。一般来讲,对于活塞式制冷机、小型螺杆式制冷机,其机房净高控制在3-4.5m;对于离心式制冷机,大中型螺杆式制冷机,其机房净高控制在4.5-5.0m,对于吸收式制冷机原则上同离心式制冷机,设备最高点到梁下不小于1.5m,设备间的净高不应小于3m。

(3)大、中型机房内的主机宜与辅助设备及水泵等分区布置,不能满足要求的应按设备类型分区布置。大、中型机房内应设置值班室、控制间和卫生设施以及必要的通信设施。制冷机房的净高(地面到梁底)应根据制冷剂的种类和型号

3.3制冷机房的设备安装设计

空调制冷站的设备布置和管道连接,应符合工艺流程,流向应通畅,连接管路要短,便于安装,便于操作管理,并应留有适当的设备部件拆卸检修所需要的空间。尽可能使设备安装紧凑,并充分利机房的空间,以节约建筑面积,降低建筑费用。管路布置应力求简单、符合工艺流程、缩短管线、减少部件,以达到减少阻力、泄漏及降低材料消耗的目的。设备及辅助设备(泵、集水器、分水器等)之间的连接管道应尽量段儿平直,便于安装。制冷设备间的距离应符合要求。3.4制冷设备的隔振与降噪

(1)机房冷水机组、水泵和风机等动力设备均应设置基础隔振装置,防止和减少设备振动对外界的影响。通过在设备基础与支撑结构之间设置弹性元件来实现。

(2)设备振动量控制按有关标准规定及规范执行,在无标准可循时,一般无特殊要求可控制振动速度V≤10s

mm(峰值),开机或停机通过共振区时V≤15 mm。

s

(3)冷热源设备、水泵和风机等动力设备的流体进出口,宜采用软管同管道连接。当消声与隔振要求较高时,管道与支架间应没有弹性材料垫层。管道穿过维护结构处,其周围缝隙,应用弹性材料填充。

3.5防腐与保温

(1)为了保证机房设备,管道和附件的有效工作年限,机房金属设备、管道和附件在保温前必须将表面清除干净,涂刷防锈漆或防腐涂料作防腐处理。

(2)如设计没有特殊要求,应符合:①明装设备、管道和附件必须涂刷一道防腐漆。两道面漆。如有保温和防结露要求应涂刷两道防锈漆;暗装设备、管道和附件应涂刷两道防锈漆。②防腐涂料的性能应能适应输送介质温度的要求;介质温度大于120℃时,设备、管道和附件表面应刷高温防锈漆;凝结水箱、中间水箱和除盐水箱等设备的内壁应刷防腐涂料。③防腐油漆或涂料应密实覆盖全部金属表面,设备在安装或运输过程被破坏的漆膜,应补刷完善。

根据上述制冷机房布置原则,进行制冷机房布置,冷却塔放置在机房屋顶。设备及管道具体布置情况见图样。

冷冻水供、回水管,分水器,集水器,冷冻水系统的阀门选用柔性泡沫橡塑材料保温。

DN100及以上的,保温层厚度为25mm ;

DN65-DN80的,保温层的厚度为22mm ;

DN50及以下的,保温层的弧度为19mm 。

保温结构严格按照国家标准图集制作。

4水力计算

4.1水泵选择

冷水机组制备出的冷冻水,由冷水循环泵通过供水管路输送到空气处理设备中,而释放出冷量后的冷水经回水管路返回冷水机组。

4.1.1冷却水泵

冷却水系统的作用是将从制冷机吸取的热量散发出去,它主要有冷却塔、冷却水泵、水处理设备和冷水机组冷凝器等设备及管道组成。

冷却水系统的分类:可根据供水的方式不同分为直流供水系统和循环供水系统。(1)直流供水系统(也称天然水冷却系统)。自来水、地下水、湖泊、江河和水库中的水对于空调冷却水系统来说,都是优良的冷源,水从水源用泵输送到相关设备中吸收热量。经过设备后,水也不会被污染,可以直接排入下水道或用于农田灌输。直流供水系统全部采用新鲜水一次使用,使用效果好,但水消耗量大,必须在水源充足,水温适宜,排水问题能解决时才能采用。(2)循环供水系统中冷却水反复使用,对水在热交换时吸收的热量,采用凉水装置使其散发,只需补充少量水。

冷却水泵的安装要求:(1)当泵房设置在地面上,可用地脚螺栓直接固定在混凝土基础上。如泵房设在楼板上,则可以将水泵安装在减振装置上。当泵房设在高层建筑地下室时,可以不装配地脚螺栓,而在水泵的四角填垫减振器。(2)水泵的进出口管端必须安装橡胶软接头,并且要在进水管上安装过滤器和阀门,在出水管上安装止回阀和闸阀,进出水管必须固定。(3)为使水泵保持最佳运行性能,应在水泵进出口处配装扩散管,以减少阻力损失。扩散管管口的流速应为:吸水管不大于1.3s m ,出水管不大于2s m 。(4)水泵的出水管上还应装有压力

表和温度计,以利检测。压力表和温度计应被安装在便于观察和维修的位置上,并注意周围对其测量的准确度有影响的环境条件。

冷却水泵扬程: n o s m d f P h h h h h h H +++++=1(4-1)

f h ,d h ----冷却水管管路系统沿程阻力和局部阻力 约为5O mH 2

m h ----冷凝器阻力 约为5O mH 2

s h ----冷却塔中水的提升高度 约为2O mH 2

o h ----冷却塔喷头喷水压力 约为5O mH 2

n h ----回水过滤器阻力 约为4O mH 2

o ? 安全系数 取1.2

总扬程:

101P H H ?=(4-2)

1H =1.2×

(5+5+2+5+4)=25.2O mH 2 水泵水流量:

()()t Q L K ???=163.13.11 (4-3)

1L =(1.3×

1425.6)/(1.163×5)=318.7h m 3 1.3------附加系数

水泵功率:

()()21111100n n r H L N ????=(4-4)

1N =(318.7×

25.2×1)/(100×0.8×1)=100.4kW r ----水的比重(1L kg ) 1n ----水泵效率 取0.82n ----传动效率 取1

选择三台(二用一备)IS 系列型号为KTZ200-150-315水泵见表4-1

表4-1 KTZ200-150-315水泵参数

4.1.2冷冻水泵

冷冻水系统分类:按循环方式,冷冻水系统可分为开式循环系统和闭式循环系统(1)开式循环系统的下部设有回水箱(或蓄冷水池),它的末端管路式与大气相通的。空调冷水流经末端设备(例如风机盘管机组)释放出冷量后,回水靠重力作用集中进入回水箱或蓄冷水池,再由循环泵将回水打入冷水机组的蒸发器,经重新冷却后的冷水被输送至整个系统。其特点是:水泵扬程高,输送耗电量大;循环水易受污染,水中总含氧量高,管路和设备易受腐蚀;管路容易引起水锤想象;该系统与蓄冷水池连接比较简单。(2)闭式循环系统的冷水在系统内进行密闭循环,不与大气接触,仅在系统的最高点设膨胀水箱(其功用是接纳水体积的膨胀,对系统进行定压和补水)。其特点:水泵扬程低,仅需克服循环路阻力,与建筑物总高度无关,故输送耗电量小;循环水不易受污染,管路腐蚀程度轻;不用设回水池,制冷机房占地面积减小,但需设膨胀水箱的补水。

冷冻水泵的选择,要选有备用水泵,在本设计中选用两台运行冷冻水泵,一台备用水泵。

对于大多数多层和高层建筑来说,空调冷冻水系统主要为闭式循环系统,冷冻水泵的流量较大,但扬程不会太高。据统计,一般情况下,20层以下的建筑物,空调冷冻水系统的冷冻水泵扬程大多在16-28O mH 2,乘上1.1的安全系数后最大也就是30O mH 2。本设计的建筑为酒店,其建筑总面积为150002m ,属于20层以下的建筑物,所以我们的冷冻水泵的扬程由计算选择。

冷冻水泵扬程:

c n o s m

d f P h h h h h h h H ++++++=2(4-5)

f h ,d h ----冷冻水管管路系统沿程阻力和局部阻力 约为5O mH 2

m h ----蒸发器阻力 约为5O mH 2

s h ----末端设备(风机盘管)阻力 约为5O mH 2

o h ----空调用户所需压头 约为5O mH 2

n h ----回水过滤器阻力 约为4O mH 2

c h ----冷冻水输送高度 约为4O mH 2

o ? 安全系数 取1.2

总扬程:

202P H H ?=(4-6)

2H =1.2×

(5+5+5+5+4+4)=33.6O mH 2 水泵水流量:

()()T Q L O ???=163.13.12(4-7) 2L =5

163.113203.1??=295.1h m 3 水泵功率:

())21222100n n r H L N ????= (4-8) 2N =1

8.010016.331.295????=123.9kW 选择三台(二用一备)IS 系列型号为KTZ200-150-315水泵见表4-2

表4-2 KTZ200-150-315水泵参数

4.1.3补水泵

补水泵扬程:

c d f P h h h H ++=3(4-9)

f h ,d h ----补水管管路系统沿程阻力和局部阻力 约为5O mH 2

c h ----系统最高点距补水泵接管处垂直距离 4O mH 2

0? 安全系数 取1.1

总扬程:

302P H H ?=(4-10)

2H =1.1×

(5+4)=9.9O mH 2 补水泵水流量:

233.0L L =(4-11)

3L =0.3×295.1=88.53h m 3 水泵功率:

()()21333100n n r H L N ????=(4-12)

3N =(88.53×

9.9×1)/(100×0.8×1)=11kW 4.2管径选择

()()

()s m V h m L m D ??=3600785.03 (4-13) (V 取1~1.5s m )

管径小于DN100时水流速度小于1s m ;管径大于DN100时水流速度大于1s m

4.2.1冷却水管

在冷冻水系统的运行过程中,为了减少管道的能量损失,防止冷冻水管道表面结露以及保证进入空调设备和末端空调机组的供水温度,冷冻水管道及其附件应采用保温措施。空调制冷站内,冷冻水系统的供、回水管,分水器,集水器,阀门等,均需用保温材料保温。

本设计的冷冻水系统为闭式系统,根据管径和流速推荐值进行试算,从而确定出冷冻水系统各管段管径的大小。根据已经选定的冷水机组中可以知道冷冻水出口水管管径,冷水机组冷冻水出口流量 597.6m 3

单管管径

V

L D ??=3600785.011(4-14) 1D =5

.13600785.07.318??=0.274m =274mm 取DN300 合流管管径

V L D ??=3600785.021

2 (4-15)

2D =5.13600785.07

.3182???=0.388m =388mm

取DN400 4.2.2冷冻水管

单管直径295.1h m 3533.3

V L D ??=3600785.02

3(4-16)

3D =5.13600785.01

.295??=0.264m =264mm

取DN300 合流管管径

V L D ??=3600785.022

4 (4-17)

4D =5.13600785.01

.2952???=0.373m =373mm

取DN400 4.2.3补水水管

V L D ??=3600785.03

5 (4-18)

5D =5.13600785.053

.88??=0.145m =145mm

取DN150 水管选择低压焊接、镀锌钢管(GB 3091-93)

5其他辅助设备的选择与计算

5.1膨胀阀的选择

由于该制冷系统属于小型氨制冷系统,毛细管做节流阀,它具有结构简单,安装方便的优点,但不能根据工况调节流量,在它之前再加一电磁阀即可弥补这个缺点。根据经验选毛细管选用1.2mm 内径,长为0.6m 无缝钢管,电磁阀选用DC80型。

5.2贮液器的选择计算

贮液器的容积按制冷剂循环量进行计算,但最大贮存量应不超过每小时制冷剂总循环量的1/3~1/2。同时,应考虑当环境温度变化时,贮液器内的液体制冷剂因受热膨胀造成的危险,鼓其贮存量一般不超过整个容积的70%~80%。

贮液器的容积按下列公式计算:

3600q 21~31m ?=β

VR V )( (5-1) 3m 3.0360075

.0001.07.10923.04.0=????=V 由配套的ZA —0.5B 可知其容积为:3m 5.0>33.0m 满足要求。

5.3油氨分离器的选择计算

油分离器筒体直径:

mm 3893600

27.0096.03.040154q 412

v =?????=≥πωπνλνD (5-2)压缩机配套的 YF —40 直径为400mm >389mm 满足要求。

5.4气液分离器的选择计算

汽液分离器的桶体直径按下列公式计算:

mm 6533600

3.040154q 4v =???=≥ππωλ

D (5-3) 配套的 AF —65 桶体直径为: 650mm >653 mm 满足要求。

5.5集油器的选择计算

集油器的选择是根据经验,当冷冻站的制冷量为100 ~ 300 KW 时,选用120mm

的集油器一台。型号为:JY—100。

5.6不凝性气体分离器的选择计算

一般的,一个系统只选配一台空气分离器,当冷冻站标准工况下的制冷量小于1163KW时,宜采用一台小号(桶体直径为108mm)空气分离器。根据以上条件可知:KF—32B满足要求。

5.7其余辅助设备

其余辅助设备根据经验选得,具体型号见设备清单表5-1

表5-1 设备清单

总结

通过这次课程设计,让我更加深刻了解课本知识,和以往对知识的疏忽得以补充,在设计过程中遇到一些模糊的公式和专业术语,在使用手册时,有的数据很难查出,但是这些问题经过这次设计,都得到一一解决,我相信这次课程设计给我的相当的基础,为我以后的工作打下严实的基础。

虽然这次课程设计的时间很短,一瞬间的时间,但是却让我学到了相当多的知识,这次任务原则上是设计,其实是一次大作业,是对我对课本知识的巩固和对基本公式的熟悉和应用,同时也使我做事的耐心和仔细程度得以提高。

课程设计是一个重要的教学环节,通过课程设计使我们了解到一些实际与理论之间的差异。通过课程设计不仅可以巩固专业知识,为以后的工作打下了坚实的基础,还可以培养和熟悉使用资料,运用工具书的能力,把我们所学的课本知识与实践结合起来,起到温故而知新的作用。

参考文献

以上设计计算、校核与设备选用参照以下参考文献:

[1] 严启森石文星田长青《空气调节用制冷技术(第四版)》北京:中国建筑工业出版社,2010.7

[2]郭庆堂编著《实用制冷工程设计手册》北京:中国建筑工业出版社,1994.4

[3] 章熙民任泽霈梅飞鸣编著《传热学(第五版)》北京:中国建筑工业出版社,2007.7

[4]王增长编著《建筑给水排水工程(第六版)》北京:中国建筑工业出版社,2010.8

空调机房设计

第八章 空调机房设计 8. 1 机房位置及技术要求 8.1.1 机房位置的选择与组成 1 .机房的位置选择 离心式、 螺杆式制冷机组的机房按功能分有两类: 一类是为建筑物空调服务的冷冻机房, 提供空调用的低温冷冻水,常采用冷水机组直接供冷或蓄冷槽与制冷机组组合供冷的方法;另一类是为冷藏、 冷冻服务的制冷机房, 常采用螺杆式制冷机组。 冷冻机房位置的合理选择, 对于整个建筑物的合理布局、安全方便地使用是非常重要的。选择机房位置时,应遵循建筑设计防火规范、采暖通风与空气调节设计规范、冷库设计规范等,并应综合考虑下列因素: 1)应与建筑物的总体布局相协调,机房应设在既靠近负荷中心,又能使进出机房的各类管道布置方便的地方。冷藏、冷冻的制冷机房和设备间除了要满足上述要求外,选址时还应避开库区的主要交通干线。 2)由于制冷机房用电功率大,因此机房应靠近变配电房设置,以减少线路压降损失,保证机组正常运行。 3)对于采用不同制冷剂的机房的布置,应符合下列要求: ①卤代烃压缩式制冷装置可布置在民用建筑、生产厂房及辅助建筑物内,但不得直接布置在楼梯间、走廊、和建筑物的出入口处。 ②由于氨制冷剂具有强烈的刺激性、毒性、易燃的危险性,因此氨压缩式制冷装置应布置在隔断开的房间或单独的建筑物内,但不能布置在民用建筑和工业企业辅助建筑物内。 4)单独建造的制冷机房宜布置在全厂厂区夏季主导风的下风向。在动力站区域内,一般应布置在乙炔站、锅炉房、煤气站、堆煤场和散发尘埃的站房的上风向。 5)为保证机组的散热及可靠运行,并创造一个安全、卫生的工作环境,机房位置的选择应使它能具备良好的通风和采光条件,一般应贴邻外墙布置。 6)选择机房位置时.还应考虑到设备运行时的振动和噪声对周围房间和环境的影响,一般不应贴邻办公、会议、卧室等房间布置。 7)采用冷却塔冷却方式的机房,应靠近冷却塔的位置设置,避免粗大的冷却水管占用过多的空间、消耗更多的输送动力。

空调制冷课程设计

安徽建筑工业学院 设计说明书空调用制冷技术设计计算书 专业________ 班级_______________________________ 学号________________________ 姓名__________________________ 课题___________ 空调用制冷技术 指导教师________________________

2012年6月12日 目录 一设计题目与原始条件 (3) 二方案设计 (3) 三负荷计算 (3) 四冷水机组选择 (4) 五水力计算 (6) 1冷冻水循环系统水力计算 (7) 2冷却水循环系统水力计算 (7) 六设备选择 (8) 1 冷冻水和冷却水水泵的选择 (8) 2软化水箱及补水泵的选择 (9) 3分水器及集水器的选择 (11) 4 过滤器的选择 (12) 5 冷却塔的选择及电子水处理仪的选择 (12) 6 定压罐的选择 (13) 七制冷机房的工艺布置 (14)

八设计总结 (15) 九参考文献16

设计题目与原始条件; 某空调系统制冷站工艺设计 1、工程概况 本工程为合肥市某建筑体集中空调工程,建筑单体共15层,建筑面积约30000吊,主要功能及使用面积为:商场10000卅,办公7500卅,会议中心1000卅,客房为2500卅,多功能厅500 m2。 二方案设计; 该机房制冷系统为四管制系统,即冷却水供/回水管、冷冻水供/回水管系统。 经冷水机组制冷后的7C的冷冻水通过冷冻水供水管到达分水器,再通过分水器分别送往房间的各个区域,经过空调机组后的12C的冷冻水回水经集水器再由冷冻水回水管返回冷水机组,通过冷水机组中的蒸发器与制冷剂换热实现降温过程。 从冷水机组出来的37C的冷却水经冷却水供水管到达冷却塔,经冷却塔冷却后降温后再返回冷水机组冷却制冷剂,如此循环往复。 考虑到系统的稳定安全高效地运行,系统中配备补水系统,软化水系统,电子水处理系统等附属系统。 三负荷计算; 1. 面积热指标(查民用建筑空调设计) 商场:q=230(w/m2); 办公:q=120(w/m2);会议中心:q=180 (w/m2);客房:q=80(w/m2); 多 2?根据面积热指标计算冷负荷商场:Q=10000*200=2300(Kw); 办公:Q=100*7500=900(Kw); 会议中心:Q=180*1000=180(Kw);

空调用制冷技术课程设计报告书

空调用制冷技术课程设计

目录 前言 (1) 1 设计目的 (2) 2 设计任务 (2) 3 设计原始资料 (2) 4 冷水机组的选择 (3) 4.1 负荷计算 (3) 4.2 机组的选择 (3) 5方案设计 (4) 6水力计算 (4) 7设备选择 (6) 7.1冷却塔的选择 (6) 7.2 分水器和集水器的选择 (6) 7.3水泵的选择 (7) 7.3.1冷冻水泵选型 (8) 7.3.2冷却水泵选型 (9) 8 小结 (11) 参考文献 (13)

前言 制冷课程设计是建筑环境与能源应用工程专业大学本科教育的一个重要教学环节,是全面检验和巩固课程学习效果的一个有效方式。通过本次课程设计,可以使学生进一步加深对所学课程的理解和巩固;可以综合所学的制冷与空调的相关知识,解决实际问题;可以使学生的得到工程实践的实际训练,提高其应用能力和动手能力。

1 设计目的 课程设计是《空气调节用制冷技术》教学中一个重要的实践环节,综合运用所学的有关知识,在设计中掌握解决实际工程问题的能力,进一步巩固和提高理论知识。通过课程设计,了解工程设计的容、方法及步骤,培养确定空调冷冻站的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 2 设计任务 (一)负荷计算 (二)机组选择 (三)方案设计 (四)水力计算 1、冷冻水循环系统水力计算 2、冷却水循环系统水力计算 (五)设备选择 1、冷却塔的选择 2、分水器及集水器的选择 3、水泵的选择 (六)机房布置 1、设备与管道布置平面图 2、机房系统图 3 设计原始资料 (一)建筑物概况:层高4.6米, 层数6层, 总空调建筑面积:为15990m2。 (二)参数条件:空调冷冻水参数:供水7℃,回水12℃; 冷却水参数:进水32℃,出水37℃。 (三)空调负荷指标:q=120~180 W/m2。 (四)土建资料:机房建筑平面图(见附图),选择其中部分作为制冷机房(以满足用途为原则,不要占用过大面积)。

空调制冷技术结课论文

2013级暖通空调结课论文 暖通空调技术的发展 与建筑节能 学生姓名:李刚 学号:201305104101 指导教师:李琼 所在学院:建筑工程 专业:建筑环境与能源应用工程

呼和浩特市某办公建筑节能设计 摘要 随着现代人们的生活理念和方式的多样化细节化,对于建筑物内的环境要求也日益增加,舒适和高品质的居住环境成为人们追求的趋势,伴随着建筑能耗的总量呈逐年上升趋势,而暖通空调系统在建筑能耗中占有重要比重。本文通过分析暖通空调系统能耗的构成及主要特点,针对当前在节能方面面临的问题,对暖通空调控制系统设计进行了探讨,并提出解决途径与方法。 关键词:暖通空调,环保节能,解决方案 HVAC development and building energy saving Abstract: along with the modern concept of people's lives and the diversification of means of details, to the environment within a building requirements are also increasing, comfortable and high quality living environment become the trend, with the total building energy consumption is rising year by year, and HV AC system in building energy consumption occupies the important proportion, In this paper, through the analysis of HV AC system energy consumption composition and main characteristics, in view of the current in the energy saving problems, HV AC control system design is discussed, and puts forward the ways and methods. Keywords: HV AC, Environmental protection and energy saving, Solution 1 引言 随着生活水平的提高,空调系统的应用越来越普及,中央空调系统的能最消耗一般占整个建筑耗能的50%以上。但目前实际情况是,空调系统是按满足用户最大需求而设计,所有的空调系统长时间处在低负荷下运行。由于能源十分紧张,同时暖通空调的能耗在国

制冷系统设计步骤

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0. 20;当空调制冷量为174~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0. 07。 2、确定制冷剂种类和系统形式

根据设计的要求,选用氨为制冷剂而且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃) ℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。

冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:一般不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃ 式中——载冷剂的温度(℃)。 一般对于冷却淡水和盐水的蒸发器,其传热温差取=5℃。

空调用制冷技术课程设计

目录 目录 (1) 设计任务书 (2) 设计说明书 (3) 一、制冷机组的类型及条件 (3) 二、热力计算 (6) 三、制冷压缩机型号及台数的确定 (7) 四、冷凝器的选择计算 (8) 五、蒸发器的选择计算 (12) 六、冷却水系统的选择 (14) 七、冷冻水系统的选择 (14) 八、管径的确定 (14) 九、其它辅助设备的选择计算 (15) 十、制冷机组与管道的保温 (17) 十一、设备清单 (18) 十二、参考文献 (18)

空调用制冷技术课程设计任务书 一、课程设计题目:本市某空调用制冷机房 二、原始数据 1.制冷系统采用空冷式直接制冷,空调制冷量定为100KW。 2.制冷剂为:氨(R717)。 3.冷却水进出口温度为:28℃/31℃。 4.大连市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氨(R717)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数、校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器(卧式壳管)冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型 6.编写课程设计说明书。

空调用制冷技术课程设计说明书 一、制冷机组的类型及条件 1、初参数 1)、制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调制冷量定为100KW 。 2)、制冷剂为:氨(R717)。 3)、冷却水进出口温度为:28℃/31℃。 4)、大连市空调设计干球温度为28.4℃,湿球温度为25℃。 2、确定制冷剂种类和系统形式 根据设计的要求,本制冷系统为100KW 的氨制冷系统,一般用于小型冷库,该制冷机房应设单独机房且远离被制冷建筑物。因为制冷总负荷为100KW,所以可选双螺杆制冷压缩机来满足制冷量要求(空气调节用制冷技术第四版中国建筑工业出版社P48)。冷却水系统选用冷却塔使用循环水,冷凝器使用立式壳管式冷凝器,蒸发器使用强制循环对流直接蒸发式空气冷却器(即末端制冷设备)。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、 冷凝温度()的确定 从《制冷工程设计手册》中查到大连地区夏季室外平均每年不保证50h 的湿球温度(℃) C o s 25t 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算:

制冷与空调工程教案8

无锡商业职业技术学院 教案

授课主要内容或板书设计

第二章活塞式中央空调系统的安装调试与运行管理 §2-2 水系统及其设备安装 中央空调工程中的水系统包括冷水系统和冷却水系统,均来自冷(热)源设备,通过水泵增压后,向各种空气处理设备和空调末端装置输送冷、热水,再通过水冷式(或风冷式)散热(或吸热)设备,组成水系统循环回路。 一般来说,中央空调工程水系统遵循下列原则,即1)具有足够的冷(热)负荷交换能力,以满足空调系统对冷(热)负荷的要求。2)具有良好的水力工况稳定性。3)水量调节灵活,能适应空调工况变化的调节 要求。4)投资省、能耗低、运行经济,并便于操作和维修管理。一、冷却水循环系统的安装 在制冷系统中,冷却水系统的设计方案较多,系统循环多为从制冷压缩机组的冷凝器出来的冷却水经水泵送至冷却塔,冷却后的水从冷却塔靠高差重力作用自流至冷凝器。系统设计方案有以下几种,即1)设有补充水箱(或水池),保证系统连续运转,如图2—6所示。2)没有补充水箱,靠冷却塔集水盘的浮球水阀自动补水,温度的稳定,如图2—8所示。 图2—6有补充水箱的冷却水系统 l一冷水机组2一冷却塔3一补水箱4一水泵5一橡胶补偿接管 6一止回阀7一压力计8一温度计9一蝶阀10一水流开关中央空调冷却水循环系统主要由水泵、补水箱、冷却塔、阀门、集气罐、过滤器等设备组成,是一种开式系统。 (一)水泵(水泵的作用) (二)补水箱 (三)冷却塔(作用,原理) (四)过滤器 (五)阀门

(六)管道安装 二、冷(冻)热水循环系统的安装 中央空调的冷(热)水循环常采用闭式系统,如图2—45所示。这种系统具有①管路系统与大气隔绝,管道与设备内腐蚀机会少;②水泵能耗小; ③系统最高处设置膨胀水箱可及时补水;④系统设施简单等优点。 在闭式循环系统中,按冷热水是否合用管路划分,冷 水系统可分为两管制、三管制和四管制系统;按水泵配置 划分,冷水系统可分为单式泵系统、复式泵系统;按各环 管路长度是否相同划分,可分为同程式和异程式系统;按 流量的调节方式划分为定流量和变流量系统。其特征及使 用特点如表2—15所示。 常用水管系统的类型及特点: 1、膨胀水箱的作用; 2、管程的种类和特点 见p63 从中央空调冷、热水闭式循环系统图中可以看出,系统主要设备为冷(热)水泵、膨胀水箱、分水器、集水器、风机盘管、阀体等。与冷却水循环系统相似,冷水循环系统的安装包括系统设备的安装和管路敷设及绝热。冷、热水泵的安装与冷却水泵的安装过程一样,冷(热)水系统中阀件的安装与冷却水系统中阀件的安装过程一样,在此不再叙述。 1.膨胀水箱 目前,由于中央空调水系统中极少采用回水池的开式循环系统,因而膨胀水箱已成为中央空调系统水系统中主要部件之一,其作用是收容和补偿系统中的水量。膨胀水箱一般设置在系统的最高点处,通常接在循环水泵的吸水口附近的回水干管上。 (1)膨胀水箱的构造膨胀水箱是一个用钢板焊制的容器,如图2—46所示,有各种不同的大小规格。膨胀水箱上的接管有以下几种: 1)膨胀管。因温度升高而引起的体积增加将系统中的水转入膨胀水箱。 2)溢流管。用于排出水箱内超过规定水位的多余的水。 3)信号箱。用于监督水箱内的水位。 4)补给水管。用于补充系统水量,有手动和自控两种方式。 5)循环管。在水箱和膨胀管可能发生冻结时,用来使水正常循环。 6)排污管。用于排污。 箱体应保温并加盖板,盖板上连接的透气管一般可选用DNl00的钢管制作。(2)膨胀水箱容积的确定膨胀水箱的容积是由系统中水容量和最大的水温变化幅度决定的,可以用下式计算确定: Vp=αΔtVs

空调用制冷技术课程设计

课程设计 课程设计名称:“空调冷热源—制冷”课程设计专业班级:建筑环境与设备工程1201班 学生姓名: 学号: 指导教师:王军陈雁 课程设计地点: 32518 课程设计时间: 2015.12.25至2016.1.7

目录 课程设计任务书 (2) 设计题目与原始条件 (4) 方案设计 (4) 冷负荷的计算 (4) 制冷机组的选择 (4) 水力计算 (5) 设备选择 (6) 设计总结 (9) 参考文献 (9)

“空调用制冷技术”课程设计任务书

设计说明书 一、设计题目与原始条件 鹤壁市完达中学公寓空气调节用制冷机房设计。 本工程为鹤壁市完达中学公寓空调用冷源——制冷机房设计,公寓楼共五层,建筑面积5026.41m2,所供应的冷冻水温度为7/12℃。 二、方案设计 该机房制冷系统为四管制系统,即冷却水供/回水管、冷冻水供/回水管系统。 经冷水机组制冷后的7℃的冷冻水公寓楼的各个区域,经过空调机组的12℃的冷冻水回水由冷冻水回水管返回冷水机组,通过冷水机组中的蒸发器实现降温过程。 从冷水机组出来的37℃的冷却水经冷却水供水管到达冷却塔,经冷却塔冷却后返回冷水机组,如此循环往复。 考虑到系统的稳定安全运行,系统中配备补水系统,软化水系统,水处理系统等附属系统。 三、冷负荷的计算 1.面积冷指标 q=150W/m2 2.根据面积热指标计算冷负荷 Q=A×q=150×5026.41=753961.5w (1--1) 四、制冷机组的选择 根据标准,宜取制冷机组2台,而且2台机组的容量相同。所以每台制冷机组制冷量Q’=Q/2=754/2=377Kw (1--2) 根据制冷量选取HX系列螺杆式制冷机,型号为HX110,性能参数如表1所示。 制冷机组性能参数表1--1

关于空调制冷系统设计的优化

关于空调制冷系统设计的优化 发表时间:2018-08-01T09:58:15.197Z 来源:《电力设备》2018年第11期作者:高威林伟雪杨伟基 [导读] 摘要:现代科技的发展,是人们的生活水平有了质的飞跃,人们对生活要求也在不断提高,空调作为保证人们舒适度的重要工具,对其制冷系统设计要求也在不断提高。 (珠海格力电器股份有限公司广东省珠海市 519100) 摘要:现代科技的发展,是人们的生活水平有了质的飞跃,人们对生活要求也在不断提高,空调作为保证人们舒适度的重要工具,对其制冷系统设计要求也在不断提高。空调制冷设计已经不在局限于初始阶段的了解,而是对其系统功能更加深入的设计,为空调制冷系统技术设计提供指导。 关键词:空调;制冷;系统化;优化 前言 随着国内经济建设的发展,空调制冷系统应用场合也不断扩展,大量运用在工业、民用项目中。空调制冷系统的设计有了很大的进步,其应用技术要求也在不断提高。这对广大暖通工程师提出了更高的要求,仅仅局限于对系统或设备的简单了解,并不一定能保证整个制冷系统稳定、高效和安全运转。笔者结合多年的设计、施工安装和后期运行经验,以及同业项目信息的整理归纳,现将空调制冷系统设计和运行中可能会发生的部分问题进行总结分析。 一、室外低温环境下冷却系统运行设计方案 冷却系统是大多数农业与工业项目生产运行的辅助系统,制冷系统在使用过程中具有周期性长,一年四季均可使用,不受气候的影响等特点。而且,制冷系统具有变化波动较小的负荷侧制冷负荷,主要的设备具有耐用性好,不易出现故障,备用性能优良等优点。在冷却系统的设计过程中,设计人员要重点提高其运行效率,减少能源消耗,增强其适应外界环境的能力,提高系统的应急反应系统设置。其中,在冷却系统设计过程中,需要考虑的因素很多,其中重点要考虑的因素是室外低温环境对冷却系统的影响。以东北地区为例,东北地区冬季的气温较低,制冷系统的设置安装主要用于产品的冷藏保鲜。在东北冬季温度下降到零下30摄氏度以下时,制冷系统依然要工作,这就存在一种满负荷情况下运行的状态。但是,在制冷系统进行设计时,并没有针对这种情况进行科学合理的设置,导致空调系统的室外冷却塔在低温环境下出现冰冻现象,设置系统中的冷却水温过低,在冰点之下,严重超出设计计算的范围,制冷系统因冷却塔无法正常工作而进入停止运行状态,系统发出警报。上述这种情况,如果能够在设计上进行科学合理的优化,不仅可以保证制冷系统正常运行,还能够减少能源消耗,提高制冷系统的运行效率。首先,在制冷系统中安装水气换热装置,通过密闭系统实现高效的水气换热,完成冷却载冷剂的工作。一般使用乙二醇水溶液作制冷剂,因为其凝固点较低,所以可以在低温环境下避免冷却塔冰冻。其次,使用高效密闭循环系统,不仅能够及时有效的补充损耗的水,还能够保证水循环系统的清洁,减少因杂质过多而导致的水循环硬化现象发生[1]。当室外温度较低时,乙二醇溶液不会因低温而结冰,可以保证系统管路通畅,保证制冷系统的稳定性与高效性。总而言之,制冷系统的设计与安装要结合实际的工作环境,针对特殊情况进行优化设计,保证空调制冷系统的正常运行,减少生产经营中不必要的经济损失。 二、注重膨胀水箱的计算,方便优化设计 对于空调系统膨胀水箱容积的计算,国内的设计手册给出了两种不同计算方法。将这两种计算方法运用于水冷式冷水系统或供暖系统,夏季冷水温度7℃,冬季热水温度60℃,其计算结果相差不大。但是对于冬冷、夏热区域的长江流域而言,很多项目采用了风冷热泵主机作为冷热源。此时系统管路里的水温最低为7℃(夏季冷水出水温度),最高达到45℃(冬季热水出水温度),两种方法的计算结果则可能偏差较大,下面将具体举例计算。 三、旁通清洗回路的设置 在空调制冷系统设计与安装的相关规定中表明,制冷系统工作过程中,冷却水及冷热水系统要进行冲洗排出污水的工作,排污工作后要进行检测,当检测符合标准后还要进行2小时循环运行,而且要保证系统中水质正常后方可进行正常使用。但是,在实际的设计与安装过程中,一些制冷系统管道与换热器中会出现焊接时掉下的残渣或其他异物,对系统的正常使用造成一定的不良影响。本文作者在研究这类问题时发现,这些水循环系统缺少完善的旁通清洗回路装置,不能够及时有效的进行系统中污物的排出[2]。因此,在优化空调制冷系统设计过程中,要在制冷系统水管前面增加一个旁路清洗回路装置,实现空调系统安装时排出系统内污物,加强系统维护与保养工作,延长空调系统的使用寿命,保证空调的制冷效果。 四、空调制冷系统优化设计 第一,空调制冷系统优化的内容在产品设计的过程中,可以使用很多种方法将其中的参数问题或者是结构上的问题进行解决,但是在生产的过程中最好的也是最能够使用在产品生产中的方案只有一个,就是将这个方案进行确定的过程我们将其优化,一般表现为提高空调的功能效果、降低能耗、减小噪音,对空调的外形进行优化、降低生产成本等方面,这些都是优化设计要考虑的问题,我们可以从这些优化设计的内容中了解到,对空调制冷系统进行优化设计重点在于提高空调设备的运行效率、节能降耗,提升空调企业的经济效益,让企业得到更好的发展。第二,对空调制冷系统进行优化设计的任务通过对空调系统进行优化设计,可以将空调的一些性能、参数进行提升,让空调的性能更加的安全、经济,让空调的市场竞争力得到提升。对空调进行制冷系统优化设计中最重要的是按空调的型号,对整个空调技术参数进行确定,有详细的技术规范,将各个部件的技术指标进行明确。比如说:空调压缩机的型号。空调中的冷凝器、蒸发器,还有一些结构上的参数,比如说,使用的制冷剂的流动方向、传热管的大小,空调叶片的形状、距离等。空调循环风量大小的指标,比如说将空调电机的转速、功率等参数进行优化设计等等。对空调的制冷系统进行优化设计时为了减少资源的浪费,降低空调的能耗,提高资源的利用率。 五、以最大电流值为标准的冷风机组配电容量的设计 目前,我国各种类型的电气设备配电设计过程中,主要根据额定电流来确定设备的最大线径,以额定电流当作电气设备的运行电流。因此,设计与安装人员在完成设计时,电气工程人员只可能得到作为电气设备选择性型号的标准情况下的额定量流量。空调制冷系统中的冷水系统中的所有设备受温度变化的影响较小,实际运行的电流与标准情况下基本相同,系统的供电容量变化也相对较小,这样的情况下不容易产生设备故障。空调制冷系统中的风冷系统与冷水系统相比,其局限性比较大,受外界温度影响较大,随着温度的变化而变化。一般来说,风冷机组虽外界温度升高而耗电量增加,随着温度下降而耗电量降低。当空调制冷机组采用的是空气或冷却水系统时,其运行环

《空调用制冷技术》课程设计

空调用制冷技术课程设计任务书 一、课程设计题目:空调用制冷机房设计 二、原始数据 1.制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调冷负荷1200kW。 2.制冷剂为:氟利昂(R22)。 3.冷却水进出口温度为:26.5℃/35.1℃。 4.某市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氟利昂(R22)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数,校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器、冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型。 6.编写课程设计说明书。

目录 一、确定设计方案 (1) 二、确定制冷工况并用压焓图表示 (1) 三、确定压缩机型号、台数,并校核制冷量和电动机 (3) 四、冷凝器的选择与传热计算 (4) 五、蒸发器的选择与传热计算 (8) 六、辅助设备选型 (9) 七、管径的计算 (10) 八、水泵系统 (12) 九、保温层 (12) 十、噪声控制 (12) 十一、所选设备汇总表 (14) 十二、参考资料 (14)

一、确定设计方案 本制冷系统制冷剂为氟利昂(R22)。制冷系统主要提供空调用冷冻水,空调冷负荷1200kW 。冷冻水供水温度为7℃,回水温度为12℃。冷却水进口温度为26.5℃,出口温度为35.1℃。大连市空调设计干球温度为28.4℃,湿球温度为25℃。即: ℃71=z t ℃122=z t ℃5.261=l t ℃ 1.352=l t kW Q 1200= 二、确定制冷工况并用压焓图表示 2.1确定蒸发温度0t : 蒸发温度0t 比冷冻水供水温度℃71=z t 低3℃,即: ℃ 4 37 310=-=-=z t t 2.2 确定冷凝温度k t : 冷凝温度k t 比冷却水出口温度℃1.352=l t 高3.5℃,即: ℃ 6.38 5.31.35 5.32=+=+=l k t t 2.3 确定吸气温度吸t : 过热度一般为5~8℃,选取6℃,即: ℃ 吸10 64 60=+=+=t t 2.4 确定过冷温度过冷t : 再冷度一般为3~5℃,选取5℃,即:

空调器教案

空调器主要部件的安装 新课引入: 空调器的种类繁多,认识和掌握空调器的结构、各部件的名称与作用,正确区分其工作现象,是维修空调器的基础。这节课主要介绍空调器的结构、工作原理等基本知识。 一、空调器的种类及其型号 1.空调器的种类 (1)整体式(窗式)空调器 (2)分体式空调器 2.空调器的型号 如:KFR-28G表示通用气候型,分体热泵壁挂式房间空调器,额定制冷量2800W。 3.课堂演练: (1)空调器种类的识别。 (2)空调器型号的识读。根据教师给出的空调器型号,识读并填写出它的含义 二、空调器的结构组成 分体式空调器的结构特点 1.分体壁挂式空调器的结构特点 (1)室内机部分 典型的分体壁挂式空调器室内机结构示意图。 分体壁挂式空调器室内机的管路部件和电路部件都安装在机壳中。从图中可以看到,分体壁挂式空调器室内机机壳的顶部为吸气窗,机壳的正面是吸气栅,吸气栅是通过按扣与主机壳相连的。 (2)室外机部分 分体壁挂式空调器室外机的接线盒位于机器的侧面,从室内机引出的连接电缆就是连接到室外机的接线盒上,卸下挡板后,可以看到室外机的接线盒。 分体壁挂式空调器室外机的内部结构将室外机的机壳打开后,可以看到分体壁挂式空调器室外机的内部结构。

2.分体柜式空调器的结构特点 (1)室外机部分 分体柜式空调器外形类似于立柜,可放置于房间适合的角落处。 (2)室外机部分 冷暖型空调器室外机 三、空调器制冷(制热)原理 1.普通型空调器制冷原理 普通型(冷风型)空调器的制冷原理如图所示: 1、冷暖空调的制冷原理 制冷工作时,压缩机将制冷剂压缩成过热蒸气蒸气从压缩机排气口排出→→然后进入电磁四通换向阀→→制冷剂蒸气经电磁四通换向阀换向后进入冷凝器,制冷剂蒸气在冷凝器中由轴风扇进行冷却,风扇吹出热风→→干冷凝后的制冷剂液体经单向阀、干燥过滤器、毛细管进入蒸发器→→液体制冷剂在蒸发器中吸热蒸发为气体,使周围空气温度降低→→贯流风扇将冷凝器周围的冷风吹出,→→送到室内制冷剂气体经四通阀回到压缩机中,如此往复维持制冷循环。 2.热泵型空调器制冷制热原理 热泵型空调器的工作原理与普通型(冷风型)空调器基本相同,不同之处是增加了一只电磁换向阀(又称四通阀),如图所示。

空调用制冷技术课程设计说明书

空调用制冷技术课程设计说明书 一、制冷机组的参数与系统的选择 1 初参数 (1)、冷冻水供水与回水温度为:7℃/12℃,空调制冷量定为Q=100KW。 (2)、制冷剂为:氟利昂(R22)。 (3)、冷却水进出口温度为:27.1/36.1。 (4)、大连市空调设计干球温度为28.4℃,湿球温度为25℃。 2 确定制冷剂种类和系统形式 本制冷系统为100KW的氟利昂空调系统,选用活塞式压缩机来满足制冷量要求。冷却水系统选用冷却塔使用循环水,冷凝器使用水冷式冷凝器,蒸发器卧式壳管式蒸发器。 二制冷工况及压焓图表示 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 1冷凝温度(t k)的确定 系统以水为冷却介质,冷凝温度t k比冷凝器内冷却水出口温度高3~5℃,取t k=36.1+3.9=40℃ 2蒸发温度(t0)的确定 以水为载冷剂,蒸发温度t0比冷冻水出口温度低2~5℃,取 t0=7-4=3℃

3 再冷温度 (t s.c ) 再冷度△t s.c 取3℃,则 t s.c = t k -△t s.c =40-3=37℃ 4 过热温度 (t s.h ) 过热度△t s.h 取5℃ ,则 t s.h = t 0+△t s.h =3+5=8℃ 根据绘制的p-h 图查表求得各状态参数: 压力:P k =1.53MPa P 0=0.55MPa 比容:v 1= 0.043m 3/kg v 2=0.016 m 3/kg 焓值:h 1’=406 kJ/kg, h 1= 410kJ/kg , h 2= 436 kJ/kg ,h 3= h 4=242kJ/kg 三 理论热力计算 1单位质量制冷量q 0: q 0=h 1- h 4=410-242=168kJ/kg 2单位冷凝负荷k q : 194kJ/kg 242-436h -h 32k ===q 3单位容积制冷量v q : m3 /98.9063043 .081610kJ v q q v === 4冷负荷Q 0:

制冷课程设计54978

目录 第一部分、目录 (1) 第二部分、空调用制冷课程设计任务书 (2) 一、制冷工况的确定 (2) 二、压缩机的选择计算 (3) 三、冷凝器的选择计算 (4) 四、蒸发器的选择计算 (4) 五、辅助设备的选择计算 (5) 六、管径的确定 (5) 七、水泵的选型计算 (6) 八、制冷系统的流程图 (7) 九、设备明细表 (8)

空调用制冷技术课程设计任务书 已知条件:已知空调系统要求冷负荷800kw ,拟采用R22制冷系统,循环水冷却,冷却水进水温度为32℃,出水温度为37℃,冷冻水出水温度为7℃,冷冻水回水温度12℃。,冷冻水球的压头为25m ,机房面积14400mm ?9000mm ,机房高4000mm ,冷却塔放在机房顶上,其它设备及辅助用房都在机房空间内。 设计说明书 根据设计要求,此系统的设备设计计算、选用与校核如下: 一、制冷工况的确定: 由已知条件冷却水进水温度为32℃,出水温度为37℃,冷冻水出水温度为7℃,冷冻水回水温度12℃。 1t =32℃ 2t =37℃ 1s t =12℃ 2s t =7℃ 1.1 蒸发温度0t : 025s t t =- (比要求供给的冷冻水的温度低5℃) =2℃ 1.2 冷凝温度k t : 121 ()52k t t t =++(冷却水的进口温度取下限。其范围是 5~7℃) =39.5℃ 1.3 吸气温度吸t : 吸t =0t +8 (过热度3~8℃,并选8℃) =10℃ 1.4 过冷温度过冷t : 过冷t =k t -4.5 =35℃ (过冷度:4.5℃) 查R22 lgp-h 图可知 根据0t =2℃,k t =39.5℃,吸t =10℃,过冷t =35℃,可得:

汽车空调制冷系统组成与工作原理教案-doc

复习旧课: 对上次课以提问的形式复习 1、影响蒸发的因素? 2、影响液化的因素? 新课引入: 主要以讲解方式 上一节我们讲了物质的基本状态参数,以及影响物质蒸发和液化的几个因素,这一节我们就来讲一下汽车空调中的常用制冷剂的种类特点以及制冷循环原理。 §1.1.4制冷剂 制冷剂是制冷循环当中传热的载体,通过状态变化吸收和放出热量,因此要求制冷剂在常温下很容易气化,加压后很容易液化,同时在状态变化时要尽可能多的吸收或放出热量(较大的气化或液化潜热)。同时制冷剂还应具备以下的性质: ·不易燃易爆; ·无毒; ·无腐蚀性; ·对环境无害。 制冷剂的英文名称为refrigerant,所以常用其头一个字母R来代表制冷剂,后面表示制冷剂名称,如R12、R22、R134a等。 过去常用的制冷剂是R12(又称为氟立昂), 这种制冷剂各方面的性能都很好,但是有一个致命的缺点,就是对大气环境的破坏,它能够破坏大气中的臭氧层,使太阳的紫外线直接照射到地球,对植物和动物造成伤害。我国目前已停止生产用R12作为制冷剂的汽车空调系统。

R12的替代品目前汽车上广泛采用的是。R134a在大气压下的沸腾点为-26.9℃,在98kPa的压力下沸腾点为-10.6℃(图6-18)。如果在常温常压的情况下,将其释放,R134a便会立即吸收热量开始沸腾并转化为气体,对R134a加压后,它也很容易转化为液体。R134a的特性见图6-19。该曲线上方为气态,下方为液态,如果要使R134a从气态转变为液态,可以将低温度,也可以提高压力,反之亦然。 注意:R12和R134a两种制冷剂不可以互换使用。 §1.1.5 冷冻润滑油 在空调制冷系统中有相对运动的部件,需要对其润滑。由于制冷系统中的工作条件比较特殊,所以需要专门的润滑油——冷冻润滑油。冷冻润滑油除了起到润滑作用以外,还可以起到冷却、密封和降低机械噪音的作用。在制冷系统中的润滑油还有一个特殊的要求,就是要与制冷剂相容,并且随着制冷剂一起循环。因此在冷冻润滑油的选用上,一定要注意正确选用冷冻润滑油的型号,切不可乱用,否则将造成严重后果。 §1.2汽车空调暖风系统 作用:供暖、除霜、调节温湿度 汽车空调暖风系统是一种将空气送入加热器(又称为热交换器),同时吸入某种热源的热量,以提高空气温度的装置。按使用热源的不同可分为发动机冷却液采暖系统、发动机废气采暖系统和独立热源式采暖系统。 1、发动机冷却液采暖系统采暖时,将送入加热器中的车外或车内空气,与升温后的发动机冷却液进行热交换,由电动鼓风机将升温的空气经出风口送入车内。冷却液通过热水阀流入加热器,散热后的冷却液再流回水泵参与循环。热水阀对通过加热器的水流量进行调节,而加热器则将冷却液的热量传给空气。鼓风机多为离心式叶片鼓风机,具有高、中、低三挡转速,可以调节换气强度,一般与空调制冷系统送风共用。这种采暖系统没有独立的

论述如何有效优化空调制冷系统设计

论述如何有效优化空调制冷系统设计 发表时间:2016-06-13T14:42:30.290Z 来源:《基层建设》2016年4期作者:廖锡博 [导读] 随着我国空调行业的越来越成熟,如何有效优化空调制冷系统变得越来越重要。 广东申菱环境系统股份有限公司广东佛山 528313 摘要:随着我国空调行业的越来越成熟,如何有效优化空调制冷系统变得越来越重要。通过何种方法有效优化空调制冷系统,这对设计者来说是一种挑战。空调制冷系统设计向高水平、高质量方向发展,为空调行业未来发展奠定基础。 关键词:空调制冷系统;设计;注意要点 1.空调制冷系统的工作原理 制冷系统是空调的核心组成部分,主要由冷凝器,压缩机、节流装置和蒸发器四部分组成。空调在进行工作时,压缩机会吸入制冷系统内的低温和低压制冷蒸汽,并且将其压缩成高温和高压的过热蒸汽之后,再排放至冷凝器内。与此同时,空调室外侧风扇吸收的外部空气会流动经过冷凝器,排掉制冷剂产生的热量,从而使得高温和高压的制冷剂蒸汽液化为高压的液体。当这些高压液体流经节流装置时,压力和温度都会有所下降,之后再进入具有一定压力的蒸发器里吸收热量进行蒸发,而室内侧空调的风机也不断将周围的空气引导到蒸发器的翅片间进行热量的交换,把放热完成后的冷气体排放至室内。如此反复的循环就是空调制冷系统的原理,能够实现空气降温的目的。 2.空调制冷系统中各元件的作用 空调系统的制冷过程中,压缩机作为空调制冷系统的关键环节,其的作用是压缩并输送制冷剂蒸汽,使得蒸发器保持低压力而冷凝器保持高压力作用;节流装置的作用是对制冷剂的流量进行调节,并起到节流降压的作用;冷凝器作为空调系统的热量输出设备,自蒸发器中所吸取的热量与压缩机因消耗功而转化成的热量均在冷凝器内被冷却的介质带走。蒸发器作为冷汽输出的设备,其中,制冷剂可对被冷却物体的热量进行吸收,从而制取冷量,更好的实现空调制冷的目的。 3.空调制冷系统优化的具体分析 空调制冷系统的节能措施,在设计上,需从两个方面入手,一是降低单位制冷量功耗,一是提高单位功耗制冷量;以下从几点方面简单介绍制冷系统的优化; 3.1高效化的压缩机 空调制冷系统中,压缩机的性能越高,效率越高,所用到的能量越少,更好的提高压缩机的性能,就成节能优化关键的一步。涡旋式压缩机是一种新型节能压缩机,适用于小型空调制冷系统化中。涡旋式压缩机又可分为数码涡旋压缩机、直流变频涡旋压缩机等。数码涡旋压缩机是采用压缩机顶部的气腔进行气体的吸排来调节电磁阀的通断电的时间,从而影响压缩机的排气量,控制压缩机的容量,进而实现对压缩机能源消耗的有效控制,促进空调制冷系统化的节能环保。直流变频涡旋压缩机是利用其它压缩机上永久性的磁铁作为压缩机的定子以及采用稀土为原材料制成永久性永久性磁钢作为压缩机的转子。此类型的压缩机装置能降低空调制冷系统装置的噪声,延长空调的使用寿命,并能对空调制冷系统中电机的转速作出合理的调整,提高能源的利用率,降低能源消耗,促进空调制冷系统化的节能环保。 3.2将蒸发器和冷凝器进行改良 蒸发器和冷凝器是由铝翅片和铜管一同组成的。为了达到更加经济的效果,一般翅片的厚度在0.095到0.1毫米之间。翅片有两种,波纹片和开槽片,开槽片的换热能力比波纹片更高。为了防止蒸发器和冷凝器在运行过程中出现故障,通常会在蒸发器的翅片上涂上一层亲水膜,这样在制冷运行时能够避免因为积累的水分过多存留在翅片上,保证蒸发器和冷凝器的正常工作。铜管中主要使用的内螺纹管和光管。虽然两种管的外径都是一样,但是内螺纹管较光管相比拥有更为强大的换热能力。通过对蒸发器和冷凝器内部物件的选择可以在一定程度上提高蒸发器和冷凝器的换热能力。但是一定要在确定蒸发器和冷凝器的结构之后再进行相应的换热能力测试。现阶段大部分的蒸发器和冷凝器都是采用铜管和铝翅片这种形式,经过了解,国外也存在其他方式的换热器,例如全铝换热器,相信通过合理的设计其他合理的材料也可以取得较好的换热效果,开发新模式的换热器同样可以有效优化制冷效果。 3.3有效提高蒸发温度 蒸发温度是蒸发器内的制冷剂在一定压力下沸腾汽化时的温度。蒸发温度的高低,主要取决于介质的温度及流量、蒸发器的迎风面积面积、蒸发器大小等条件。理论和实践证明,在空调系统其他条件不变的情况下,蒸发温度提高后,冷凝和蒸发压力差减小,压缩机排气温度降低、耗功减少,可以提高制冷系数;而且提高蒸发温度后,还可以增加单位时间制冷剂循环量,从而增加制冷量。 3.4有效降低风系统的阻力 在较大的制冷系统中,空调风系统所产生的能源消耗也是比较大的,如果能够有效设计空调内部的风路系统,有效减低空调内部阻力,减少制冷系统中风机消耗的功率,从而达到优化制冷系统的目的。 3.5制冷系统相应配合提高能效 虽然每个部件都可以不断提高其自身效率,但是没有高度的配合还是达不到提高能效的目的,就像蒸发器不能无限放大,风量也不能无限增加,必须找到一个性能最佳点才能有效发挥各个部件的作用。若要提高空调系统的能效比,首先要充分了解和掌握影响空调能效比的因素:压缩机与膨胀阀自身的热力学性能,空调制冷剂的效率,换热器的换热效率,压缩机的压缩效率,毛细管道的损坏以及空调装置的整体配置情况等。因此,针对这些因素,可以从换热器的材料,结构等工艺技术以及变频技术等方面着手,并从空调制冷系统的整体出发,是空调各个部分间能够形成高效统一的匹配关系,从而全面提高提高空调系统的能效比。例如,可以采用变频电机对压缩机的转速的控制来提高空调的能效比;通过材料与外形的设计增加换热器的换热面积;对变频空调采取电子膨胀阀加变频压缩机的配合控制方式提高空调的能效比;通过室内外变频风机电机控制通过两器的换热风量;通过更改蒸发器大小排数和翅片密度与风量大小配合取得合适的蒸发温度;通过改进冷凝器配合新一代制冷剂的使用来提高空调的能效比等 3.6.加强空调的日常保养和维护 空调制冷系统的冷凝器上有灰尘会导致能源消耗的加大,而空调制冷系统中蒸发器的温差控制不合理也将会直接增加能源的消耗,因

相关文档