文档库 最新最全的文档下载
当前位置:文档库 › 预应力损失的计算6

预应力损失的计算6

预应力钢筋损失计算

4.1预应力筋的计算和布置 采用符合ASTM A416-97标准的270级钢绞线,标准强度Ryb=1860Mpa,弹性模量Ey=1.95x105 Mpa,松弛率为3.5%,钢绞线规格公称直径为Φj15.20mm。 查《混凝土结构设计规范》知: 1.钢绞线规格公称直径为Φj15.20mm为一束21根配置。公称截面面积为2919mm。 2.C50混凝土的轴心抗压强度标准值为32.4 Mpa,混凝土的弯压应力限值为32.4×0.5 Mpa =16200 Kpa。 配筋计算选用正常使用极限状态下的弯矩值配筋,所选弯矩值如表4-1所示。 配筋弯矩值表4-1 运用程序进行受弯构件配筋估算,所得钢筋数量如表4-2所示。 预应力钢筋数量表4-2

由于本桥桥跨结构对称,且本桥为连续刚构,结合计算出来的钢筋情况,因此只计算支点处(即41截面的预应力损失) 4.1.1 控制应力及有关参数计算 控制应力:σcon =0.75×1860=1395(MPa) 其他参数:管道偏差系数:k =0.0015;摩擦系数:μ=0.25; 4.2摩擦损失1l σ 4.2.1预应力钢束的分类 将钢束分为10类,分别为a1,a2,a3,a4,a5,a6,a7,a8,a9,a10。因为桥跨对称,且本桥为连续刚构,结合计算出来的钢筋情况,因此只计算支点处(即41截面的预应力损失)下各种损失亦如此。 8.2.21l σ计算 由于预应力钢筋是采用两端张拉施工,为了简化计算,近似认为钢筋中点截面是固定不变的,控制截面离钢筋哪端近,就从哪端起算摩擦损失。 摩擦损失的计算公式(参见参考文献[2]6.2.2)如下 [])(11kx u con l e +--=θσσ (8-2) 式中 x —从张拉端至计算截面的管道长度,可近似地取该管道在构件地投影长度。角θ的取值如下:通长束筋按直线布置,角θ为0;负弯矩顶板筋只算两端下弯角度为10°,负弯矩腹板筋只考虑下弯角度15°,不考虑侧弯角度;负弯矩腹板筋只考虑两端上弯角度13°,正弯矩腹板筋只考虑两端上弯角度25°。 利用上面的公式编制Excel 表格进行计算,由于计算截面较多,具体计算过程的表格庞大,在此只给出结果表见表8-2。 表8-2摩擦损失汇总表

预应力张拉伸长量计算

后张法预应力张拉伸长 量计算与测定分析 一、理论伸长量计算 1、理论公式: (1)根据《公路桥涵施工技术规范》 (JTJ041—2000),钢绞线理论伸长量计算公式如下: P P P E A L P L =? ① ()()μθ μθ+-=+-kx e P P kx P 1 ② 式中:P P ——预应力筋的平均张拉力 (N ),直线筋取张拉端 的拉力,曲线筋计算方 法见②式; L ——预应力筋的长度; A P ——预应力筋的截面面积 (mm 2 ); E P ——预应力筋的弹性模量 (N/mm 2 ); P ——预应力筋张拉端的张拉 力(N ); x ——从张拉端至计算截面的孔 道长度(m); θ——从张拉端至计算截面的孔 道部分切线的夹角之和(rad); k ——孔道每米局部偏差对摩擦的影响系数; μ——预应力筋与孔道壁的摩擦 系数。 (2)计算理论伸长值,要先确定预应 力筋的工作长度和线型段落的划分。 后张法钢绞线型既有直线又有曲线, 由于不同线型区间的平均应力会有很 大差异,因此需要分段计算伸长值, 然后累加。于是上式中: i L L L L ?+?+?=?Λ21 P P i p i E A L P L i =? P p 值不是定值,而是克服了从张拉端至 第i —1段的摩阻力后的剩余有效拉 力值,所以表示成“Pp i ”更为合适; (3)计算时也可采取应力计算方法, 各点应力公式如下:

()()()() 111--+--?=i i kx i i e μθσσ 各点平均应力公式为: ()()i i kx i pi kx e i i μθσσμθ+-= +-1 各点伸长值计算公式为: p i p i E x L i σ=? 2、根据规范中理论伸长值的公式,举例说明计算方法: 某后张预应力连续箱梁,其中4*25米联内既有单端张拉,也有两端 张拉。箱梁中预应力钢束采用高强度低松弛钢绞线(Φ),极限抗拉强度f p =1860Mpa ,锚下控制应力б0==1395Mpa 。K 取m ,μ=。 (1)单端张拉预应力筋理论伸长值计算: 预应力筋分布图(1) 伸长值计算如下表:

第6章 预应力损失及有效应力的计算

第6章 预应力损失及有效应力的计算 本桥预采用后张法,应力损失包括: 摩阻损失、锚具变形及钢筋回缩、混凝土的弹性压缩、预应力筋的应力松弛、混凝土的收缩与徐变等5项。 根据《桥规》(JTG D62-2004)第6.2.1条规定,后张法预应力混凝土构件在正常使用极限状态计算中,应考虑由下列因素引起的预应力损失: 预应力钢筋与管道壁之间的摩擦 σl1 锚具变形、钢筋回缩和接缝压缩 σl2 混凝土的弹性压缩 σl4 预应力钢筋的应力松弛 σl5 混凝土的收缩和徐变 σl6 预应力损失的计算 6.1.1 摩阻损失 预应力钢筋与管道之间摩擦引起的应力损失可按下式计算: ] 1[)(1kx con l e +--=μθσσ (6-1) σcon ——张拉钢筋时锚下的控制应力(跟据《桥规》规定σcon ≤pk f ); μ——预应力钢筋与管道壁的摩擦系数,对金属波纹管,取,具体取值见表6-1; θ——从张拉端至计算截面曲线管道部分切线的夹角之和,以rad 计; k ——管道每米局部偏差对摩擦的影响系数,取,具体取值见表6-1; x ——从张拉端至计算截面的管道长度,以米计。 表6-1 系数k 及μ的值 管道类型 K μ 橡胶管抽芯成型的管道 铁皮套管 金属波纹管 ~ ~

6.1.2 锚具变形损失 由锚具变形、钢筋回缩和接缝压缩引起的应力损失,可按下式计算: P l E l l ∑?=2 σ (6-2) l ——锚具变形、钢筋回缩和接缝压缩值;统一取6mm ; L ——预应力钢筋的有效长度; E P ——预应力钢筋的弹性模量。取195GPa 。 6.1.3 混凝土的弹性压缩 后张预应力混凝土构件的预应力钢筋采用分批张拉时,先张拉的钢筋由于张拉后批钢筋所产生的砼弹性压缩引起的应力损失,可按下式计算 pc EP l4ΔσΣασ= (6-3) 式中, pc Δσ——在先张拉钢筋重心处,由后张拉各批钢筋而产生的混凝土法向应 力; EP α——预应力钢筋与混凝土弹性模量比。 若逐一计算pc ΔσΣ的值则甚为繁琐,可采用下列近似计算公式 41 2l EP PC N N σασ-=? (6-4) 式中, N ——计算截面的分批张拉的钢束批数. 钢束重心处混凝土法向应力:n n n n n p n P PC y I M y I e N A N 1-???? ??+=σ 式中M 1为自重弯矩。 注意此时计算Np 时应考虑摩阻损失1l σ、锚具变形及钢筋回缩2l σ的影响。预应 力损失产生时,预应力孔道还没压浆,截面特性取静截面特性(即扣除孔道部他的影响)。 6.1.4 钢束松弛损失

预应力钢绞线伸长量计算

预应力钢绞线实际伸长量计算方法 1、以钢绞线在预应力管道内的长度计算理论伸长量ΔL理为基准时: (1)当采用“行程法”测量伸长量: L实=[(L100%-L10%)+(L20%-L10%)] –ΔL工作长度-ΔL工具锚–ΔL工作锚⑺ L实——钢绞线实际伸长量; L20%——张拉应力为20%б0时,梁段两端千斤顶活塞行程之和;L100%——张拉应力为100%б0时,梁段两端千斤顶活塞行程之和; L10%——张拉应力为10%б0时(即初张应力,规范推荐可取10%-25%),梁段两端千斤顶活塞行程之和;ΔL工作长度——梁段两端千斤顶内钢绞线的无阻伸长量;取理论计算值; ΔL工作锚——梁段两端锚具压缩及钢绞线回缩量;取工艺试验实测值; ΔL工具锚——梁段两端锚具压缩及钢绞线回缩量;取实测值;(2)当采用“直接法”测量伸长量: L实=[(L100%-L10%)+(L20%-L10%)] –ΔL工作长度–ΔL 工作锚 控制应力*钢绞线截面积*钢绞线的根数=张拉力 根据千斤顶和油表的检测报告中的校正方程计算出油表读数即可。 注意:有的需要超张拉来抵消预应力损失,在控制应力中乘以系

数即可。 预应力钢绞线伸长量计算方法 预应力钢绞线张拉理论伸长量计算公式 ΔL=(PpL)/(ApEp) 式中:Pp――预应力筋的平均张拉力(N) L――预应力筋的长度(mm) Ap――预应力筋的截面面积(mm2) Ep――预应力筋的弹性模量(N/mm2) Pp=P(1-e-(kx+μθ))/(kx+μθ) 式中:Pp――预应力筋平均张拉力(N) P――预应力筋张拉端的张拉力(N) x――从张拉端至计算截面的孔道长度(m) θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k――孔道每米局部偏差对摩擦的影响系数 μ――预应力筋与孔道壁的摩擦系数 1、预应力钢绞线张拉实际伸长量ΔL,应建立在初应力后开台量测,测得伸长值还应加上初应力的推算值。 ΔL=ΔL1+ΔL2 式中ΔL1从初应力到最大张拉力间的最大伸长值 ΔL2初应力以下的推算值 关于初应力的取值一般可取张拉控制应力的10—25%。初应力钢筋的实际伸长值应以实际伸长值与实测应力关系线为依据,

先张法预应力损失计算程序

先张法预应力损失计算程序 程序名:BPS2.EXE 原理:将原BPS.EXE 加以修改,改动部分如下: 1.原输入的mg2 值为计算截面二期恒载弯矩,现改为总荷载弯矩(即恒I + 恒II + 汽车max 或挂车max ) 2.原计算程序中的am,im,ex,es 均为按毛截面计算,现程序中自动按换算截面计算; 3.原程序中不计损失2的l Z Ey l ?= ,现按 50l cm =, 1l mm ?=计算计入损失2, 24Z MPa = . 4.原程序中计算损失S4中有效预应力k σασ=? .现程序改为23()k Z S σασ=?-- 5.原程序没有输出损失1至损失6的值,现程序中输出26~Z S 的值。 6.现程序中增加了换算截面输出值。 7.输入数据与BPS.EXE 相同.仅mg2变为总荷载.。

一.数据文件: nf -计算截面数 ns -索的种类数 f(x)-计算截面位置,共nf 个(即x的坐标值)m cm am -计算截面面积2 cm im -计算截面惯矩4 y -计算截面偏心坐标,共nf个m es -计算截面上缘距形心距离,共nf个m ex -计算截面下缘距形心距离,共nf个m ?mg1 -计算截面一期恒载弯矩,共nf个kn m ?mg2 -计算截面二期恒载弯矩,共nf个kn m cm ayd -每种索的单根面积,共nf个2 eg、eh -钢索弹性模量,砼弹性模量MPa ZK -张拉控制应力MPa xs -第五项损失系数 dt -温度变化值 ?∞-查规范P243 (,)z ε∞-查规范P243 (,)z 每种索的长度信息 XX -起点到终点的横坐标m YY -起点到终点的纵坐标m

6预应力损失计算

6预应力损失计算 6.1 预应力钢筋与管道壁之间的摩擦引起的预应力损失1l σ () []kx con l e +--=μθσσ11 上式中:con σ—预应力钢筋锚下的张拉控制应力,MPa con 1395=σ; μ—预应力钢筋与管道壁的摩擦系数,25.0=μ; θ—从张拉端到计算截面曲线管道部分切线的夹角之和(rad),α φθ-=(见 图2.3.5); k —管道每米局部偏差对摩擦的影响系数,k =0.0015; x —从张拉端至计算截面的管道长度,近似取该段管道在构件纵轴上的投影 长度(m ),'',x x a x xi +=为计算截面到支点的距离。 计算结果见表2.6.1所示。 表2.6.1 摩擦损失计算表 6.2 预应力钢筋由锚具变形、钢筋回缩和接缝压缩所引起的预应力损失2l σ

P l E l l ?∑= 2σ 上式中:l ?∑—锚具变形值,OVM 夹片锚有顶压时取4mm ,这里采用两端张拉, mm l 8=?∑; l —张拉端到锚固端之间的距离,这里即预应力钢束的有效长度 P E —预应力钢筋的弹性模量,MPa E P 5 101.95?= 计算结果见表2.6.2所示。 6.3 由分批张拉所引起的预应力损失4l σ pc EP l σ ασ?∑=4 上式中:EP α—预应力钢筋弹性模量与混凝土弹性模量的比值; pc σ ?—在计算截面先张拉的钢筋重心处,由后张拉各批钢筋产生的混 凝土 法向应力(MPa )。 具体计算过程见附表,计算结果见表2.6.3所示。 表2.6.3 分批张拉损失计算表

6.4 预应力钢筋由于钢筋松弛引起的预应力损失5l σ pe pk pe l f σ σ ζψσ??? ? ?? -?=26.052 .05 上式中:ψ—张拉系数,此处取ψ=1.0; ζ—钢筋松弛系数,这里采用低松弛钢铰线,取ζ=0.3; pe σ —传力锚固时的钢筋应力,421l l l con pe σσσσσ---=。 计算结果见表2.6.4所示。 表2.6.4 钢筋松弛引起的应力损失计算表 6.5 混凝土收缩、徐变所引起的预应力损失6l σ ()()[ ] ps pc EP cs P l t t t t E ρρ φσ αεσ151,,9.0006++= p Gk p n p n p pc e I M e I M A N - + =σ n n ps ps A I i i e /,12 2 2 =+=ρ 上式中:

预应力筋的理论伸长值 (mm)的计算

1、预应力筋的理论伸长值L ? (mm)的计算: P P P E A L P L =? 式中:P P ——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见附后。 L ——预应力筋的长度(mm); A P ——预应力筋的截面面积(mm2); E P ——预应力筋的弹性模量(N /mm2)。 关于P p 的计算: P p = P[1-e -(kx+uθ)]/(kx+uθ): P :张拉端钢绞线张拉力。将钢绞线分段计算后,为每分段的起点张拉力P q 。即为前段的终点张拉力P z =P q * e -(kx+uθ)(N ) X :从张拉端至计算截面的孔道长度(m ); θ:从张拉端至计算截面曲线孔道部分切线的切角之和(rad ); K :孔道每m 局部偏差对摩擦的影响系数; U :预应力钢材与孔道壁的摩擦系数; 2、计算中有关数据 A P1=140×3=420mm 2;A P2=140×4=560mm 2 R by =1860Mpa σk = 0.75R by =1395Mpa E g =1.95×105Mpa K=0.0015;U=0.25 3、20m 预制箱梁中跨(0度)N1#钢绞线伸长量计算如下: (1)考虑到实际施工中采用穿心式千斤顶,所以钢绞线长度应计入千斤顶长度,YDC1500型千斤顶回程后的长度为450mm 。 (2)钢绞线 箱梁钢绞线为对称布置,为方便计算,以下计算取半块箱梁考虑。 直线段长L 1:0.72+0.45=1.17m; 曲线段长L 2:0.786m;θ = 0.0314159rad 直线段长L 3:4.315m ; 曲线段长L 4:3.05m;θ =0.087266rad 直线段长L 5:0.929m ; 4、P p 的计算 P =σcon ×420 =бk ×560 = 1395×560=781200N P p1 =P q [1-e -(kx+uθ)]/(kx+uθ) =781200×(1-0.998246539)/0.001755 =780514.9N P p2 =P q [1-e -(kx+uθ)]/(kx+uθ)

预应力伸长量计算书

绕城高速公路北线第二合同段 45米跨箱梁首跨 预应力筋伸长量计算书 计算: 复核: 审核: 路桥华南工程

二〇〇六年

一、概述 1、45米跨引桥箱梁分别在腹板、顶板、底板布置纵向预应力筋,在顶板布置横向预应力筋,在加厚截面段腹板布置竖向预应力筋,统计如下: (根据市交通工程质量监督站检验室提供报告,所检验三批钢绞线实际弹性模量分别为 1.8908×105MPa ,1.9029×105MPa ,1.8482×105MPa ,取算术平均值 1.88×105 MPa 。所检验三批 钢绞线实际截面积分别为140.97mm 2,140.96mm 2,140.97mm 2,取算术平均值为141mm 2 。) 2、各种预应力筋拉控制力及拉机具统计如下: 二、理论伸长量计算公式: 根据对于曲线段与直线段组成的预应力筋,拉伸长值应分段计算,然后对计算结果进行叠加,即: 12()2i i i i i s s s s PL P P L L A E A E +?==∑ ∑ ()21kx i i P P e μθ-+=? Li :第i 段预应力筋长度; 12,i i P P :分别为第i 线段两端的预应力筋拉力;其中 x 为从拉端到计算截面的孔道长度; θ为曲线孔道部分切线的夹角之和; k 为孔道每米局部偏差对摩擦的影响系数,取0.0015;

μ为预应力筋与孔道的摩擦系数,取0.2; Es:预应力钢筋弹性模量; 三、纵向腹板束FL11(FL12)伸长量计算: FL11(FL12)竖弯形式如下图: 按上图所划分段分段计算伸长值: (1)IS段为曲线段: θ=0.1139,R=20m,L=θR=2.279m kL+μθ=0.0015×2.279+0.2×0.1139=0.026 起点拉力:3512.8kN, 终点拉力: ()0.026 1 3512.83421.9 kx i P e e kN μθ -+- ?=?= 该段伸长值为:12 ()(3512.83421.9) 2.2790.016 222679188000 i i i s s P P Li L m A E ++ ?==?= ?? (2)HI段为直线段: θ=0,L=6.726m kL+μθ=0.0015×6.726+0.2×0=0.01 起点拉力:3421.9kN, 终点拉力: ()0.01 1 3421.93387.6 kx i P e e kN μθ -+- ?=?= 该段伸长值为:12 ()(3387.63421.9) 6.7260.045 222679188000 i i i s s P P Li L m A E ++ ?==?= ?? (3)GH段为直线段: θ=0,L=5.436m kL+μθ=0.0015×5.436+0.2×0=0.008 起点拉力:3387.6kN, 终点拉力: ()0.008 1 3387.63360.1 kx i P e e kN μθ -+- ?=?= 该段伸长值为:12 ()(3387.63360.1) 5.4360.036 222679188000 i i i s s P P Li L m A E ++ ?==?= ?? (4)FG段为曲线段: θ=0.1682,R=35m, L=θR=5.888m

预应力钢绞线伸长量的计算

后张法预应力钢绞线伸长量的计算 预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。本人接触多的是混凝土预应力钢绞线(PCstrand、1×7 =1860Mpa,270级高强底松弛),成孔方法多采用金属公称直径15,24mm,f pk 螺旋管成孔,本文就以此两项先决条件进行论述。 1 施工准备: 1.1 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一 =1860Mpa,般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为f pk Mpa。 1×7公称直径15,24mm,锚下控制力为Δk=0.75 f pk 1.2 根据施工方法确定计算参数: 预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取 值:表1 注:摘自《公路桥涵施工技术规范》(JTJ 041-2000)附录G-8 根据钢绞线试验结果取得钢绞线实际弹性模量Ep(一般为1.9~2.04×105Mpa)1.3 材料检测:

金属螺旋管根据《公路桥涵施工技术规范》(JTJ 041-2000)附录G-7之要求检测; 锚具根据《公路桥梁预应力钢绞线用YM锚具、连接器规格系列》(JT/T 329.1-1997)及《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规则》(JT/T 329.2-1997)之要求检测; 钢绞线根据《预应力混凝土用钢绞线》GB/T5224-2003之要求检测 2 理论伸长量计算: 后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 2.1 计算公式: 《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值ΔL的计算按照以下公式(1): ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); 《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式(2): Pp=P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中每段曲线段的切线夹角(rad);

预应力损失计算及其简化计算

预应力损失计算及其简化计算 论文上传:playchap 留言 论文作者:郭举李光瑞马杰 您是本文第156位读者 摘要:对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据。 关键词:预应力损失简化计算 预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。 1.预应力损失基本计算 在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。全部损失由两部分组成,即瞬时损失和长期损失。其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。我国新规范采用分项计算然后按时序逐项叠加的方法。下面将分项讨论引起预应力损失的原因,损失值的计算方法。 1.1孔道摩擦损失σ l2 孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。包括长度效应(kx)和曲率效应(μθ)引起的损失。宜按下列公式计算: σ l2=σ con (1-1/e kx+μθ) 当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σ l2 可按下列近似公式计算: σ l2=(kx+μθ)σ con

预应力损失计算资料

预应力损失计算 1 引言 由于受施工状况、材料性能和环境条件等因素的影响,预应力结构中预应力钢筋的预拉应力在施工和使用过程中将会逐渐减少。这种减少的应力称为结构预应力损失[2]。设计中所需的钢筋预应力值是扣除相应阶段的应力损失后钢筋中实际存在的有效应力值(pe σ)。设钢筋初始张拉的预应力为con σ(称为张拉控制应力),相应的应力损失值为l σ,那么预应力钢筋的有效应力为: pe con l σσσ=- 因此,要使结构获得所需的有效应力( pe σ),除需要根据承受外荷载的情况和结构的使用 性能确定张拉控制应力( con σ)外,关键是能准确估算出预应力损失值l σ。 引起结构预应力损失的因素是很多,要准确地估算预应力损失值是非常困难的。根据目前的研究成果,预应力损失按损失完成时间分为瞬时损失和长期损失两大类。瞬时损失是指施加预应力时短时内完成的损失,例如锚具变形和钢筋滑移、混凝土弹性压缩、分批张拉等引起的损失;长期损失指的是考虑了材料的时间效应所引起的预应力损失,主要包括混凝土的收缩、徐变、和钢筋预应力松弛引起的损失。有关瞬时损失的计算在理论上已基本达成了一至的计算原则。但是,对于长期损失的计算由于存在的不确定因素较多,有些因素(如混凝土的收缩、徐变及钢筋松弛)引起的预应力损失值是随着时间的增长和环境的变化而不断变化的;还有些因素之间互相影响导致预应力值降低,例如混凝土收缩、徐变使构件缩短,钢筋回缩引起预应力值降低;反过来,预应力值降低又将减小徐变损失;钢筋的松弛也将引起徐变损失的减小等。各国学者、专家根据自己的试验结果及有关假设和推导提出了不同的的计算理论。 预应力损失估计准确与否,对预应力结构安全性能和使用性能(如结构的抗裂性、裂逢、挠度和反拱等)将有很大的影响。预应力损失估计过大,结构中的混凝土将承受过高的持续压应力,产生过大的反拱度,对结构安全和使用产生不利的影响,同时造成材料的浪费;反之,则会造成局部预压应力不足,导致结构过早开裂,达不到预压的效果,甚至影响结构的安全性[15]。由此可见,准确地估计和计算预应力损失在预应力结构设计中是非常重要的一环。 2 预应力损失计算方法 根据预应力损失不同的阶段。将各阶段预应力总损失的组成如图3-1所示。目前有关预应力损失的计算方法大体上可分为三类:①预应力总损失估算法(综合估算法);②分项预应力损失

预应力钢筋理论伸长值计算

预应力钢筋的理论伸长值计算 已知:张拉控制应力σk=,A y=,E y=197660 Mpa,μ=,k=; 1号钢束:实测摩阻力为115 Mpa,理论摩阻力为Mpa, 张拉力P k=××12= 将半个曲线预应力筋分成八段,各段参数表为: 线段L(m) θ(rad)e-(kL+μθ) 终点力(KN) AB BC 0 2278 CD DE 0 EF FG 0 GH HI 2 0 将表中数据代入公式: Δl=PL/A y E y,P=P×(1+ e-(kL+μθ))/2,得 P1=×(1+/2= Δl1=×103××197660)= P2=×(1+/2= Δl2=×103××197660)=

P3=2278×(1+/2= Δl3=×103××197660)= P4=×(1+/2= Δl4=×103××197660)= P5=×(1+/2= Δl5=×103××197660)= P6=×(1+/2= Δl6=×103××197660)= P7=×(1+/2= Δl7=×103××197660)= P8=×(1+/2= Δl8=×103×2/×197660)= 求得Δl=2×== 在梁端处N1钢束伸长量为: 2号钢束:实测摩阻力为275 Mpa,理论摩阻力为Mpa,

张拉力P k=+××12= 将半个曲线预应力筋分成六段,各段参数表为: 线段L(m) θ(rad)e-(kL+μθ) 终点力(KN) AB 4 BC 0 CD 8 DE 8 EF 9 0 FG 8 将表中数据代入公式: Δl=PL/A y E y,P=P×(1+ e-(kL+μθ))/2,得 P1=×(1+/2= Δl1=×103×4/×197660)= P2=×(1+/2= Δl2=×103××197660)= P3=×(1+/2= Δl3=×103×8/×197660)= P4=×(1+/2= Δl4=×103×8/×197660)= P5=×(1+/2= Δl5=×103×9/×197660)=

预应力混凝土预应力损失及计算方法

预应力混凝土预应力损失及计算方法 简介:对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据。 关键字:预应力损失简化计算 预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。 1.预应力损失基本计算 在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。全部损失由两部分组成,即瞬时损失和长期损失。其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。我国新规范采用分项计算然后按时序逐项叠加的方法。下面将分项讨论引起预应力损失的原因,损失值的计算方法。 1.1孔道摩擦损失σl2 孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。包括长度效应(kx)和曲率效应(μθ)引起的损失。宜按下列公式计算: σl2=σcon(1-1/ekx+μθ) 当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算: σl2=(kx+μθ)σcon

预应力张拉伸长量计算公式

预应力张拉伸长量计算公式 预应力筋理论伸长值△Lcp按以下公式计算: (由张拉10%到100%的伸长值)△Lcp = 0.9 Fpm Lp / Ap Ep 式中: 0.9 ——系数(由10% ~ 100%的伸长值折减系数) Fpm——预应力筋的平均张拉力N Lp ——预应力筋的计算长度mm Ap ——预应力筋的截面面积mm2 Ep ——预应力筋的弹性模量=1.95×105 N/mm2 式中的“Fpm——预应力筋的平均张拉力N”较难求得。由张拉力和第二项摩擦损失求得。 摩擦损失又有一个公式去求得:δl2=δcon*(1-1/e(kx+uθ))。(kx+uθ)是指数。

15.24钢绞线公称面积 钢铰线应是15.24mm的是美国标准,截面面积是140mm2,单 位重是1.102每米。 15.2mm2的是中国的标准,截面是一样的为140mm2,单位重 是1.101每米。 钢绞线张拉伸长量的计算 桥梁结构常用钢绞线的规格一般是ASTM A416、270级低松弛钢绞线,公称直径为15.24mm,标准强度为1860MPa,弹性模量为195000MPa,桥梁施工中张拉控制应力(本文中用Ycon表示)一般为标准强度的75%即1395MPa。本文重点介绍曲线布置的钢绞线伸长量计算,并给出CASIO fx-4800P计算器的计算程序,另外简要介绍千斤顶标定的一些注意问题。参照技术规范为《公路桥涵施工技术规范》(JTJ 041-2000)(以下简称《桥规》)。 一、直线布置的钢绞线伸长量计算: 直线布置的钢绞线伸长量计算有两种计算方式: 1、按照《桥规》第129页公式12.8.3-1计算,其中Pp平均张拉力在直线布置时即为张拉控制力,其余参数按照实际使用的钢绞线相应参数代入即可。

预应力钢绞线理论伸长值精确计算

预应力钢绞线理论伸长值计算结果中板5孔 △L N1=130.32㎜ △L N2=130.94㎜ 边板6孔 △L N1=130.32㎜ △L N2=130.94㎜ 详细计算过程附后:

预应力钢绞线理论伸长值计算书 计算依据:根据设计图纸及《钢绞线试验检测报告》,由《公路桥涵施工技术规》 129页公式计算而得出结果: PpL 公式:△L= ————— ApEp 式中:Pp———钢绞线的平均拉应力(N)直线筋取拉端的拉力。 L———钢绞线的长度(mm)。 Ap———钢绞线的截面面积(mm2)。根据规(GB/T5224-2014)取公称面积140mm2。 Ep———钢绞线的弹性模量(N/ mm2), 根据《钢绞线试验检测报告》取197800(N)。 其中:Pp值(直线筋取拉端的拉力),根据《公路桥涵施工技术规》 339页计算而得: Pcon [1-e-(k x+μθ)] 公式:Pp= —————————— k x + μθ 式中:Pcon ———钢绞线拉端的拉力(N)。 x———从拉端至计算截面的孔道长度(m)。 θ———从拉端计算截面曲线孔道部分切线的夹角之和(rad),因为1(rad)=π/ 180°,所以计算弧度角=θ×π/180。 k———孔道每米局部偏差对摩擦系数,由施工规提供为k=0.0015。 μ———钢绞线与孔道壁的摩擦系数,由施工规提供为u=0.25。

一、理论伸长值的计算 A、算中板N1钢绞线。N1为5束钢绞线,下料长度为19.216m(两端各预留80cm)。 1、将N1钢绞线分成6段: 1——直线段,2——曲线段,3——直线段,4——直线段,5——曲线段,6——直线段(如图1所示) 2、查设计图可得各段的长度以及各段曲线切线夹角值并计算θ值如下表所示:

预应力钢绞线张拉理论伸长量计算公式

预应力钢绞线张拉理论伸长量计算公式: ΔL=(PpL)/(ApEp) 式中:Pp――预应力筋的平均张拉力(N) L――预应力筋的长度(mm) Ap――预应力筋的截面面积(mm2) Ep――预应力筋的弹性模量(N/mm2) Pp=P(1-e-(kx+μθ))/(kx+μθ) 式中:Pp――预应力筋平均张拉力(N) P――预应力筋张拉端的张拉力(N) x――从张拉端至计算截面的孔道长度(m) θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k――孔道每米局部偏差对摩擦的影响系数 μ――预应力筋与孔道壁的摩擦系数 注:当预应力筋为直线时Pp=P

如果还不会算的话我这里有做好的EXCEL表格,你可以直接输入各种数进行计算。 理论伸长值计算公式 曲线预应力筋的理论张拉伸长值△LT按以下近似公式计算: △LT=(1+exp[-(k LT+ uθ)]) Fj/(2ApEp) LT 式中:Fj ——预应力筋的张拉力; Ap ——预应力筋的截面面积; Ep ——预应力筋的弹性模量; LT ——从张拉端至固定端的孔道长度(m); K ——每米孔道局部偏差摩擦影响系数; u ——预应力筋与孔道壁之间的摩擦系数; θ ——从张拉端至固定端曲线孔道部分切线的总夹角(rad) 预应力束摩擦系数表 预应力筋种类k u 有粘结钢绞线(预埋波纹管)0.0015 0.25 无粘结钢绞线0.004 0.09 25m箱梁预应力张拉计算书 管理提醒: 本帖被120241126 从【桥梁隧道】移动到本区(2007-10-25) CK0+667.275立交桥箱梁,设计采用标准强度fpk=1860MPa的高强低松弛钢绞线,公称直径15.2mm,公称面积Ag=139mm2,弹性模量Eg=1.95×105MP。为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。理论伸长量计算采用《公路桥梁施工技术规范》JTJ041-2002附表G-8预应力钢绞线理论伸长量及平均张拉应力计算公式。 一、计算公式及参数: 1、预应力平均张拉力计算公式及参数: 式中:

预应力张拉伸长值计算

以钢绞线作为桥梁工程、路基高边坡抗滑加固等工程施加预应力的载体,是目前普遍采用的材料和工艺。对钢绞线张拉预应力施加、锚固的方法和张拉力、钢绞线伸长量的理论计算,在相应的规范中都已有明确的规定,但在实际操作中对钢绞线施加预应力张拉的伸长值、钢绞线锚固时锚具锚塞回缩量的量测,各家说法及做法均存在差异,这对预应力张拉质量控制的双控指标(即钢绞线张拉力与实测伸长值)的计算和评判产生了一定的影响。针对上述问题,笔者就多年预应力张拉实践,尝试提出如下实际作法和技术见解(以后张法为主),为广大钢绞线预应力张拉工作者提供参考。 2钢绞线张拉伸长值确定 2.1钢绞线张拉伸长值计算 钢绞线预应力张拉施工设计控制张拉力,是指预应力张拉完成后钢绞线在锚夹具前的拉力。因此,在钢绞线预应力张拉理论伸长量计算时,应以钢绞线两头锚固点之间的距离作为钢绞线的计算长度,但在预应力张拉时钢绞线的控制张拉力是在千斤顶工具锚处控制的,故为控制和计算方便,一般以钢绞线两头锚固点之间的距离,再加上钢绞线在张拉千斤顶中的工作长度,作为钢绞线预应力张拉理论伸长量的计算长度。 在钢绞线预应力张拉时,钢绞线的外露部分,大部分被锚具和千斤顶所包裹,钢绞线的张拉伸长量无法在钢绞线上直接测量,故只能用测量张拉千斤顶的活塞行程,计算钢绞线的张拉伸长值,但同时还应减掉钢绞线张拉全过程的锚塞回缩量。(参阅《公路桥涵施工技术规范》)一般计算式为: ΔL=ΔL1+ΔL2-b-c⑴ 式中: ΔL1:为从初始拉力(桥梁施工规范规定一般为设计控制张拉力的10%~25%)至张拉设计控制拉力间的千斤顶活塞的张拉行程; ΔL2:为初始拉力时的推算伸长值(按规范规定推算求得); b:工具锚锚塞回缩量; c:工作锚锚塞回缩量。 2.2在钢绞线预应力先张法施工中,也有在每分级张拉一次,卸掉千斤顶前后,直接丈量钢绞线外露长度,以钢绞线每级张拉前后外露长度的差或以张拉活动横梁的张拉前后位移量的差值,求算钢绞线张拉伸长量,此法较为直观,但只适用于以每分级张拉一次,卸掉一次千斤顶的张拉方法或设置有张拉活动横梁同时张拉多根预应力筋的方法。先张法为方便施工,一般采取单根一端固定另一端张拉的方法,故计算钢绞线张拉伸长量时,还应考虑减掉固定端锚具夹片的回缩量。每级张拉前后量测固定

预应力钢束损失量计算

预应力损失 随时间的推移,钢束的张拉应力因各种原因变小,这样,作用到混凝土上的预应力也随之变小,其原因如下: ? 施加预应力时的瞬时损失(Istantaneous Loss) 1. 锚固装置的滑动(Anchorange Slip) 2. 钢束和孔道之间的摩擦 3. 混凝土的弹性变形(Elastic Shortening) ? 施加预应力以后随时间的推移引起的损失(Time Dependent Loss) 1. 混凝土的徐变 2. 混凝土的收缩 3. 钢束的松弛(Relaxation) 后张法考虑上述六种预应力损失原因,但是先张法不考虑钢束和孔道之间的摩擦。预应力的瞬时损失和随时间的推移引起的损失之和达到初始拉力(Original Ja cking Force)的20~30%之多。预应力构件的混凝土应力计算中,最重要的参数为瞬时损失后的拉力i P 和随时间推移引起的损失后的最后作用于钢束的拉力e P (Effective Prestress Force) 。i P 和e P 的关系可以用以下公式表示, e i P RP = 其中,R 为预应力的有效率(Effective Ratio),一般来说,先张法为R 0.80=, 后张法为R 0.85=

以下是对MIDAS/CIVIL 考虑的预应力损失的方法的说明: 瞬时损失 1. 锚固装置滑动引起的损失 钢束的张拉结束后,随锚固装置的不同,锚固端部会有一些滑动。因此钢束的张拉端部附近会发生张力损失,这称为锚固装置滑动引起的损失(或锚具变形和钢筋内缩)。这种损失不仅在后张法中发生,也发生在先张法中。不管是什么方式,都可用张拉作业时的超张应力(Overstressing)来校正。 一般来讲,因钢束和孔道之间的存在一定的摩擦,锚固装置的滑动引起的张力的损失只限于锚固装置附近即张拉端部附近,远离张拉端处,几乎没有张力损失的现象。 受锚固装置的滑动影响的张拉构件的长度set l 是摩擦损失的函数,若摩擦损失越大,其长度越小;摩擦损失越小,其长度越长(图2.46所示)。把滑移量(l ?)、钢材截面积(p A )、弹性模量(p E )三个参数相乘,等于图2.46中的三角形的面积,这样下面等式成立。 三角形面积 (0.5set Pl ?) = p p A E l ? (1) 假设张拉构件单位长度的摩擦损失为p ,张拉力的损失p ?由图2.46可 知,可以表示为 2set P pl ?= (2) 由式(1)和(2)可以推导出受锚固装置滑动影响的张拉构件的长度()set l 的公 式, set l (3)

预应力损失简化计算

预应力损失简化计算 预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。 1.预应力损失基本计算 在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。全部损失由两部分组成,即瞬时损失和长期损失。其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。我国新规范采用分项计算然后按时序逐项叠加的方法。下面将分项讨论引起预应力损失的原因,损失值的计算方法。 1.1孔道摩擦损失σl2 孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。包括长度效应(kx)和曲率效应(μθ)引起的损失。宜按下列公式计算: σl2=σcon(1-1/e kx+μθ) 当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算: σl2=(kx+μθ)σcon 1.张拉端 2.计算截面 式中: X--张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度; θ--张拉端至计算截面曲线孔道部分切线的夹角(rad);

K--考虑孔道每米长度局部偏差的摩擦系数,按规范取值; μ--预应力钢筋与孔道壁之间的摩擦系数,按规范取值。 对摩擦损失计算用的K,μ值取为定值,是根据当前国内有关试验值确定的,与原规范GBJ10-89不同,与国外相比,μ值较高,是由于铁皮管质量不高或预压力筋与混凝土直接接触,从而增大摩擦力的缘故。 1.2.锚固损失σl1 锚固损失是指张拉端锚固时锚具变形和预应力钢筋内缩引起的预应力损失. 1.2.1对直线预应力筋 可按下列公式计算: σl1=aE s/l 式中:a--张拉端锚具变形和钢筋内缩值(mm), 按规范取值; l--张拉端至锚固端之间的距离(mm). 1.2.2对后张法构件预应力曲线钢筋或折线钢筋 由于锚具变形和预应力钢筋内缩引起的预应力损失值σl应根据预应力曲线钢筋或折线钢筋与孔道壁之间反向摩擦影响长度l f范围内的预应力钢筋变形值等于锚具变形和钢筋内缩值的条件确定,反向摩擦系数可按规范取值。 1.2.2.1抛物线形预应力钢筋 可近似按圆弧形曲线预应力钢筋考虑。当其对应的圆心角θ≤30°时(图1),由于锚具变形和钢筋内缩,在反向摩擦影响长度l f范围内的预应力损失值σl1 可按下列公式计算: σl1=2σcon l f(μ/r c+k)(1-x/l f) 反向摩擦影响长度l f(m)可按下列公式计算: l f=√aE s/1000σcon(μ/r c+k) 式中: r c--圆弧形曲线预应力钢筋的曲率半径(m); μ--预应力钢筋与孔道壁之间的摩擦系数,按范取值; k--考虑孔道每米长度局部偏差的摩擦系数,按规范取值; x--张拉端至计算截面的距离(m); a--张拉端锚具变形和钢筋内缩值(mm); E s--预应力钢筋弹性模量。

相关文档
相关文档 最新文档