文档库 最新最全的文档下载
当前位置:文档库 › 高考数学三角函数与平面向量复习精选

高考数学三角函数与平面向量复习精选

高考数学三角函数与平面向量复习精选
高考数学三角函数与平面向量复习精选

高考数学三角函数与平面向量复习

三角函数、平面向量是高中数学两个有机结合的部分,它们既是高考必考内容又是十分有用的解题工具. 学好这部分内容,除了要较好的把握知识体系之外,更要把握有关题型、易错点.

一、三角函数问题 1.三角函数的图像和性质 (1)具体要求:

①了解任意角的概念和弧度制,能进行弧度与角度的互化; ②借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;

③借助单位圆中的三角函数线推导出诱导公式(2π

±α,π±α的正弦、余弦、正切),能画出

y=sinx ,y=cosx ,y=tanx 图像,了解三角函数的周期性;

④借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-2π,2π

)上的性质(如单调性、最大

和最小值、图象与轴交点等);

⑤理解同角三角函数的基本关系式:

sin 2x+cos 2

x=1,x x

cos sin =tanx.

⑥结合具体实例,了解y=Asin(ωx+?)的实际意义;能借助计算器或计算机画出y=Asin(ωx+?)的图

像,观察参数A ,ω,?对函数图像变化的影响;

⑦会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型. (2)题型示例:这里的问题主要是三角函数的图像和性质及其应用,与向量进行综合命题是近年来的发展趋势.

例1.已知函数f (x)= Asin(ωx+?)( A >0,ω>0,∣?∣<2π

)的图像在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2),( x 0+3π,-2).

(1)求f (x)的解析式;

(2)用五点作图法画出函数f (x)在长度为一个闭区间上的简图; (3)写出函数f (x)的单调区间;

(4)写出f (x)>3的角x 的集合;

(5)函数f (x)的图像经过怎样的变换可以得到函数y=sinx 的图像.

解:(1)依题意可知A=2,ωπ

2=2·4=8,ω=4π

,于是得

f (x)= 2sin(4π

x+?)

又x=0时f (0)= 2sin ?=1,sin ?=21,且∣?∣<2π

∴?=6π. f (x)= 2sin(4πx+6π)

(2)列表如下:

4πx+6π

π

23π 2π

x -32

34

310

316

322

y

2

-2

(3)函数f (x)的单调增区间是[-38+8k ,34+8k](k∈Z ),减区间是[34

+8k ,316+8k](k∈Z ).

(4)f (x)>3的角x 的集合是{x∣31

+8k <x <2+8k , k∈Z }.

(5)把函数f (x)的图像上各点的横坐标不变,纵坐标变为原来的21

;再把所得函数的图像上各点的纵坐标不变,横坐标变为原来的π4;再把所得的函数图像向右平移6π

个单位即得函数y=sinx 的图像.

点评:本题重点考查相关的基础知识和基本方法,考查阅读理解及语言表达能力.狠抓双基的学习是永恒的话题.

例2.(2006·湖北·理)设函数()f x = a·(b +c ),其中向量a=(sinx ,-cosx),b=(sinx ,-3cosx),c =(-cosx ,sinx),x ∈R .

(Ⅰ)、求函数()f x 的最大值和最小正周期;

(Ⅱ)、将函数()f x 的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .

解:(Ⅰ)由题意得,f(x)=a·(b +c ) =(sinx,-cosx )·(sinx -cosx,sinx -3cosx)

=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π

).

所以,f(x)的最大值为2+2,最小正周期是22π

=π.

(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =

832π

π-

k , k ∈Z , 于是d =(832ππ-

k ,-2),∣d ∣,4)832(2+-=ππk k ∈Z .

因为k 为整数,要使∣d ∣最小,则只有k =1,此时d =(―8π

,―2)即为所求.

点评:本题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力. 在这里我们也可以看到,所谓的高考试题,实际上更加注重对双基的考查,提醒我们平时学习要注重基础,注重对所学知识的融会贯通.

2三角恒等变换 (1)具体要求

①经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;

②能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;

③能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).

(2)题型示例:这部分的问题主要是化简、求值、证明等问题.

例3.(2005?福建)已知-2π

.

(1)求sinx-cosx 的值;

(2)求x x x tan 1sin 22sin 2-+的值.

解:(1)由sinx+cosx=51得sinxcosx=-2512

∴(sinx-cosx )2

=1-2sinxcosx=2549

.

又-2π

(2) 由sinx+cosx=51,sinx-cosx=-57得sinx=-53,cosx=54,tanx=-43

∴x x x tan 1sin 22sin 2-+=-17524.

点评:此题考查了同角三角函数关系式的运用、三角函数的化简、变形能力,考查了方程的思想.注意到sinx+cosx ,sinx-cosx ,sinxcosx 之间的关系,这在化简求值中应用的频率上很高的.

例4(2006重庆理)已知βα,??? ??∈ππ,43,sin(βα+)=-,

53 sin ,13124=??? ??-πβ则cos ?

?? ?

?

+4πα=_______ . 解:由βα,??? ??∈ππ,4

3得βα+∈(23π,2π),又sin(βα+)=-,

53故cos(βα+)=54. 由β??? ??∈ππ,4

3得β-4π∈(2π,43π),又sin ,13124=???

??-πβ故cos(β-4π)=-135. 于是,cos ?

?? ?

?+4πα=cos[(βα+)-(β-4π)]

= cos(βα+)cos(β-4π)+sin(βα+)sin(β-4π

)

=-6556

.

点评:本题考查三角变换及三角运算能力.三角变换包括三角函数、三角式的变换和角变换,这里主要是角的变换.灵活地进行角的变换是灵活地进行三角变形的基础.

3.解三角形 (1)具体要求

①通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;

②能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. (2)题型示例:利用三角知识解决三角形中的三角函数问题,包括解三角形,三角形形状的判定,应用问题等.要注意的是三角形中的边角关系、正余弦定理的灵活运用.

例5.(2006江西文)在锐角ABC △中,角A

B C ,,所对的边分别为a b c ,,

,已知sin 3A =

(1)求

2

2tan sin 22B C A

++的值;

(2)若2a =

ABC S =△b 的值.

解:(1)因为锐角△ABC 中,A +B +C =π

sin 3A =

,所以cosA =1

3,则

2

2222B C

sin B C A A 2tan sin sin B C 222

cos 2

1cos B C 11cos A 171cos A 1cos B C 21cosA 33+++=++-(+)+=+(-)=+=+(+)-.

(2)因为S ABC ?=2,又S ABC ?=21bcsinA=21bc ·322,则bc =3将a =2,cosA =13,c =3

b 代入

余弦定理:222a b c 2bccos A =+-中得42

b 6b 90-+=解得b

.

点评:本题主要考查三角形中的三角函数问题,灵活运用诱导公式、同角三角函数的关系式、二倍

角公式、三角形面积公式、余弦定理等进行三角变换、计算的能力.

例6.(2006上海文·理)如图,当甲船位于A 处时获悉,在其正东方方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30o

,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1o

)?

解:连接BC ,由余弦定理得BC 2=202+102-2×20×10COS120°=700. 于是,BC=107.

710120sin 20sin ?=ACB , ∴sin ∠ACB=73

, ∵∠ACB<90° , ∴∠ACB=41°,

∴乙船应朝北偏东71°方向沿直线前往B 处救援.

点评:本题主要考查学生的数学应用意识、实际问题化归为数学问题以及分析问题解决问题的能力.题

不在难,在于适用.

二、平面向量问题 (1)具体要求

①了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;

②掌握向量加、减法的运算,并理解其几何意义;掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;

③了解向量的线性运算性质及其几何意义,了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加、减与数乘运算,理解用坐标表示的平面向量共线的条件;

⑤理解平面向量数量积的含义及其物理意义,体会平面向量的数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;

⑥体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力. (2)题型示例:

例7.(2006全国2理)已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π

2.

(Ⅰ)若a ⊥b ,求θ; (Ⅱ)求|a +b |的最大值.

解:(1)a ⊥b ? a ·b =0 ?sin cos 0

θθ+=4π

θ?=-

(2)∣a +b ∣=∣(sinθ+1,cosθ+1)∣=

()()2

21cos 1sin +++θθ

=

1cos 2cos 1sin 2sin 22+++++θθθθ =

3)cos (sin 2++θθ=3

)4

sin(22++

π

θ.

sin()4πθ+=1时∣a +b ∣有最大值,此时4π

θ=

1=.

点评:本题主要考查向量垂直转化为数量积为0、特殊角的三角函数值、三角函数的基本关系以及三角函数的有界性、已知向量的坐标表示求模等,难度中等,计算量不大.

三、易错问题分析

例8.函数()f x =x x x

x cos sin 1cos sin ++的值域为 .

解:∵()f x =x x x x cos sin 1cos sin ++=

x x x x cos sin 1]

1)cos [(sin 2

1

2++-+=21[(sinx+cosx )-1] =21[2sin(x+4π

)-1]

又sin(x+4π

)∈[-1,1] ∴sin(x+4π

)=1时()

f x m ax =21

(2-1);

sin(x+4π)=-1时()f x min =-21

(2+1) .

∴函数()f x 的值域为[-21(2+1),21

(2-1)] .

简析略解:此解法看似正确,实际上忽视了函数的定义域,从而导致错误.事实上,在化简函数解析

式的过程中要注意1+sinx+cos x≠0,即sin(x+4π

)≠-22,因此()f x ≠-1,函数()f x 的值域应为[-

21(2+1),-1)∪(-1,21

(2-1)] .

例9.若2sin 2x+sin 2y=3sinx ,则sin 2x+sin 2y 的取值范围是 .

解:由已知得sin 2y= 3sinx-2sin 2x >0,从而得0<sinx <23

,于是

sin 2x+sin 2y= -sin 2x+3sinx= -(sinx-23)2+49∈(0,49

), ∴sin 2x+sin 2y 的取值范围是(0,49

).

简析略解:上述解法看似考虑了变量sinx 的取值范围,好象天衣无缝,实际上仍然没有准确的求出变

量sinx 的范围.事实上,0<sin 2y= 3sinx-2sin 2x≤1,因此,0<sinx ≤21

或sinx=1.

∴sin 2x+sin 2y 的取值范围是[0,45

]∪{2}.

例10.已知向量p ,q 满足∣p ∣=3,∣q ∣=3, p 与q 的夹角为900

,若p +t q 与t p +q 的夹角为锐角,则实数t 的取值范围是 .

解:若p +t q 与t p +q 的夹角为锐角,则(p +t q )·(t p +q )>0,即 t p 2

+t q 2

+(1+t 2

) p ·q =3t+9t=12t >0,t >0即为所求.

简析略解:由p +t q 与t p +q 的夹角为锐角 (p +t q )·(t p +q )>0是正确的,但是当

(p +t q )·(t p +q )>0时却得不到p +t q 与t p +q 的夹角为锐角!因为此时也可能有p +t q 与t p +q 的夹角

为00,因此要在前面所求得的范围内去掉使p +t q 与t p +q 的夹角为00

的t 值.

事实上,当p +t q 与t p +q 的夹角为00

时,可设p +t q =s(t p +q ),则得 st=1,且t=s.

解得t=s=1. 实数t 的取值范围是t >0且t≠1.

高中数学_三角函数公式大全全部覆盖

三角公式汇总 一、任意角的三角函数 在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y = αtan 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。 二、同角三角函数的基本关系式 商数关系:α α αcos sin tan = , 平方关系:1cos sin 22=+αα, 三、诱导公式 ⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名不变,符号看象限) ⑵ απ +2、απ-2 、απ+23、απ -23的三角函数值,等于α的异名函数值, 前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+

βαβαβαsin sin cos cos )cos(?+?=- βαβ αβαtan tan 1tan tan )tan(?-+=+ β αβ αβαtan tan 1tan tan )tan(?+-= - 五、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α α α2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=- 六、万能公式(可以理解为二倍角公式的另一种形式) ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,α α α2 tan 1tan 22tan -=。 万能公式告诉我们,单角的三角函数都可以用半角的正切.. 来表示。 七、辅助角公式 )sin(cos sin 22?++=+x b a x b x a () 其中:角?的终边所在的象限与点),(b a 所在的象限相同, 2 2sin b a b += ?,2 2cos b a a += ?,a b = ?tan 。 八、正弦定理

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中三角函数公式大全必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

三角函数与平面向量(好)

三角函数与平面向量 一:考点分析 小题主要考查三角函数图象与性质,利用诱导公式与和差角公式、倍角公式、正余弦定 理求值化简,有时与向量相结合。大题一般三角函数的图象与性质与向量及解三角形相结合。 1任意角的三角函数: (1)弧长公式:I |aR R 为圆弧的半径,a 为圆心角弧度数,I 为弧长。 cosa 2.已知 tan -- =2,,则 3sin 2一一 -cos sin -- +1=( ) A.3 B.-3 C.4 D.-4 3 .已知sin 、,2 cos .. 3 , 则tan ( ) A.二 B .2 C D . 2 2 2 4.若 sin(— 3 1 5 ) ,贝U cos(—— )的值为 ( ) A 1 f 1 2 2 2^2 A. — B. c. D. 3 3 3 3 类型二:三角恒等变换 1.若 sin( ) 4 5 (o,—), 则sin 2 cos 的值等于 5 2 2 2.若 cos2 2 则cos +sin 的值为 sin( 4) 2 3.已知角 e 的顶点与原点重合,始边与 x 轴正半轴重合,终边在直线 n 类型一: 诱导公式的应用 3 sin(2 ) cos(3 ) cos( ) 1 .化简: 2 sin( )sin(3 ) cos( ) (4)诱导公式:(奇变偶不变,符号看象限) (2) 扇形的面积公式: S llR R 2 (3) 同角三角函数关系式:商数关系: 为圆弧的半径,I 为弧长。 , sin a tana 平方关系: sin 2a cos 2 a 1 k 所谓奇偶指的是整数 k 的奇偶性; 2 y = 2x 上,则

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

(完整版)高中三角函数公式大全整理版

高中三角函数公式大全 sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半) 正弦定理:在△ABC 中,a / sin A = b / sin B = c / sin C = 2R (其中,R 为△ABC 的外接圆的半径。) 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2Sin A?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA Tan3A=)3tan()3tan(tan )(tan 1)(tan 3tan 32 3A A A A A A +-=--ππ 半角公式

三角函数与平面向量综合题的六种类型

第1讲 三角函数与平面向量综合题3.17 题型一:三角函数与平面向量平行(共线)的综合 【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π 2 ,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π 3)的值. 题型三. 三角函数与平面向量的模的综合 【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2 5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ) 若-π2<β<0<α<π 2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合 【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ) 求实数m 的值;(Ⅱ)求函数f(x)的最小值. 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例5】(山东卷)在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan C = (1)求cos C ;(2)若5 2 CB CA ?= ,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例6】()f x a b =? ,其中向量(,cos 2)a m x = ,(1sin 2,1)b x =+ ,x R ∈,且函数 ()y f x =的图象经过点(,2)4 π . (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。 题型七:结合向量的坐标运算,考查与三角不等式相关的问题 【例7】设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈ ,函数()()f x a a b =?+ . (Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3 ()2 f x ≥成立的x 的取值集. 【跟踪训练】 三角函数与平面向量训练反馈 1、已知向量=(x x x 3,52-),=(2,x ),且⊥,则由x 的值构成的集合是( ) A 、{0,2,3} B 、{0,2} C 、{2} D 、{0,-1,6} 2、设02x π≤≤, sin cos x x =-,则 ( ) A .0x π≤≤ B . 74 4x π π≤≤ C .544 x ππ ≤≤ D . 32 2 x π π ≤≤ 3、函数1cos 4tan 2sin )(++?=x x x x f 的值域是 。 4、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos 2B b C a c =-+. (1)求角B 的大小; (2)若 b a + c =4,求a 的值. 5、已知向量 )1),3 (cos(π + =x ,)21),3(cos(-+ =π x ,)0),3 (sin(π+=x 函数 x f ?=)(, x g ?=)(, x h ?-?=)( (1)要得到)(x f y =的图象,只需把)(x g y =的图象经过怎样的平移或伸缩变换? (2)求)()()(x g x f x h -=的最大值及相应的x .

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高一三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)]

高三数学知识点总结三角函数公式大全

2014高三数学知识点总结:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是为大家整理的三角函数公式大全:锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)²] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°) /2]}

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

高中数学三角函数公式大全

高中数学三角函数公式大全三角函数和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 三角函数积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] 三角函数万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 三角函数半角公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三角函数三倍角公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα

三角函数倍角公式 sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数两角和与差公式 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

高一数学三角函数公式大全

高一数学三角函数公式大全 sinα=∠α的对边/斜边 cosα=∠α的邻边/斜边 tanα=∠α的对边/∠α的邻边 cotα=∠α的邻边/∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1 tan2A=(2tanA)/(1-tanA2) (注:SinA2是sinA的平方sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a=tana·tan(π/3+a)·tan(π/3-a) 三倍角公式推导 sin3a=sin(2a+a)=sin2acosa+cos2asina 三角函数辅助角公式 Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中sint=B/(A2+B2)’(1/2) cost=A/(A2+B2)’(1/2) tant=B/A

Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 三角函数推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos2α 1-cos2α=2sin2α 1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1- 2sin2a)sina=3sina-4sin3a cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2- sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°- a)/2]cos[(60°-a)/2]=4s inasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a- (√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{- 2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=- 4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

相关文档
相关文档 最新文档