文档库 最新最全的文档下载
当前位置:文档库 › 几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标
几种常见的射频电路类型及主要指标

几种常见的射频电路类型及主要指标

1 低噪声放大器(LNA)

LNA是一种特殊的放大器,主要用于射频接收机前端,将天线接收的信号以小的噪声和大的增益进行放大,对提高接收信号质量,降低噪声干扰,提高接收灵敏度有着极其重要的意义,它的性能好坏关系到整个通信系统的质量。

低噪声放大器的主要指标有:噪声系数(NF)、增益(Gain)、输入输出阻抗匹配程度(S11、S22、输入输出回波损耗或输入输出VSWR)、线性性能(三阶交调点和1dB压缩点)、反向隔离(S12)等。由于LNA位于邻近天线的最前端,它的性能好坏会直接影响接收机接收信号的质量。为了保证经天线接收的信号能在接收机的最后一级得到恢复,LNA需要在放大信号的同时产生尽可能低的噪声和失真。因此,在生产测试中,我们主要关注LNA的增益和噪声系数这两个参数。

2 射频功率放大器(PA)

射频功率放大器用于发射机的末级,它将已调制的频带信号放大到所需要的功率值,送到天线中发射,保证在一定区域内的接收机可以收到满意的信号电平,并且不干扰相邻信道的通信。不同的应用场合对发射功率的大小要求不一,如移动通信基站的发射功率可达上百瓦,卫星通信的发射功率可达上千瓦,而便携式无线通信设备却只需几十毫瓦到几百毫瓦。

射频功率放大器的主要指标有工作频段、输出功率、功率增益和增益平坦度、噪声系数、输入输出驻波比、输入输出三阶交调点、邻道功率比、效率等。与低噪声放大器相比,射频功率放大器除了要满足一定的增益、驻波比、带宽,还要有高的输出功率和转换效率及小的非线性失真。

3 射频滤波器

射频滤波器主要用于滤去不需要的信号保留有用信号,是具有选频特性的二端口器件,它对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。

根据不同的选频特性,滤波器可以分为低通、高通、带通和带阻滤波器,这是最基本的四种滤波器。图1归纳了四种滤波器的衰减系数与归一化角频率的关系。根据不同的实现方法,滤波器可分为使用无源器件(如电感、电容和传输线)实现的无源滤波器和使用有源器件(如晶体管和运算放大器)实现的有源滤波器。

在分析测试滤波器时,应考虑的主要指标有:插入损耗(IL)、纹波系数、驻波比(VSWR)、带宽(BW)、矩形系数(SF)、阻带抑制和品质因数Q等。

4 混频器

混频器(Mixer)是通信系统的重要组成部件,主要用于信号的频率转换,即将信号的频率由一个值变换成另一个值。混频器可分为有源混频器和无源混频器。无源混频器常用二极管和工作在可变电阻区的场效应管(不加直流偏置)构成,增益小于1,线性范围大,速度快;有源混频器由场效应管(加直流偏置)和双极型晶体管构成,增益大于1,可以降低混频后各级噪声对接收机总噪声的影响。

如图2所示,混频器是一个三端口电路,有两个输入端口,一个输出端口。通常这三个端口一个是射频(RF),一个是中频(IF),一个是本地振荡(LO)。其中LO总是输入,RF和IF中任一个作为输入后,则另一个为输出。混频器是通过内部的非线性乘法来获得所需频率分量的,它工作于非线性状态会产生许多不想要的非线性频率分量。混频器有9个S参数,但在实际应用或测试中,只关注S11、S13、S21、S22、S23这5个S参数。

混频器的主要指标有:增益、变频损耗、NF、IIP3、输入输出阻抗和口间隔离等。

射频电路调试测试流程

射频电路调试测试流程(准备阶段) 射频电路的调试作为通信整机研发工作中的重要一环,工作量非常大,几乎所有电路都需要调试,为了提高效率,需要对调试环境、调试方法等进行规范。 环境准备如下 1、防静电 佩戴“静电手环”,并良好接地,若着化纤、羊毛、羽绒服装,外层需加穿防静电服,或防辐射服;小功率、低电压、高频率、小封装的器件均ESD敏感,最容易被ESD击穿的射频器件:RF开关,其次是LNA;所有仪器,开机使用前必须将机壳良好接地;2、电源 稳压电源接入负载前,先校准输出电压,电压等于负载的额定电压; 3、仪器保护 为安全起见:只要射频功率大于20dBm,射频信号源(30dBm)、频谱分析仪(27dBm)、信号源分析仪(23dBm)输入端必须级联同轴衰减器,一般情况下,5W 5dB衰减器为常态配置,若测试功放模块需根据实际输出功率大小配置合适的衰减器; 4、仪器设置 射频信号源:Keysight输出功率<13dBm,R&S输出功率<18dBm,若超出,输出功率可能小于显示值,需实测并进行补偿; 频谱分析仪:屏幕显示的有效动态范围,FSV约70dB,FSW约80dB;仪器的线性输入功率<-3dBm,超出会恶化待测IM3(ACLR)、谐波,应选择合适的内部/外部衰减值; 矢量网络分析仪:仪器的IF带宽决定噪声,测无源器件的带外抑制,应适当降低IF带宽;调测任何电路,必须保证输出功率

射频电路基础期末试题

西安电子科技大学 教师教学工作一览 年下学期 课程名称: 课程性质(必、限、任): 课程学时数: 主讲教师姓名: 填表时间:

教学任务书 老师: 根据学年学期教学计划的安排,经研究,决定请您担任教学班课程的主讲,该课程学时为学时,请做好教学实施计划安排和备课等环节的工作。 西安电子科技大学 (教学单位盖章) 年月日

课程内容实施进度 注:1课次为2学时课次内容 1 第一章绪论§1.1非线性电子线路§1.2非线性电子线路的应用 2 第二章谐振功率放大器§2.1谐振功放的工作原理和能量关系 3 §2.2谐振功放的动特性曲线和工作状态§2.3谐振功放的工作特性 4 §2.4谐振功放的电路设计和输出匹配网络第二章习题课 5 第三章正弦波振荡器§3.1反馈式振荡器的工作原理(一) 6 §3.1反馈式振荡器的工作原理(二) 7 §3.2 LC正弦波振荡器—变压器耦合式振荡器、三端式振荡器(一) 8 §3.2 LC正弦波振荡器—三端式振荡器(二)、差分对振荡器 9 §3.2 LC正弦波振荡器—频率稳定度分析和改进措施 10 §3.3并联型石英晶体振荡器和串联型石英晶体振荡器 11 §3.4 RC正弦波振荡器第三章习题课 12 第五章振幅调制与解调§5.1 调幅信号分析(一) 13 §5.1调幅信号分析(二) 14 §5.2非线性器件调幅原理、失真和平衡对消技术 15 §5.3线性时变电路调幅原理和电路分析(一) 16 §5.3线性时变电路调幅原理和电路分析(二) 17 §5.4包络检波和同步检波原理和电路分析(一) 18 §5.4包络检波和同步检波原理和电路分析(二)第五章习题课 19 第六章混频§6.1晶体管混频器原理

射频电路调试经验及问题分析

射频电路调试经验及问题分析 1前言 文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1.微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1.趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。我们通常用趋肤深度来描述趋肤效应。趋肤深度是频率与导线本身共同的作用,在这里我们不会作深入的讨论。 2.1.2.直线电感 我们知道,在有电流流过的导线周围会产生磁场,如果导线中的电流是交变电流,那么磁场强度也会随着电流的变化而变化,因此,在导线两端会产生一个阻止电流变化的电压,这种现象称之为自感。也就是说,微波频率下的导线会呈现出电感的特性,这种电感称为直线电感。也许你会直线电感很微小,可以忽略,但是我们将会在后面的内容中看到,随着频率的增高,直线电感就越来越重要。 电感的概念是非常重要的,因为微波频率下,任何导线(或者导体)都会呈现出一定的电感特性,就连电阻,电容的引脚也不例外。 2.2.微波频率下的电阻 从根本上说,电阻是描述某种材料阻碍电流流动的特性,电阻与电流,电压的关系在欧姆定律中已经给出。但是,在微波频率下,我们就不能用欧姆定律去简单描述电阻,这个时候,电阻的特性应经发生了很大的变化。 2.2.1.电阻的等效电路 电阻的等效电路。其中R就是电阻在直流情况下电阻自身的阻值,L是电阻的引脚,C 因电阻结构的不同而不同。我们很容易就可以想到,在不同的频率下,同一个电阻会呈现出不同的阻值。想想平时在我们进行Wi-Fi产品的设计,几乎不用到直插的元件(大容量电解

最详细解读射频芯片

最详细解读射频芯片 传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。 射频部分:一般是信息发送和接收的部分; 基带部分:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 1. 射频芯片和基带芯片的关系 先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 2.工作原理与电路分析 射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

WiFi产品射频电路调试经验

Wi-Fi产品射频电路调试经验 https://www.wendangku.net/doc/0b4697006.html,/article/11-04/422921302067041.html?sort=1111_1119_1438_0 2011-04-06 13:17:21 来源:电子发烧友 关键字:Wi-Fi 射频电路调试经验 这份文档是生花通信的一线射频工程师总结了的Wi-Fi产品开发过程中的一些射频调试经验,记录并描述在实际项目开发中遇到并解决问题的过程。 1 前言 这份文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2 微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1. 微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1. 趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。 在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。

射频电路基础复习题答案word精品

、选择 传输线输入阻抗是指传输线上该点的( B ) 入射电压与电流比 B ?电压与电流之比 入射电压波之比 D ?入射电流波之比 传输线的无色散是指( C )与频率无关。 波的速度 B ?波的能量流动的速度 波的相速 D ?波的群速 当传输线处于行波工作状态时,传输线的反射系数为( C ) 1 B . -1 C .0 D .无法判断 面哪一种不能构成纯驻波状态的传输条件是( D ) Z L =O B . Z L =X C . Z L =jX 驻波系数p 的取值范围是(D )。 p =1 B . 0< p < 1 C . 0< p< 1 在史密斯圆图中坐标原点表示( C )。 开路 点 B .短路点 C .匹配点 均匀无耗传输线终端开路时对应于史密斯圆图的( A ) 右端点 B .左端点 C .原点 D .上顶点 无耗均匀传输线的特性阻抗为 50?,终端负载阻抗为32 ?,距离终端入/4 处的输入阻抗为( D ) ?。 50 B .32 C .40 D . 78.125 当终端反射系数为 0.2时,传输线的驻波比为( B )。 2 B .1.5 C .0.67 D .无法判断 微带传输线传输的电磁波是( B )。 TEM 波 B .准 TEM 波 C . TE 波 D . TM 波 判断题 无耗均匀传输线上各点的电压反射系数幅值都相等。对 已知无耗均匀传输线的负载,求距负载一段距离的输入阻抗,在利用史密斯 圆图时,找到负载的归一化电抗,再顺时针旋转对应的电长度得到。错 当均匀无耗传输线终端接感性负载时,传输线工作在行驻波工作状态下。错 在史密斯圆图上左半实轴部分是电压的波节点。对 为了消除传输线上的反射,通常要在传输线的终端进行阻抗匹配。对 微带线可以作为传输线,用在大功率传输系统中。错 在无耗互易二端口网络中,S l2=S 21。对 二端口转移参量都是有单位的参量,都可以表示明确的物理意义。错 1. A . C . 2. A . C . 3. A . 4. A . 5. A . 6. A . 7. A . 8. A . 9. A . 10. A . 二、 11. 12. 13. 14. 15. 16. 17. 18. Z L = Z 0 D . 1W p

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

集成电路设计基础复习

1、解释基本概念:集成电路,集成度,特征尺寸 参考答案: A、集成电路(IC:integrated circuit)是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的集成块。 B、集成度是指在每个芯片中包含的元器件的数目。 C、特征尺寸是代表工艺光刻条件所能达到的最小栅长(L)尺寸。 2、写出下列英文缩写的全称:IC,MOS,VLSI,SOC,DRC,ERC,LVS,LPE 参考答案: IC:integrated circuit;MOS:metal oxide semiconductor;VLSI:very large scale integration;SOC:system on chip;DRC:design rule check;ERC:electrical rule check;LVS:layout versus schematic;LPE:layout parameter extraction 3、试述集成电路的几种主要分类方法 参考答案: 集成电路的分类方法大致有五种:器件结构类型、集成规模、使用的基片材料、电路功能以及应用领域。根据器件的结构类型,通常将其分为双极集成电路、MOS集成电路和Bi-MOS 集成电路。按集成规模可分为:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路、特大规模集成电路和巨大规模集成电路。按基片结构形式,可分为单片集成电路和混合集成电路两大类。按电路的功能将其分为数字集成电路、模拟集成电路和数模混合集成电路。按应用领域划分,集成电路又可分为标准通用集成电路和专用集成电路。 4、试述“自顶向下”集成电路设计步骤。 参考答案: “自顶向下”的设计步骤中,设计者首先需要进行行为设计以确定芯片的功能;其次进行结构设计;接着是把各子单元转换成逻辑图或电路图;最后将电路图转换成版图,并经各种验证后以标准版图数据格式输出。 5、比较标准单元法和门阵列法的差异。 参考答案:

射频电路设计困境及对策

射频电路设计地困境及对策 hc360慧聪网通信行业频道 2004-04-16 11:23:41 射频电路地设计技术一度专属于少数专家掌握并拥有其自己地专用芯片组,如今已能和数字电路模块及模拟电路模块集成在同一块 IC 里了.再则,射频电路设计中固有地临界尺寸要求,更增加了工程压力. 要点●射频电路设计师必须经常采用间接测量电路性能地方式,来推断电路故障地原因. ●射频电路设计问题正在影响数字电路设计和模拟电路设计. ●将射频电路集成在同一块印制电路板或 IC 上,这会促使人们使用一种新地设计方法. ● EDA 厂商正在开始提供集成时域仿真和频域仿真地分析工具. 射频电路设计就是对发射电磁信号地电路进行设计.射频意为无线电频率,因为射频电路在其初期,只能发射调幅和调频两个波段地无线电信号.今天,把高频电路设计称为“射频电路设计”,只是沿用了历史名称.图1表明,自从 20 世纪 60 年代使用 UHF 电视技术以来,广播设备使用高于 300000 MHz地频率.从那时以来,通信设备地内容、频率和带宽都增加了.安捷伦科技平台地经理Joe Civello说,对模拟/混合信号 IC 设计师地挑战正以前所未有地速度在加剧.在加大带宽和提高最终产品功能地市场需求推动下,设计正在进入更高地频率范围,并不断提高复杂性.工程师们正在把射频电路与模拟及数字纳M电路集成在一起.吉比级数据速率正在使数字电路像微波电路那样工作.不断扩充而更复杂地无线通信标准,如 WiFi<无线相容性认证)802.11a/b/g、超宽带和蓝牙标准,都要求设计师去评估其设计对系统整体性能地影响. 形状因子、功耗和成本推动着模拟电路设计、射频电路设计和数字电路设计地日益集成化.便携式设备小巧轻便,功耗和成本尽可能低.集成度直接影响着最终电子产品地制造成本、尺寸和重量,通常也决定所需功率地大小.设计师从材料清单中每去掉一个元件,维持该元件地供应链所需日常开支就会随之减少,最终产品地制造成本就会下降,产品尺寸也会缩小. 德州仪器公司(TI>负责无线应用地研究经理Bill Krenik说,射频电路地设计一向是很困难地,因为缺乏恰当地检测仪器,使高频信号地分析复杂化了.工程师们不得不采取间接地测量方法,并根据他们能够观察到地电路行为状态来推断电路特性.随着工程师们在同一块芯片上实现数字电路、模拟电路和射频电路,种种集成问题就使这一问题进一步复杂化.通过衬底传输或通过 IC 表面辐射地数字信号会影响射频或模拟部分地噪声敏感度.这些潜在地影响大多会结合在一起,从而使最初地硅片存在各种问题.传统地调试方法也许不再适用,这意味着你必须正确地进行设计,并在设计投片之前就要准确无误地对尽可能多地物理效应建立模型.当设计方法不能准确地建立硅片地模型时,设计小组通常别无选择,只能把器件制造出来,再去观察其工作状态.走这条途径就像一场赌注很高地赌博,多数公司只是把它作为最后地一招. 模拟电路和射频电路历来都制作在各自地芯片上,这样可以更方便地在系统中隔离噪声,防止耦合到电路地敏感节点中.工程师们把这几类设计元件都集成在同一块芯片上时,就不能忽视噪声问题.假如没有某种形式地精确硅衬底模型,工程师们也许要到硅片从工厂退回后才会知道问题地存在.这类产品地开发几乎总是需要一个由各个工程领域地专家组成地小组.很少有哪个设计师既有射频专业知识,又有模拟电路专业知识;再则,射频电路专家和模

射频电路基础大作业

射频电路基础大作业 从射频电路的软件仿真和硬件设计两方面分别考察学生的实践和写作能力。以下是两个题目的基本要求、实践任务、写作报告和相关提示的具体内容。 题目一:基于PSpice仿真的振幅调制电路设计 1.1 基本要求 参考教材《射频电路基础》第五章振幅调制与解调中有关差分对放大器调幅和二极管调幅的原理,选择元器件、调制信号和载波参数,完成PSpice电路设计、建模和仿真,实现振幅调制信号的输出和分析。 1.2 实践任务 (1) 选择合适的调制信号和载波的振幅、频率,通过理论计算分析,正确选择晶体管和其它元件;搭建单端输出的差分对放大器,实现载波作为差模输入电压,调制信号控制电流源情况下的振幅调制;调整二者振幅,实现基本无失真的线性时变电路调幅;观察记录电路参数、调制信号、载波和已调波的波形和频谱。 (2) 参考例5.3.1,修改电路为双端输出,对比研究平衡对消技术在该电路中的应用效果。 (3) 选择合适的调制信号和载波的振幅、频率,通过理论计算分析,正确选择二极管和其它元件;搭建单二极管振幅调制电路,实现载波作为大信号,调制信号为小信号情况下的振幅调制;调整二者振幅,实现基本无失真的线性时变电路调幅;观察记录电路参数、调制信号、载波和已调波的波形和频谱。 (4) 参考例5.3.2,修改电路为双回路,对比研究平衡对消技术在该电路中的应用效果。 1.3 写作报告 (1) 按论文形式撰写,包括摘要、正文和参考文献,等等。 (2) 正文包括振幅调制电路的设计原理、理论分析结果、实践任务中各阶段设计的电路、参数、波形和频谱,对观察记录的数据配以图像和表格,同时要有充分的文字做分析和对比,有规律性认识。 (3) 论文结构系统、完备、条理清晰、理论正确、数据翔实、分析完整。 1.4 相关提示 (1) 所有电路和信号参数需要各人自行决定,各人有不同的研究结果,锻炼学生的独立研究和实验分析能力。 (2) 为了提高仿真精度和减小调试难度,可以将调制信号和载波的频率设置得较低。 题目二:数字调制与解调的集成器件学习 2.1 基本要求

HY016射频设计6_射频匹配电路调试

HY016射频设计6_射频匹配电路调试 全部频段在QSPR中校准通过后,便可以进行电路优化了,也就是我们通常说的调匹配。 我们实验室采用的是盲调,即以最终实测性能的好坏来决定最终的匹配电路;与之对应的另一种方法是根据器件规格书,用网络分析仪逐个端口调试,使其和规格书要求相对应。对于RDA PhaseII方案,盲调性能挺好。 对于频分电路(FDD LTE/WCDMA/CDMA),重点是调双工器的输入输出端匹配;对于时分电路(TDD-LTE/TDSCDMA),重点是调滤波器的输入输出匹配。双工的调试相对复杂,本文会以HY016欧洲版中B20双工为例进行说明。 射频电路调试的最终原则包括: 1,发射端兼顾电流和线性度,也就是在ACLR余量足够的情况下尽可能的降低最大发射功率的电流,同时兼顾整个频段中高中低信道的平坦度。 2,接收端以提高接收灵敏度为最终原则 3,不是把某块板子的性能调到最佳为准;而是要留够余量,保证量产大批量板子的性能都能达到良好为准 双工器电路我通常的调试步骤: 1,初始bom采用datasheet的参考匹配 2,调节公共端的到地电感,让低、中、高信道特性一致,包括电流和ACLR 3,调节公共端的串联电感/电容,找出ACLR和电流的最佳权衡 4,调节发射端输入匹配,找出ACLR和电流的最佳权衡,最终确认发射端匹配 5,在QSPR下直接校准接收进行接收调试:若信道间差距过大就优先到地电感;若信道间差距不大则优化串联电感/电容;调试完成后实测灵敏度最终确认接收匹配 调试发射电路时,需要和仪表相连。通常在用QSPR完成校准后,再在QPST->PDC中导入并激活ROW_Gen_Commercial.MBN便可以和仪表通信了。关于MBN激活这部分,会在后续工厂文件部分详细说明,这里不再展开。

射频通信电路试题及答案5

一、选择题(每小题2分、共30分)将一个正确选项前的字母填在括号内 1.改进型电容三点式振荡器的主要优点是(C)A.容易起振B.振幅稳定C.频率稳定度较高D.减小谐波分量2.如图所示电路,以下说法正确的是(C) A.该电路可以产生正弦波振荡 B.该电路不能产生正弦波振荡,原因在于振幅平衡条 件不能满足; C.该电路不能产生正弦波振荡,原因在于相位平衡条 件不能满足; D.该电路不能产生正弦波振荡,原因在于振幅平衡、 相位平衡条件均不能满足; 3.功率放大电路与电压放大电路的区别是(C)A.前者比后者电源电压高B.前者比后者电压放大倍数大 C.前者比后者效率高D.前者比后者失真小 4.如图所示为示波器测量正弦波波形参数的画面,若“TIME/DIV”的指示值是5μs,则所测正弦波的频率为(B) A.100kHz B.50kHz C.25kHz D.20kHz 5.小信号调谐放大器主要用于无线通信系统的(B)A.发送设备B.接收设备C.发送设备、接收设备 6.高频功率放大器主要工作在(D)A.甲类B.乙类 C.甲乙类 D.丙类 7.若载波u C(t)=U C cosωC t,调制信号uΩ(t)= UΩcosΩt,则双边带调幅波的表达式为(D)A.u DSB(t)=U C cos(ωC t+m a sinΩt)B.u DSB(t)=U C cos(ωC t+m a cosΩt)C.u DSB(t)=U C(1+m a cosΩt)cosωC t D.u DSB(t)=kUΩU C cosωC tcosΩt 8.单频调制时,调频波的最大频偏Δf m正比于(A)A.UΩB.uΩ(t)C.Ω 9.鉴相的描述是(C)A.调幅信号的解调B.调频信号的解调C.调相信号的解调 10.下图所示框图能实现何种功能?(B)其中u s(t)= U s cosωc tcosΩt, u r(t)= U r cosωc t

射频发射机电路设计

射频发射机电路设计 文献综述 前言 超外差接收是一种巧妙的接收方法,利用它,能使因无线电信号直接接收和放大而引起的一系列困难得到解决。在费森登思想的基础上,1912年,阿姆斯特朗在接收机中设置了本机振荡(简称“本振”)电路,通过双联可变电容器进行同步调谐,保证本振频率始终跟踪外来信号频率的变化,而且始终比外来信号高一个固定的中频。这样,不管所接收的各个电台的载波频率差别多大,与本振频率混频后,产生的都是统一的中频信号。再对这个统一的中频信号进行放大、检波,就可得到所需要的音频信号。利用超外差原理设计的电路,能使接收机电路大大简化,接收机的性能与灵敏度也得到提高。当时阿姆斯特朗还成功地组装出一台超外差接收机。同年,阿姆斯特朗与德·福雷斯特及兰茂尔各自独立发明了再生电路。 超外差接收原理不仅适用于收音机电路,还具有广泛的应用价值,它适用于电视广播、微波通信、雷达等无线电技术的各个领域。超外差原理已成为现代无线电接收理论的基础,凡是涉及无线电信号接收的电子设备,都离不开超外差接收电路。阿姆斯特朗的这项重要发明,不仅推动了无线电技术早期发展的进程,而且在无线电事业的征途上至今还闪现着它的技术光芒。 超外差原理的典型应用是超外差接收机。从天线接收的信号经高频放大器(见调谐放大器)放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频fi保持为固定的数值。 概述 超外差接收机是超外差电路的典型应用,是全面学习模拟电路基础知识最好的切入点之一。通过简单分析超外差式接收机中输入电路、变频电

射频电路和射频集成电路线路设计

射频电路和射频集成电路线路设计(9天) 培训时间为9天 课程特色 1)本讲座总结了讲演者20多年的工作,报告包括 o设计技术和技巧的经验, o获得的美国专利, o实际工程设计的例子, o讲演者的理论演译。 o 【主办单位】中国电子标准协会 【协办单位】智通培训资讯网 【协办单位】深圳市威硕企业管理咨询有限公司 o 2)本讲座分为三个部分: A. 第一部分讨论和強调在射频电路设计中的设计技术和技巧, 着重论述设计中关鍵性 的技术和技巧,譬如,阻抗匹配,射频接地, 单端线路和差分线路之間的主要差別,射频集成电路设计中的难题……可以把它归类为橫向论述. 到目前为止,这种着重于设计技巧的論述是前所未有的,也是很独特的。讲演者认为,作为一位合格的射频电路设计的设计者,不论是工程师,还是教授,应当掌握这一部分所论述的基本的设计技术和技巧,包括: ?阻抗匹配; ?接地; ?射频集成电路设计; ?测试 ?画制版图; ? 6 Sigma 设计。 B. 第二部分: 描述射频系统的基本参数和系统设计的基本原理。

C. 第三部分: 提供个别射频线路设计的基本知识。这一部份和现有的有关射频电路和 射频集成电路设计的书中的论述相似, 其內容是讨论一个个射频方块,譬如,低噪声放大器,混频器,功率放大器,壓控振蕩器,頻率综合器……可以把它归类为纵向论述,其中的大多数内容来自本讲座的讲演者的设计 ?在十几年前就已经找到了最佳的低噪声放大器的设计方法但不曾经发表过。在低噪声放大器的设计中可以同时达到最大的增益和最小的噪 声; ?获得了可调谐濾波器的美国专利; ?本讲座的讲演者所建立的用单端线路的设计方法来进行差分对线路的设计大大简化了设计并缩短了线路仿真的时间; ?获得了双线巴伦的美国专利。 学习目标在本讲座结束之后,学员可以了解到 o比照数码电路,射頻电路设计的主要差別是什麼? o什么是射频设计中的基本概念? o在射频电路设计中如何做好窄带的阻抗匹配? o在射频电路设计中如何做好宽带的阻抗匹配? o在射频线路板上如何做好射频接地的工作? o为什么在射频和射频集成电路设计中有从单端至双差分的趋势? o为什么在射频电路设计中容许误差分析如此重要? o什么是射频和射频集成电路设计中的主要难题?射频和射频集成电路设计师如何克服这些障碍?

射频通信电路试题及答案

射频通信电路试题及答案 一、选择题(每小题2分、共30分)将一个正确选项前的字母填在括号内1.二极管峰值包络检波器适用于哪种调幅波的解调( C )A.单边带调幅波 B.抑制载波双边带调幅波C.普通调幅波 D.残留边带调幅波2.欲提高功率放大器的效率,应使放大器的工作状态为( D )A.甲类 B.乙类 C.甲乙类 D.丙类3.为提高振荡频率的稳定度,高频正弦波振荡器一般选用( B )A.LC正弦波振荡器 B.晶体振荡器 C.RC正弦波振荡器4.变容二极管调频器实现线性调频的条件是变容二极管的结电容变化指数γ为( C )A.1/3 B.1/2 C.2 D.45.若载波 uC(t)=UCcosωCt,调制信号uΩ(t)= UΩcosΩt,则调相波的表达式为( B )A.uPM(t)=UCcos(ωCt+mfsinΩt) B.uPM(t)=UCcos(ωCt+mpcosΩt)C.uPM(t)=UC(1+ mpcosΩt)cosωCt D.uPM(t)=kUΩUCcosωCtcosΩt6.某超外差接收机的中频为465kHz,当接收550kHz的信号时,还收到1480kHz的干扰信号,此干扰为( C )A.干扰哨声 B.中频干扰C.镜像干扰 D.交调干扰7.某调频波,其调制信号频率F=1kHz,载波频率为 10、7MHz,最大频偏Δfm=10kHz,若调制信号的振幅不变,频率加倍,则此时调频波的频带宽度为( B )A.12kHz B.24kHz C.20kHz D.40kHz8.MC1596集成模拟乘法器不可以用

作( D )A.混频 B.振幅调制 C.调幅波的解调 D.频率调制9.某单频调制的普通调幅波的最大振幅为10v,最小振幅为6v,则调幅系数ma为( C ) A.0、6 B.0、4 C.0、25 D.0、110.以下几种混频器电路中,输出信号频谱最纯净的是( C )A.二极管混频器 B.三极管混频器 C.模拟乘法器混频器11.某丙类谐振功率放大器工作在临界状态,若保持其它参数不变,将 集电极直流电源电压增大,则放大器的工作状态将变为( D )A.过压 B.弱过压 C.临界 D.欠压12.鉴频的描述是 ( B ) A.调幅信号的解调 B.调频信号的解调 C.调相信号的解调13.利用石英晶体的电抗频率特性构成的振荡器是( B )A. f=fs时,石英晶体呈感性,可构成串联型晶体振荡器B. f =fs时,石英晶体呈阻性,可构成串联型晶体振荡器 C. fs

模拟电子电路基础试题及答案(大学期末考试题)

《模拟电子技术》模拟试题一 一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向) 导电性。 2、漂移电流是(温度/反向)电流,它由(少数)载流子形成,其大小与(温 度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(0 ),等效成一条直线;当其 反偏时,结电阻为(无穷大),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(变小),发射结压降(不变)。 7、三极管放大电路共有三种组态分别是(共基)、(共射)、(共集) 放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交 流输出电流采用(电流)负反馈。 9、负反馈放大电路和放大倍数AF=(A/((1+AF) ),对于深度负反馈放大电路的放 大倍数AF=(1/ F )。 10、带有负反馈放大电路的频带宽度BWF=(1+AF )BW,其中BW=(fH –fL ), (1+AF )称为反馈深度。 11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模) 信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙) 类互补功率放大器。 13、OCL电路是(双)电源互补功率放大电路; OTL电路是(单)电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(小于近似等于1 ),输入电阻 (大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛 应用于(集成)电路中。 16、用待传输的低频信号去改变高频信号的幅度称为(调幅

射频通信电路课程设计报告

射频通信电路课程设计报告 引言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。 常用的振幅检波电路有包络检波和同步检波两类。输出电压直接反映调幅包络变化规律的检波电路,称为包络检波电路,它适用于普通调幅波的检波。通常根据信号大小的不同,将检波器分为小信号平方律检波和大信号峰值包络检波两信号检波。 目前, 在应用较广泛的电路仿真软件中, Pspice是应用较多的一种。Psp ice 能够把仿真与电路原理图的设计紧密得结合在一起。广泛应用于各种电路分析,可以满足电路动态仿真的要求。其元件模型的特性与实际元件的特性十分相似,因而它的仿真波形与实验电路的测试结果相近,对电路设计有重要的指导意义。 由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 [3]

目录 引言 (2) 一.概述 (3) 二. 方案分析 (4) 三.单元电路的工作原理 (6) 1.LC正弦波振荡器 (6) 2.模拟乘法器电路 (8) 3.谐振电路 (9) 4.包络检波 (12) 四.电路性能指标的测试 (16) 五.课程设计体会..................................................................................................... 错误!未定义书签。参考文献..................................................................................................................... 错误!未定义书签。

集成电路设计基础 课后答案

班级:通信二班姓名:赵庆超学号:20071201297 7,版图设计中整体布局有哪些注意事项? 答:1版图设计最基本满足版图设计准则,以提高电路的匹配性能,抗干扰性能和高频工作性能。 2 整体力求层次化设计,即按功能将版图划分为若干子单元,每个子单元又可能包含若干子单元,从最小的子单元进行设计,这些子单元又被调用完成较大单元的设计,这种方法大大减少了设计和修改的工作量,且结构严谨,层次清晰。 3 图形应尽量简洁,避免不必要的多边形,对连接在一起的同一层应尽量合并,这不仅可减小版图的数据存储量,而且版图一模了然。 4 在构思版图结构时,除要考虑版图所占的面积,输入和输出的合理分布,较小不必要的寄生效应外,还应力求版图与电路原理框图保持一致(必要时修改框图画法),并力求版图美观大方。 8,版图设计中元件布局布线方面有哪些注意事项? 答:1 各不同布线层的性能各不相同,晶体管等效电阻应大大高于布线电阻。高速电路,电荷的分配效应会引起很多问题。 2 随器件尺寸的减小,线宽和线间距也在减小,多层布线层之间的介质层也在变薄,这将大大增加布线电阻和分布电阻。 3 电源线和地线应尽可能的避免用扩散区和多晶硅布线,特别是通过

较大电流的那部分电源线和地线。因此集成电路的版图设计电源线和地线多采用梳状布线,避免交叉,或者用多层金属工艺,提高设计布线的灵活性。 4 禁止在一条铝布线的长信号霞平行走过另一条用多晶硅或者扩散区布线的长信号线。因为长距离平行布线的两条信号线之间存在着较大的分布电容,一条信号线会在另一条信号线上产生较大的噪声,使电路不能正常工作。、 5 压点离开芯片内部图形的距离不应少于20um,以避免芯片键和时,因应力而造成电路损坏。

射频介绍

《射频集成电路设计基础》讲义 课程概述 关于射频(RF) 关于射频集成电路 无线通信与射频集成电路设计 课程相关信息 RFIC相关IEEE/IEE期刊和会议

关于射频 ? 射频= Radio Frequency (RF) → Wireless! ? Why Wireless? – 可移动(Mobile) – 个人化(Personalized) – 方便灵活(Self-configuring) – 低成本(在某些情况下) – and more ... ? Why Wired? <<>><>?

<<>><>? ? 多高的频率才是射频? ? 为什么使用高频频率? 30-300kHz LF 中波广播530-1700 kHz 300kHz-3MHz MF 短波广播 5.9-26.1 MHz 3-30MHz HF RFID 13 MHz 30-300MHz VHF 调频广播88-108 MHz 我们关心的频段 300-1000MHz UHF (无线)电视54-88, 174-220 MHz 1-2 GHz L-Band 遥控模型72 MHz 2-4 GHz S-Band 个人移动通信900MHz, 1.8, 1.9, 2 GHz 4-8 GHz C-Band WLAN, Bluetooth (ISM Band) 2.4-2.5GHz, 5-6GHz 注1:本表主要参考国外标准 注2:ISM =Industrial, Scientific and Medical

关于射频集成电路 ? 是什么推动了RFIC的发展? – Why IC? – 体积更小,功耗更低,更便宜→移动性、个人化、低成本 – 功能更强,适合于复杂的现代通信网络 – 更广泛的应用领域如生物芯片、RFID等 ? Quiz: why not fully integrated? ? 射频集成电路设计最具挑战性之处在于,设计者向上必须 懂得无线系统的知识,向下必须具备集成电路物理和工艺 基础,既要掌握模拟电路的设计和分析技巧,又要熟悉射频 和微波的理论与技术。(当然,高技术应该带来高收益:) <<>><>?

《射频通信电路》习题及解答

习题1: 1.1本课程使用的射频概念所指的频率范围是多少? 解: 本课程采用的射频范围是30MHz~4GHz 1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作波段,并估算相应射频信号的波长。 解: 广播工作在甚高频(VHF )其波长在10~1m 等 1.3从成都到上海的距离约为1700km 。如果要把50Hz 的交流电从成都输送到上海,请问两地交流电的相位差是多少? 解: 84403100.65017000.283330.62102v km f k k λθπ?===?10==?10?== 1.4射频通信系统的主要优势是什么? 解: 1.射频的频率更高,可以利用更宽的频带和更高的信息容量 2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小 3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题 4.通信信道的间隙增大,减小信道的相互干扰 等等 1.5 GSM 和CDMA 都是移动通信的标准,请写出GSM 和CDMA 的英文全称和中文含意。(提示:可以在互联网上搜索。) 解: GSM 是Global System for Mobile Communications 的缩写,意为全球移动通信系统。 CDMA 英文全称是Code Division Multiple Address,意为码分多址。 1.6有一个C=10pF 的电容器,引脚的分布电感为L=2nH 。请问当频率f 为多少时,电容器开始呈现感抗。 解: 11 1.1252wL f GHz wC π=?== 既当f=1.125GHz 时,电容器为0阻抗,f 继续增大时,电容器呈现感抗。 1.7 一个L=10nF 的电容器,引脚的分布电容为C=1pF 。请问当频率f 为多少时,电感器开始呈现容抗。 解: 思路同上,当频率f 小于1.59 GHz 时,电感器呈现感抗。 1.8 1)试证明(1.2)式。2)如果导体横截面为矩形,边长分别为a 和b ,请给出射频电阻R RF 与直流电阻R DC 的关系。 解: R l s =ρσ l ρ, ,s 对于同一个导体是一个常量

相关文档
相关文档 最新文档