文档库 最新最全的文档下载
当前位置:文档库 › 第一章 气体、液体和溶液

第一章 气体、液体和溶液

第一章 气体、液体和溶液
1.1 1.2 1.3 1.4 1.5 1.6 1.7 气体的概念与相关性质 理想气体及相关定律 实际气体和van der Waals方程 液体 溶液、溶解度 稀溶液的依数性 胶体溶液

物质的三种聚集状态
水的三态变化

1.1 气体的概念与相关性质
气体的压力
分子的运动与气体的压力
1643年E. Torriceli的实验

气体的一般性质
气体的扩散 气体的压缩性 气体的热胀冷缩 气体的液化
因扩散气体的混合

1.2
1.2.1
理想气体及相关定律
理想气体的概念及理想气体状态方程
理想气体的概念:温度不太低,压力不太高的稀薄气体。 两点基本假设: (1) 分子间距离很远,相互作用力可忽略不计; (2) 分子自身的体积很小,与气体所占体积相比,可忽略不计。 显然,理想气体并不存在。但当气压趋近于零时,可无限接近理想气体。 理想气体状态方程 (The Ideal Gas Law):
pV = nRT
式中 p:压力 (压强,Pa或kPa); V:体积(dm3或cm3) n:气态物质的量 (摩尔,mol); R:摩尔气体常数,或叫普适气体恒量

The Gas Constant R
R= PV = 0.082057 L atm mol-1 K-1 nT = 8.3149 m3 Pa mol-1 K-1 = 8.3149 J mol-1 K-1
相关单位换算: 1 Pa = 1 N?m-2 1 bar = 1×105 Pa = 100 kPa 1 atm = 760 mmHg = 1.01325×105 Pa ≈ 101 kPa ≈ 0.1 MPa 1 kPa?dm3 = 1 J = 0.239 cal 1 cal = 4.184 J

Boyle定律 (1662):
Robert Boyle的J型玻璃管恒温气 体压缩实验结果:
p∝
1 V
pV = constant
即:温度恒定时,一定量气体 的压力和它的体积的乘积为常 数。

Charles (1787)-Gay-Lussac (1802)定律:
V(ml) 546 373 274 273 272 173 0 T(oC) 273 100 1 0 -1 -100 -273 T(K) 546 373 274 273 272 173 0
热力学温标是近一个世纪后 物理学家Clausius和Kelvin 在建立热力学第二定律时引 出的概念,是国际单位制7个 基本单位之一。中文单位名 称“开尔文”,符号“K”。 T/K = t/oC+273.15
Vt = V0 (1 + t/273)
当压力不变时,一 定量气体每升高 1oC,其体积膨胀了 0oC时体积的1/273。
引入热力学温标之后,表述为:压力恒定时, 一定量气体的体积与它的热力学温度成正比; 或恒压时,一定量气体的体积与温度的商值是 恒量。即
V∝T
V=bT

Clapeyron方程
19世纪,法国科学家Clapeyron综合波义耳定律和Charles定 律,把描述气体状态的3个参量p, V, T归并于一个方程式。
基本方法是:将从p1, V1, T1 到p2, V2, T2的过程分解为2个步骤: (1) 等温变化——从p1, V1, T1 到p2, V’, T1 (2) 等压变化——再从p2, V’, T1到p2, V2, T2 然后分别利用上述定律,通过V’将二者结合起来,即可得到
p1V1/T1 = p2V2/T2 = 恒量 到19世纪末,人们才普遍使用现行形式的理想气体状态方程 式,也叫Clapeyron方程
pV = nRT

1.2.2 分压的概念与道尔顿分压定律 Dalton’s Law of Partial Pressure (1807)
在温度与体积恒定时,混合气体的总压力等于组分气 体分压力之和。气体分压力等于该气体单独占有总体积 时,所表现的压力。
?理想气体 ?无化学反应发生
英国化学家道尔顿 (1766-1844)

分压力与分体积的计算 ptot = pA + pB + … pA ptot = nART/Vtot ntotRT/Vtot nA = ntot
?分体积的概念:
在一定的T及ptot条件下,某组分气体单独存 在所占有的体积。
VA = nART/ptot 和 Vtot = VA + VB + … nA nART/ptot VA = = ntot ntotRT/ptot Vtot
气体分压等于总压乘气体摩尔分数或体积分数

1.2.3 气体方程的其它运用
?
求分子量(摩尔质量)M PV = (m/M) RT (n = m/M) 求密度(ρ) ρ = m/V P(m/ρ) = nRT ρ = P(m/n)/(RT) M= m/n ρ = (PM)/(RT)
?

例题:计算摩尔质量
惰性气体氙能和氟形成多种氟化物 XeFx。实验测 定在80 oC,15.6 kPa 时,某气态氟化氙试样的密度为 0.899(g · dm-3),试确定这种氟化氙的分子式。 解: 求出摩尔质量,即可确定分子式。 设氟化氙摩尔质量为M,密度为ρ(g · dm-3),质量为m (g),R 应选用 8.31(kPa · dm3 · mol-1 · K-1)。

∵ PV = nRT = (m/M) RT ∴ M = (m/V)(RT/P) = ρ (RT/P) = (0.899 × 8.31 × 353)/15.6 = 169 (g ? mol-1) 已知 原子量 Xe 131, F 19, XeFx ∴ 131+19x =169 x = 2 ∴ 这种氟化氙的分子式为:XeF2

例 A、B两种气体在一定温度下,在一容器中混合,混合 后下面表达式是否正确?
1 2 3 4 5 6
PAVA = nART P V = nART PVA = nART PAV = nART PA (VA +VB) = nART (PA+PB) VA = nART
否 否 是 是 是 是
P总V分 = P分V总 = n分RT

例2 在58oC将某气体通过一盛水容器,在100 kPa 下收集该气体1.00 dm3。问:
1. 温度不变,将压力降低为50.0 kPa 时,气体的体积是多少? 2. 温度不变,将压力增加到200 kPa 时,气体的体积是多少? 3. 压力不变,将温度升高到100 oC时,气体的体积是多少? 4. 压力不变,将温度降低至 10 oC时,气体的体积是多少?
解:气体的体积实际上是该气体与饱和水蒸气混合气体的总体积! 1、T和 n总不变,PV=nRT =常数,即:P1V1= P2V2 (Boyle 定律) 100 × 1.00 = 50.0 V2 V2 = 2.00 (dm3) 为混合气体的总体积。 2、压力增加会引起水蒸气的凝聚,但该气体的摩尔数没有变化,可以用该气体 的分压来计算总体积:P气1V总 1 = n气RT = P气2V总2=常数 58 oC时,P水 = 18.1 kPa, P气1 = (100-18.1) kPa V总2 = (P气1V总 1)/P气2 = ((100-18.1) × 1.00)/(200-18.1) = 0.450 (dm3)

3、P与 n总不变, PV=nRT, V1/T1 = V2/T2 = nR/P = 常数 (Charles-Gay-Lussac 定律) 1.00/(273+58) = V2/(273+100) V2 = 1.13 (dm3) V1和V2均为混合气体的总体积。 4、温度降低也会引起水蒸气的凝聚,但该气体的摩尔数n气没有变 化,因此,根据 P气V总=n气RT,有 P气2 V总 2 /T2 = P气1 V总 1 /T1 = n气R =常数 58 oC时,P水蒸汽 = 18.1 kPa, P气1 = (100-18.1) kPa; 10 oC时, P水蒸汽= 1.23 kPa, P气2 = (100-1.23) kPa (100-1.23) V总 2 /(273+10) = ((100-18.1) × 1.00)/(273+58)
V总 2 =
0.709 (dm3)

1.3 实际气体和van der Waals方程
实际气体对理想气体的偏离:
1) 分子间存在相互作用( 内聚 力,气体液化) 2) 分子自身有一定的空间体积
引入压缩系数(Z)表示实际气 体的实验值和理想值的偏差:
pV Z = nRT

两种偏离因素的影响:
1) 分子内聚力使气体分子对器壁碰撞产生的压力减小,也就是实测的压力要比理 想状态的压力小些,因此 Z = pV/nRT < 1; 2) 由于分子占有一定的空间体积,所以实测体积总是大于理想状态,因此 Z = pV/nRT > 1。
实际上两种因素同时存在,当 分子的吸引力因素起主要作用时, Z<1 当体积因素比较突出时, Z>1 也有两个因素恰好相抵消的情况,此时 Z=1 但并非理想气体。 气体分子的内聚力

实际气体的范德华方程
an ( p + 2 )(V ? nb ) = nRT V
2
a ( p + )(V ? b ) = RT V
2
(n = 1 mol 时)
其中,常数a用于校正压力,常数b用于修正体积,称为van der Waals常数。 常数b大致等于气体在液态时的摩尔体积,而常数a值随沸点升高而增大。 (分析得知,内聚力可表示为an2/V2)。

第一章 气体、液体和溶液

第一章 气体、液体和溶液
1.1 1.2 1.3 1.4 1.5 1.6 1.7 气体的概念与相关性质 理想气体及相关定律 实际气体和van der Waals方程 液体 溶液、溶解度 稀溶液的依数性 胶体溶液

物质的三种聚集状态
水的三态变化

1.1 气体的概念与相关性质
气体的压力
分子的运动与气体的压力
1643年E. Torriceli的实验

气体的一般性质
气体的扩散 气体的压缩性 气体的热胀冷缩 气体的液化
因扩散气体的混合

1.2
1.2.1
理想气体及相关定律
理想气体的概念及理想气体状态方程
理想气体的概念:温度不太低,压力不太高的稀薄气体。 两点基本假设: (1) 分子间距离很远,相互作用力可忽略不计; (2) 分子自身的体积很小,与气体所占体积相比,可忽略不计。 显然,理想气体并不存在。但当气压趋近于零时,可无限接近理想气体。 理想气体状态方程 (The Ideal Gas Law):
pV = nRT
式中 p:压力 (压强,Pa或kPa); V:体积(dm3或cm3) n:气态物质的量 (摩尔,mol); R:摩尔气体常数,或叫普适气体恒量

The Gas Constant R
R= PV = 0.082057 L atm mol-1 K-1 nT = 8.3149 m3 Pa mol-1 K-1 = 8.3149 J mol-1 K-1
相关单位换算: 1 Pa = 1 N?m-2 1 bar = 1×105 Pa = 100 kPa 1 atm = 760 mmHg = 1.01325×105 Pa ≈ 101 kPa ≈ 0.1 MPa 1 kPa?dm3 = 1 J = 0.239 cal 1 cal = 4.184 J

普通化学第1章气体习题

第1章气体、溶液和胶体 一、单项选择题 1.1 27℃、3039.75 kPa时一桶氧气480 g 若此桶加热至100℃,维持此温度开 启活门一直到气体压力降至101.325 kPa为止。共放出氧气质量是()。 A.934.2 g B.98.42 g C.467.1 g D.4.671 g 1.2在40℃和97.33 kPa时SO2(M=64.1)气体密度(g·dm-3)为()。 A.2.86 B.2.40 C.2.74 D.0.024 1.3 由NH4NO3(s)分解制氮气,23℃、95549.5 Pa条件下用排水法收集到57.5mL 氮气,计算于燥后氮气的体积为()。 (已知23℃饱和水蒸气压为2813.l Pa)。 A.55.8 mL B.27.9mL C.46.5mL D.18.6 mL 1.4 测得人体血液冰点降低值为0.56℃,则在体温37℃时渗透压为()。 (已知K f=1.86℃?kg?mol-1) A.1775.97 kPa B.387.98 kPa C.775.97 kPa D.193.99 kPa 1.5 下列水溶液,蒸气压最高的是()。 A.0.10 mol?L-1HAc B.0.10 mol?L-1CaCl2 C.0.10 mol?L-1C12H22O11D.0.10 mol?L-1NaCl 1.6 将0.0010 mol?L-1的KI溶液与0.010 mol?L-1的AgNO3溶液等体积混合制 成AgI溶胶,下列电解质中使此溶胶聚沉,聚沉能力最大的是()。 A.MgSO4B.MgCl2C.K3[Fe(CN)6] D.NaCl 1.7 下列方法,哪个最适合于摩尔质量的测定()。 A.沸点升高B.凝固点降低C.凝固点升高D.蒸气压下降1.8 下列方法,哪个最适合于摩尔质量的测定()。 A.沸点升高B.凝固点降低C.凝固点升高D.蒸气压下降1.9 Sb2S3溶胶粒子电泳时向正极方向移动,使Sb2S3溶胶聚沉能力最强的电解质是()。 A.K2SO4B.AlCl3C.CaCl2D.NaCl 1.10 3%的NaCl溶液产生的渗透压接近于()。 A.3%的蔗糖溶液B.6%的葡萄糖溶液

气体、液体和溶液的性质

第一章 气体、液体和溶液的性质 §1-1 气体的性质 本节的重点是三个定律: 1.道尔顿分压定律(Dalton’s law of partial pressures ) 2.阿码加分体积定律(Amagat’s law of partial volumes ) 3.格拉罕姆气体扩散定律(Graham’s law of diffusion ) 一、理想气体(Ideal Gases )――讨论气体性质时非常有用的概念 1.什么样的气体称为理想气体? 气体分子间的作用力很微弱,一般可以忽略; 气体分子本身所占的体积远小于气体的体积。 即气体分子之间作用力可以忽略,分子本身的大小可以忽略的气体,称为理想气体。 2.理想气体是一个抽象的概念,它实际上不存在,但此概念反映了实际气体在一定条件下的最一般的性质。 3.实际气体在什么情况下看作理想气体呢? 只有在温度高和压力无限低时,实际气体才接近于理想气体。因为在此条件下,分子间距离大大增加,平均来看作用力趋向于零,分子所占的体积也可以忽略。 二、理想气体定律(The Ideal Gas Law ) 1.由来 (1) Boyle’s law (1627-1691)British physicist and chemist - The pressure-volume relationship n 、T 不变 , V ∝ 1/ p or pV = constant (2) Charles’s law (1746-1823)French scientist 1787年发现-The temperature-volume relationship n 、p 不变 , V ∝ T or V /T = constant (3) Avogadro’s law (1778-1823)Italian physicist Avogadro’s hypothesis :Equal volumes of gases at the same temperature and pressure contain equal numbers of molecular. Avogadro’s law The volume of a gas maintained at constant temperature and pressure is directly proportional to the number of moles of the gas. T 、p 不变 , V ∝ n 2.理想气体方程式(The ideal-gas equation ) 由上三式得:V ∝ nT / p ,即pV ∝ nT ,引入比例常数R ,得:pV = nRT pV = nRT R---- 摩尔气体常量 在STP 下,p =101.325kPa, T =273.15K n =1.0 mol 时, V m =22.414L=22.414×10-3m 3 R =8.314 kPa ?L ?K -1?mol -1 nT pV R =K 15.2731.0mol m 1022.414Pa 1013253 3???=-1 1K mol J 314.8--??=

第一章 气体、溶液和胶体分散系

第一章 气体、溶液和胶体分散系 5. 正常人血浆中Ca 2+和HCO 3-的浓度分别是2.5 mmol·L -1和27 mmol·L -1,化验测得某病人血浆中Ca 2+和HCO 3-的质量浓度分别是300 mg·L -1和1.0 mg·L -1。试通过计算判断该病人血浆中这两种离子的浓度是否正常。 解:该病人血浆中Ca 2+ 和HCO 3-的浓度分别为 1 1-1 222L mmol 5.7mmol mg 40L mg 003 )(Ca ) (Ca )(Ca --+++?=??==M c ρ 121-1-3-3- 3L mmol 106.1mmol mg 61L mg .01 ) (HCO )(HCO )(HCO ---??=??==M c ρ 该病人血浆中Ca 2+和HCO 3-的浓度均不正常。 7. 某患者需补充0.050 mol Na +,应补充多少克NaCl 晶体? 如果采用生理盐水(质量浓度为9 g·L -1) 进行补Na +,需要多少毫升生理盐水? 解:应补NaCl 晶体的质量为 m (NaCl) = n (NaCl) · M (NaCl) = n (Na +) · M (NaCl) = 0.050 mol ×58.5 g·mol -1 = 2.93 g 所需生理盐水的体积为 mL 325L 325.0L g 9mol g 58.5mol 0.050)NaCl (11 -==???==-盐水盐水ρm V 16.从某种植物中分离出一种结构未知的有抗白血球增多症的生物碱, 为了测定其摩尔质量,将19.0 g 该物质溶入100 g 水中,测得溶液的凝固点降低了0.220 K 。计算该生物碱的摩尔质量。 解:该生物碱的摩尔质量为 f A B f B T m m k M ???= 1331mol g 106.1K 0.220kg 10100g 0.19mol kg K 86.1---??=?????= 19. 蛙肌细胞内液的渗透浓度为240 mmol·L -1, 若把蛙肌细胞分别置于质量浓度分别为10 g·L -1,7 g·L -1和3 g·L -1 NaCl 溶液中,将各呈什么形态? 解:10 g·L -1,7 g·L -1和 3 g·L -1 NaCl 溶液的渗透浓度分别为 1 111 os1L mmol 342L mol 0.342mol g 58.5L g 102(NaCl)----?=?=???=c 1 111 os2L mmol 402 L mol 0.240mol g 58.5L g 72(NaCl)----?=?=???=c

第1章 气体和溶液练习题及答案

第1章气体、溶液和胶体 练习题 一、选择题 1.用来描述气体状态的四个物理量分别是(用符号表示)() A. n,V,p,T B. n,R,p,V C. n,V,R,T D. n,R,T,p 2.现有两溶液:A为mol·kg-1氯化钠溶液;B为mol·kg-1氯化镁溶液() A. A比B沸点高 B. B比A凝固点高 C. A比B沸点低 D. A和B沸点和凝固点相等 3.稀溶液在蒸发过程中() A.沸点保持不变 B.沸点不断升高直至溶液达到饱和 ' C.凝固点保持不变 D.凝固点不断升高直至溶液达到饱和 4.与纯液体的饱和蒸汽压有关的是() A. 容器大小 B. 温度高低 C. 液体多少 D. 不确定 5.质量摩尔浓度是指在() 溶液中含有溶质的物质的量 B. 1kg溶剂中含有溶质的物质的量 C. 溶剂中含有溶质的物质的量溶液中含有溶质的物质的量 6.在质量摩尔浓度为·kg-1的水溶液中,溶质的摩尔分数为() B. C. D. 7.下列有关稀溶液依数性的叙述中,不正确的是() A. 是指溶液的蒸气压下降、沸点升高、凝固点降低和渗透压 > B. 稀溶液定律只适用于难挥发非电解质的稀溶液 C. 稀溶液依数性与溶液中溶质的颗粒数目有关 D. 稀溶液依数性与溶质的本性有关 8.质量摩尔浓度均为mol·kg-1的NaCl溶液,H2SO4溶液,HAc溶液,C6H1206(葡萄糖)溶液,蒸气压最高的是() A. NaCl溶液 B. H2SO4溶液 C. HAc溶液 D. C6 H1206溶液 9.糖水的凝固点() A.等于0℃ B. 低于0℃ C. 高于0℃ D.无法判断

10.在总压力100kPa的混合气体中,H2、He、N2、CO2的质量都是,其中分压最小的是() A. H2 B. He C. N2 D. CO2 二、填空题 》 1.理想气体状态方程的表达式为。 2.按分散质颗粒直径大小,可将分散系分为,,。 3.·kg-1的KCl溶液,K2SO4溶液,HAc溶液,C6H1206溶液的渗透压由低到高的顺序为,凝固点由高到低的顺序。 4.稀溶液的依数性分别是、、和,其核心性质是。 5.已知水的K f为·kg·mol-1,要使乙二醇(C2H6O2)水溶液的凝固点为-10℃,需向100g水中加入g乙二醇。 6.将相同浓度的30mLKI和20mLAgNO3溶液混合制备AgI溶胶,其胶团结构为,进行电泳时,胶粒向极移动。 三、判断题 1.()液体的蒸汽压随温度的升高而升高。 2.()液体的正常沸点就是其蒸发和凝聚速率相等时的温度。 3.()将100gNaCl和100gKCl溶于等量水中,所得溶液中NaCl和KCl的摩尔分数都是。4.()b B相等的两难挥发非电解质稀溶液,溶剂相同时凝固点就相同。 5.()“浓肥烧死苗”的现象与溶液依数性中的渗透压有关。 、 6.()两种溶液的浓度相等时,其沸点也相等。 四、计算题 1.混合气体中含96gO2和130g N2,其总压力为120kPa,其中N2的分压是多少2.将(20℃,120KPa)氨气溶于水并稀释到250mL,求此溶液的物质的量浓度。3.某物质水溶液凝固点是℃,估算此水溶液在0℃时的渗透压。 4.取血红素溶于水配成100mL溶液,测得此溶液在20℃时的渗透压为336Pa 。

无机化学笔记 第一章 气体和稀溶液(详细版)

第一章 气体和稀溶液 一、混合气体的分压定律 1、理想气体的状态方程 A 、理想气体:气体分子本身的体积可以忽略、分子间没有作用力的气体。理想气体实 际并不存在。当实际气体处于低压(<100kPa )、高温(>273K )时,可近似处理成理想气体。 B 、状态方程:PV nRT ==PM RT m PV RT M ρ?????→?=??变形,其中R 为气体摩尔常数,标况下,由状态方程可知33 31111101325P 22.41410m ==8.314P m mol K =8.314J mol K 1mol 273.15K PV a R a nT -----??=?????? 拓展:其中pV 的单位为23 J N m m N --??=?,故pV 的单位即功的单位,pV 为一种体积功。 2、混合气体的分压定律 A 、内容:混合气体的总压等于各组分气体的分压之和。 B 、数学表达式:B B p p =∑,式中,p 为混合气体的总压,B p 为组分气体B 的分压。 根据理想气体状态方程,有 B B n RT p V = ① 而总压 B B p p =∑ ② 故由①②得到 B B p n p n = ??? →变形得 =B B B n p p px n = ③ 式中B x 称为组分气体B 的摩尔分数。 混合气体中组分气体B 的分体积B V 等于该组分气体单独存在并具有与混合气体B 相同温 度和压强时具有的体积。由理想气体状态方程易知 = B B B V n V n ?= 式中B ?称为组分气体B 的体积分数。代入③得 B B p p ?=

二、非电解质稀溶液的依数性——稀溶液的蒸汽压下降、稀溶液的沸点升高和凝固点降低、稀溶液的渗透压能力等。『质点个数→∞?依数性→∞』 1、五种常见的溶液浓度表示方法(以下表达式中,B 表示溶质,A 表示溶剂) ①物质的量浓度:B B n c V = 单位为1mol L -? ②质量分数:B B m m ω= ③质量摩尔浓度:溶液中溶质B 的物质的量B n 除以溶剂A 的质量A m 称为溶质B 的质量 摩尔浓度,用符号B b 表示,单位为1mol kg -?。表达式为B B A n b m = ④摩尔分数:组分B 的物质的量B n 与混合物总物质的量n 之比称为组分B 的摩尔分数。 用符号B x 表示,单位为1。表达式为B B n x n = 对于由A 和B 两种物质组成的混合物,易知1A B x x += ⑤质量浓度:=B B m V ρ 其单位是1g L -?或1mg L -? 2、稀溶液的依数性—只与溶质的微粒数有关而与溶质的本性无关的性质 (一)稀溶液的蒸汽压下降(核心性质) 在一定温度下,将纯液体引入真空、密闭容器中,当液体的蒸发与凝聚速率相等时,液面上方的蒸汽所产生的压力称为该液体的饱和蒸气压,简称蒸气压。记作:*p ,单位:Pa 或kPa 。 a 、同一种液体,温度升高,蒸气压增大; b 、相同温度下,不同液体蒸气压不同; c 、当液体的蒸气压等于外界大气压时,液体沸腾,此时的温度称为该液体的沸点。 在溶剂中溶入少量难挥发的溶质后,一部分液面被溶质分子占据,在单位时间内从液面逸出的溶剂分子数减少相应地减少。当在一定温度下达到平衡时,溶液的蒸气压必定小于纯溶剂的蒸气压,这种现象称为溶液的蒸气压下降。 当溶剂或溶液与蒸气实现平衡时,若使蒸气压小于其饱和蒸气压,平衡右移,液体汽化;若使蒸气压大于其饱和蒸气压,平衡左移,气体液化。 经验公式: * A A p p x = 式中,p 为稀溶液的蒸气压,* A p 为溶剂 A 的蒸气压,A x 为溶剂的摩尔分数。由于1A x <,故有* A p p < 。 ????→公式变形 *A B p p x =(1-)

第一章气体、液体和溶液的性质

第一章气体、液体和溶液的性质Chapter 1The Behaviors of Gas、Liquid and Solution §1-1 气体的性质 The Properties of Gases 本节的重点是三个定律: 1.道尔顿分压定律(Dalton’s law of partial pressures) 2.阿码加分体积定律(Amagat’s law of partial volumes) 3.格拉罕姆气体扩散定律(Graham’s law o f diffusion) 一、理想气体(Ideal Gases)――讨论气体性质时非常有用的概念 1.什么样的气体称为理想气体? 气体分子间的作用力很微弱,一般可以忽略; 气体分子本身所占的体积远小于气体的体积。 即气体分子之间作用力可以忽略,分子本身的大小可以忽略的气体,称为理想气体。2.理想气体是一个抽象的概念,它实际上不存在,但此概念反映了实际气体在一定条件下的最一般的性质。 3.实际气体在什么情况下看作理想气体呢? 只有在温度高和压力无限低时,实际气体才接近于理想气体。因为在此条件下,分子间距离大大增加,平均来看作用力趋向于零,分子所占的体积也可以忽略。二、理想气体定律(The Ideal Gas Law) 1.由来 (1) Boyle’s law(1627-1691)British physicist and chemist - The pressure-volume relationship n、T不变,V∝ 1/ p or pV = constant (2) Charles’s law(1746-1823)French scientist 1787年发现-The temperature-volume relationship n、p不变,V∝T or V/T = constant (3) Avogadro’s law(1778-1823)Italian physicist Avogadro’s hypothesis :Equal volumes of gases at the same temperature and pressure contain equal numbers of molecular. Avogadro’s law The volume of a gas maintained at constant temperature and pressure is directly proportional to the number of moles of the gas. T、p不变,V∝n 2.理想气体方程式(The ideal-gas equation) 由上三式得:V∝nT / p,即pV∝nT,引入比例常数R,得:pV = nRT 3.R:Gas constant Units l·atm·mol-1·K-1J·mol-1·K-1m3 ·Pa·mol-1·K-1cal·mol-1·K-1l·torr·mol-1·K-1 Numerical Value 0.08206 8.314 8.314 1.987 62.36 在标准状况下: 1.000 0.08206 273.15 22.41(L) 1.000 nRT V p ?? ===

气体和溶液

气体和溶液 【1-1】在0℃和100kPa 下,某气体的密度是1.96g·L -1。试求它在85千帕和25℃时的密度。 解:根据公式p M=ρRT 得111222 P T P T ρρ=, 所以211212 85.0 1.96273.15===1.53100298.15P T PT ρρ???g·L -1 【1-2】 在一个250 mL 容器中装入一未知气体至压力为101.3 kPa ,此气体试样的质量为0.164 g ,实验温度为25℃,求该气体的相对分子质量。 解:-1101.30.250=n 8.314n=0.0102mol 0.1640.0102=16.1g mol 298.15 ??÷?,, 【1-3】收集反应中放出的某种气体并进行分析,发现C 和H 的质量分数分别为0.80和0.20。并测得在0℃和101.3 kPa 下,500 mL 此气体质量为0.6695 g 。试求该气态化合物的最简式、相对分子质量和分子式。 解:(1)(0.80(12.01):(0.20(1.008) = 1:3.0,最简式为CH 3 (2)-1101.30.500=n 8.314n=0.0223mol 0.66950.023=30.0g mol 273.15 ??÷?,, (3)C 2H 6 【1-4】将0℃和98.0 kPa 下的2.00 mL N 2和60℃ 53.0 kPa 下的50.00 mL O 2在0℃混合于一个50.0 mL 容器中,问此混合物的总压力是多少? 解:112298.0 2.00(N ) 3.92kPa 50.0p V p V ?=== 122153.0273(O )43.5kPa 333p T p T ?=== 3.9243.547.4kPa p =+=混合 【1-5】现有一气体,在35℃和101.3 kPa 的水面上捕集,体积为500 mL 。如果在同样条件下将它压缩成250 mL ,干燥气体的最后分压是多少? 解:查教科书第4页表1-1,得35℃时水的饱和蒸气压为5.63 kPa , 101.3 5.630.500=n 8.314n=0.01867mol 308.15 -??(), P 0.250=0.018678.314P=191.3kPa 308.15 ??,

高二·《固体、液体、气体》气体的性质试题1

第四章气体的性质 同步题库一气体的状态和状态参量 一、选择题 1.准确地描述某种气体的状态所需要的物理量是 ( ). A. 压强P、体积V和温度T B. 压强P、密度ρ和温度T C. 压强P、体积V、温度T和质量M D. 压强P、体积V、温度T和摩尔数n 2.关于热力学温标的下列说法中,正确的是(). A. 热力学温度的每一度的大小与摄氏温度的相同的 B. 热力学温度的零度记为0 K,它等于––273.15℃ C. 一定质量的气体,当它的温度降低至绝对零度时,气体的压强也应为零 D. C叙述的内容是理论上的推导,实际是达不到的 3.在摄氏温度与热与学温度的换算中,下列哪几种说法是正确的 ( ). A. 5℃等于278K B. 升高5℃就是升高278K C. 降低到5℃就是降低到278℃ D. 降低了5℃就是降低了278K 4.一瓶气体的温度是10℃,那么 ( ). A. 每个分子的温度都是10℃ B. 分子的平均温度 是10℃ C. 单位体积内气体的温度是10℃ D. 单位质量 的气体的温度是10℃ 5.一个物体温度升高27℃,则其热力学温度增加量 是 ( ). A. 300K B. ––246K C. 246K D.27K 6.关于气体的压强正确的理解是 ( ). A. 大气压是由地球表面空气的重量产生的,将开口 瓶密封以后,瓶内的气体压强就会小于大气压 B. 气体的压强就是气体分子不断碰撞器壁而产生 的 C. 气体压强取决于单位体积内的分子数和分子的平均速变 D. 单位面积器壁受到的压力就是气体对器壁的压强 7.空气的压强为一个标准大气压时,水面底下20.68m深处的压强是 ( ). A. 2280mmHg B. 3.039×105Pa C. 3个atm (标) D. 等于31.02m高水柱所产生的压强 8.在图4–1–1所示的竖直放置的均匀U型管内水银封闭着 两段气柱a、b,此时的大气压为p0,则气柱a的压强为 ( ). A. p0 B. p0–ρgh C. p0 +ρgh D. p0 +2ρgh 9.如图4–1–2所示.一支薄壁试管倒扣在水银槽中,上面用 弹簧秤拉着保持静止,此时管内有一部分空气,管内水银面比 管外水银面高h. 不计管重,弹簧秤的示数等于 ( ).

高中物理 第八章气体、固体和液体的基本性质

第九章气体、固体和液体的基本性质 基本要求: l. 了解气体动理论的基本概念,建立统计规律性的基本思想; 2. 理想气体模型、理想气体状态方程、理想气体压强公式、温度与分子平均动能的关系以及理想气体内能,从不同方面反映了理想气体的性质,要求深入理解和掌握; 3. 麦克斯韦速率分布律和平均自由程是气体分子热运动规律性的反映,要求重点掌握速率分布函数的物理意义、速率分布曲线及其特性,以及利用分布函数求分子平均速率的方法; 4. 气体内的输运过程,是气体系统从非平衡态到平衡态的转变过程,要求掌握黏性、热传导和扩散的机理和结论,以及在导出结论的过程中所作的简化处理; 5. 理解晶体结构的一般概念,掌握晶体结合力的共同特征和类型; 6. 了解液体的微观状况,掌握液体的表面性质,以及表面张力、附加压强、润湿和不润湿以及毛细现象的成因和规律。 §9-1气体动理论和理想气体模型 基本要求:了解气体动理论的基本概念,建立统计规律性的基本思想; 一、气体的分子状况 从气体动理论的观点看,一个包含大量分子的气体系统中的分子具有以下特点: 1. 分子具有一定的质量和体积 (1)质量:1 mol氢气的总质量是2.010 3 kg,系统中的分子数等于阿伏伽德罗常量n a= 6.0221367 1023 mol1每个氢分子的质量则为3.31027kg。 (2)体积:1mol水的体积约为1810 6 m3,每个分子占据的体积约为3.01029m3,一般认为液体中分子是一个挨着一个排列起来的,水分子的体积与水分子所占据的体积的数量级相同。在气态下分子的数密度比在液态下小得多,在标准状况(或称标准状态,即温度为273.15k, 压强为101325 pa)下,饱和水蒸气的密度约为水的密度的1/1000,即分子之间的距离约为分子自身线度的10倍。这正是气体具有可压缩性的原因。 2. 分子处于永不停息的热运动之中 (1)布朗运动实验:布朗运动是分子热运动的间接证明。在显微镜下观察悬浮在液体中的固体微粒,会发现这些小颗粒在不停地作无规则运动,这种现象称为布朗运动。图9-1画出了五个藤黄粉粒每隔20 s记录下来的位置变化。作布朗运动的小颗粒称为布朗微粒。 (2)分子的运动:布朗微粒受到来自各个方向的作无规则热运动的液体分子的撞击,由于颗粒很小,在每一瞬间这种撞击不一定都是平衡的,布朗微粒就朝着撞击较弱的方向运动。可见,布朗运动是液体分子作无规则热运动的间接反映。实验显示,无论液体还是气体,组成它们的分子都处于永不停息的热运动之中。组成固体的微粒由于受到彼此间的较大的束缚作用,一般只能在自己的平衡位置附近作热振动。 3. 分子之间以及分子与器壁之间进行着频繁碰撞 布朗微粒的运动实际上是液体和气体分子热运动的缩影,由布朗微粒的运动推知气体分子热运动的情景:在热运动过程中,气体系统中分子之间以及分子与容器器壁之间进行着频繁的碰撞,每个分子的运动速率和运动方向都在不断地、突然地发生变化;对于任一特定的分子而言,它总是沿着曲折的路径在运动,在路径的每一个折点上,它与一个或多个分子发生了碰撞,或与器壁上的固体分子发生了碰撞。

普通化学辅导:气体、液体和溶液常见问题1

普通化学辅导:气体、液体和溶液常见问 题1 1. effusion(小孔扩散,渗流)和diffusion(相对扩散)有什么区别? 答:小孔扩散与相对扩散的区别在于前者是气体向真空扩散,比较适合作为理论模型。相对扩散时两侧气体分子相互撞击,虽然它仍然符合Graham扩散定律,但是比前一种情况要复杂一些。 2. 为什么气体速率分布函数会有两种不同表示形式? 答:我们在课堂上学到了Maxwell-Boltzmann气体速率分布函数的两种形式。一个是球极坐标系的表达式,另外一个是直角坐标系的表达式。(参见“补充材料”里的“Maxwell-Boltzmann气体速率分布函数的推导”) 通常我们根据体系性质的特点来选择坐标系。例如考虑气体分子运动体系,通常我们都会选择直角坐标系,因为这样比较直观简捷。但是当我们考虑中心力场体系时,如原子内部核与电子的相互吸引、气体分子各向同性的运动速率时,我们倾向于使用球极坐标。因为这样可以方便推导、简化公式。 3. 在实验测定气体分子速率分布的装置中,用两个同速转动的

圆盘来筛选符合要求的分子。那么如果较慢的分子恰好与检出分子的速率相差一个或几个周期时会出现什么情况? 答:我们可以检查实验测定中各个运动速率是否存在周期性关系。如果的确发现周期性关系的话,那么我们就应当校正相应部分。 4. 实际气体压缩因子与压力的曲线:为什么在压力刚开始加大时,压缩因子会下降? 答:我们知道实际气体分子之间存在范德华力。范德华力的特点是:远距离相互吸引,近距离相互排斥。当压力开始增加时,气体之间的引力增加,使得气体实际压力下降,导致压缩因子下降。当气体压缩到一定程度之后,气体分子之间以排斥力为主,导致气体体积下降慢于压力的提高。所以会有压缩因子-压力曲线先降后升的现象。实际气体在高压下还会形成范德华簇,使实际气体的行为进一步复杂化。另外,温度也是影响上述曲线的关键因素,通常温度越高,实际气体的行为越接近于理想气体。 5. 什么是空气的相对湿度(relative humidity)? 答:在某一温度下,如果空气中水的蒸汽压等于该温度下水的饱和蒸汽压,那么此时空气的相对湿度为100%。因此,空气的相对湿度就是空气中水蒸气压(p)与同一温度下水的饱和蒸汽压(psat)的比值(p/psat×100%)。 6. 为什么液体在沸点会沸腾? 答:液体在到达沸点时,与液体平衡的饱和蒸气压等于外界压力(1个大气压)。按照分子运动论的观点,此时液体分子的平均动能

大学无机第1章 气体、溶液和胶体

第1章 气体、溶液和胶体 一、 教学要求 1.了解理想气体状态方程,气体分压定律; 2.了解有关溶液的基本知识,并能进行溶液浓度的有关计算; 3.掌握稀溶液的四个依数性及其应用; 4.了解胶体溶液的基本性质,了解吸附的基本规律。掌握胶团的组成和结构,理解溶胶的双电层结构和溶胶稳定性之间的关系,掌握胶体的保护及破坏,熟练写出胶团结构式; 5.了解表面活性物质和乳状液的基本概念。 【重点】: 1.理想气体状态方程式及分压定律的应用和相关计算; 2.溶液浓度的表示法,各浓度之间的相互换算; 3.稀溶液依数性的含义,各公式的适用范围及进行有关的计算; 4.胶团结构和影响溶胶稳定性和聚沉的因素。 【难点】: 1.稀溶液依数性的原因; 2. 胶团结构和影响溶胶稳定性和聚沉的因素。 二、重点内容概要 在物质的各种存在状态中,人们对气体了解得最为清楚。关于气体宏观性质的规律,主要是理想气体方程,混合气体的分压定律。 1. 理想气体状态方程 所谓理想气体,是人为假设的气体模型,指假设气体分子当作质点,体积为零,分子间相互作用力忽略不计的气体。 理想气体状态方程为: PV = nRT ① RT M m pV = ② RT M p ρ= 此二式可用于计算气体的各个物理量p 、V 、T 、n ,还可以计算气体的摩尔质量M 和密度ρ。 原则上理想气体方程只适用于高温和低压下的气体。实际上在常温常压下大多数气体近似的遵守此方程。理想气体方程可以描写单一气体或混合气体的整体行为,它不能用于同固、液共存时的蒸气。 2.分压定律 混合理想气体的总压力等于各组分气体分压力之和。分压是指在与混合气体相同的温度下,该组分气体单独占有与混合气体相同体积时所具有的压力。 ∑i 321p p p p p = +++= 还可以表述为: i i px p =

普通化学:气体、液体和溶液练习题

普通化学:气体、液体和溶液练习题 普通化学:气体、液体和溶液练习题普通化学:气体、液体和溶液练习题1.1室温下,某混合气体中含有10.0molco和12.5molo2。 (a)计算co的摩尔分数; (b)加热混合气体,使co与o2反应生成co2: 2co(g)+o2(g)=2co2(g) 在加热后的某一时刻,体系中有3.0molco2,求此时co的摩尔分数。 1.220°c时水在空气中的饱和蒸气压为0.023atm。 (a)求20°c时1cm3空气中水分子的数目; (b)求20°c时含有0.500mol水气的空气的总体积。 1.3研究人员在格陵兰收集到-20.0°c、1.01atm、20.6dm3的"纯净"空气,然后将它充入到1.05dm3的瓶子中带回实验室。 (a)计算瓶子内的压力; (b)假如实验室的温度为21.0°c,求此时瓶内的压力。 1.4甲烷(ch4)的小孔扩散速率为1.30×10-8mols-1。某未知气体的扩散速率为5.42×10-9mols-1(实验温度和压力与甲烷相同)。

求未知气体的分子量。 1.5在实验室和医院,氧气都贮存在钢瓶中。通常,钢瓶的内部容积为28dm3,贮存6.80kg氧气。应用vanderwaals方程,计算20°c时钢瓶内部的压力。(氧气的vanderwaals参数为:a=137.8dm6kpamol-2,b=0.03183dm3mol-1) 1.6研究人员发现,在一个极微小的钠阱中的500个气态钠原子的温度为0.00024k。 (a)计算气态钠原子的均方根速率; (b)若全部500个钠原子有相同的速率0.25ms-1,那么钠气体的温度又是多少? 答案: 1.1(a)0.444;(b)0.33。 1.2(a)5.8×1017;(b)520dm3。 1.3(a)19.8atm;(b)23.0atm。 1.49 2.0g/mol。 1.51.6×104kpa。 1.6(a)0.51m/s,气态钠原子接近于静止;(b)5.8×10-5k。 普通化学:气体、液体和溶液练习题相关内容:

气体溶液和胶体

第一章气体溶液和胶体 1.1 气体 1.1.1 理想气体状态方程 1基本特征:无限膨胀性和无限掺混性。 2理想气体:将气体的分子假设为一个几何点,只有位置而无体积,并且气体分子之间没有相互作用力。 注:低压、高温条件下的实际气体的性质非常接近于理想气体性质。 3理想气体状态方程:高温低压下气体的p、V、T之间的关系。 即:pV = nRT (1-1) 4物理意义:1mol理想气体的体积和压力的乘积与温度的比值。指定273.15 K和101.3 kPa 为气体的标准状态,简写成STP。 5适用范围:对于低压和远离沸点的高温时的多数气体可以用这个方程来描写,可以描写单纯一种气体或混合气体的整体行为。 6作用:在已知三个变量的条件下可以求算第四个物理量,还可以求得气体的相对分子质量和密度。 【例1.1】某气体在293 K和99.7 kPa时,占有体积0.19 dm3,质量为0.132 g,求该气体的相对分子量,并指出它可能是何种气体。 【解】由理想气体状态方程pV=nRT,可得气体的摩尔质量为 气体的相对分子质量为17,表明该气体可能是NH3。 【例1.2】NH3(g)在67℃,106.64kPa下密度为多少? 【解】:密度ρ= m(g)/V(dm3)= n×M/V 由(1.1)式得:n/V = p/RT ρ= pM/RT 已知NH3 M=17.0gmol-1则 ρ= pM/RT = = 0.641gdm-3 1.1.2 道尔顿(Dalton)分压定律 1分压:在一定温度下,各组分气体单独占据与混合气体相同体积时所呈现的压力叫做该组分气体的分压。 2分压定律:1801年英国化学家道尔顿(Dalton)通过实验发现,在一定温度下气体混合物的总压力等于其中各组分气体分压力之和。 用数学式表示为: 根据状态方程式有 pV=nRT piV=niRT 两式相除得, 推论1:某一组分气体的分压和该气体组分的摩尔分数成正比。 (1-2) 推论2:理想气体在同温同压下摩尔数与体积成正比,因而各组分的摩尔分数等于它的体积分数。 3应用:

第七章固体液体与气体的性质

第七章固体、液体和气体的性质 本章学习提要 1.知道固体和液体的微观结构;知道晶体和非晶体的区别。 2.知道表面张力和毛细现象。了解新材料的应用和发展前景。 3.掌握理想气体的状态方程。 本章学习的固体和液体的性质是对物质状态、结构和性质的认识在原有基础上的拓宽,理想气体的状态方程是基础型课程中讨论的气体实验定律的延伸和拓展。 本章重点是理想气体的状态方程,因为理想气体的状态方程是气体性质中的核心规律,在该方程的建立和应用中还包含了许多重要的物理方法,例如引入理想气体模型,把实际问题理想化的方法;根据气体实验定律推导出理想气体状态方程所用的科学推理方法等。 通过学习新材料的有关知识,了解新材料的应用和发展前景,感悟科技与社会发展的密切广西关系。 A 固体的基本性质 一、学习要求 知道固体的微观结构;*知道晶体和非晶体在外形上和物理性质上的区别;知道分子间的相互作用力跟分子间的距离有关。 感受从物质微观结构和微观粒子的运动来研究其宏观性质的研究方法,认识运用物理模型研究分子间相互作用的意义。 通过碳-60的发现及其广阔的应用前景,领略科技发展对经济建设的重要作用。 二、要点辨析 1.从分子动理论角度看固体、液体和气体的异同点 本章教材引言中指出了研究固体、液体和气体的性质是基于分子动理论,即分子的无规则运动有使物质离散的作用,而分子的相互作用力又有使物质聚集的作用。两种因素相互制约的结果呈现了不同的物态。固体分子间距离较小,分子只能在其平衡位置附近振动,因而有一定的体积和形状;液体分子间距离比固体大些,因而分子可以移动,有一定的体积而无一定的形状;气体分子间距离较大,分子间作用力很小,因而它们可以在空间自由运动,气体没有一定的体积和形状。

第1章气体和溶液练习题及答案资料讲解

第 1 章气体和溶 液 练习题及答案

第1章气体、溶液和胶体 练习题 一、选择题 1 ?用来描述气体状态的四个物理量分别是(用符号表示)() A. n,V,p,T B. n,R,p,V C. n,V,R,T D. n,R,T,p 2 ?现有两溶液:A为0.1 mol kg-1氯化钠溶液;B为0.1 mol kg-1氯化镁溶液() A. A比B沸点高 B. B比A凝固点高 C. A比B沸点低 D. A和B沸点和凝固点相等 3 ?稀溶液在蒸发过程中() A.沸点保持不变 B.沸点不断升高直至溶液达到饱和 C.凝固点保持不变 D.凝固点不断升高直至溶液达到饱和 4 ?与纯液体的饱和蒸汽压有关的是() A.容器大小 B.温度高低 C.液体多少 D.不确定 5 ?质量摩尔浓度是指在() A.1kg溶液中含有溶质的物质的量 B. 1kg溶剂中含有溶质的物质的量 C. 0.1kg溶剂中含有溶质的物质的量 D.1L溶液中含有溶质的物质的量6?在质量摩尔浓度为1.00mol ?的水溶液中,溶质的摩尔分数为() A.1.00 B. 0.055 C. 0.0177 D. 0.180 7 ?下列有关稀溶液依数性的叙述中,不正确的是() A. 是指溶液的蒸气压下降、沸点升高、凝固点降低和渗透压 B. 稀溶液定律只适用于难挥发非电解质的稀溶液 C. 稀溶液依数性与溶液中溶质的颗粒数目有关 D. 稀溶液依数性与溶质的本性有关

8 ?质量摩尔浓度均为0.050 mol kg-1的NaCI溶液,H2SO4溶液,HAc溶液, C6H12O6(葡萄糖)溶液,蒸气压最高的是() A. NaCl 溶液 B. H2SO4溶液 C. HAc 溶液 D. C6 H1206溶液 9 ?糖水的凝固点() A.等于0C B.低于0C C.高于0C D.无法判断 10.在总压力100kPa的混合气体中,H2、He、N2、CO2的质量都是1.0g,其 中分压最小的是() A. H2 B. He C. N2 D. CO2 二、填空题 1. 理想气体状态方程的表达式为 ___________________________ 。 2. 按分散质颗粒直径大小,可将分散系分 3. 0.10mol kg-1的KCl溶液,K2SO4溶液,HAc溶液,C6H1206溶液的渗透 压由低到高的顺序为 ______ ,凝固点由高到低的顺序________ O 4. ________________________ 稀溶液的依数性分别是、、_和,其核心性质 __________________________ O 5. 已知水的K f为1.86K kg mol-1,要使乙二醇(C2H6O2)水溶液的凝固点为- 10C,需向100g水中加入—g乙二醇。 6. 将相同浓度的30mLKI和20mLAgNO3溶液混合制备AgI溶胶,其胶团 结构为 _________ ,进行电泳时,胶粒向—极移动。 三、判断题 1. ()液体的蒸汽压随温度的升高而升高

普化练习题第一章气体溶液和胶体

第一章气体、溶液和胶体 一、选择题 1 实际气体与理想气体更接近的条件是( C ) A 高温高压 B 低温高压 C 高温低压 D 低温低压 2 22℃和100.0 kPa下,在水面上收集H20.100g,在此温度下水的蒸气压为2.7 kPa,则H2的体积应为( A ) A 1.26 dm3 B 2.45 dm3 C 12.6 dm3 D 24.5 dm3 3 下列溶液中凝固点最低的是( B ) A 0.01mol kg-1K2SO4 B 0.02mol kg-1NaCl C 0.03mol kg-1蔗糖 D 0.01mol kg-1Hac 4 是温下,下列物质中蒸气压最大的是(A ) A 液氨 B 水 C 四氯化碳 D 碘 5 在工业上常用减压蒸馏,以增大蒸馏速度并避免物质分解。减压蒸馏所依据的原理是( A ) A 液相的沸点降低 B 液相的蒸气压增大 C 液相的温度升高 D 气相的温度降低 6 将5.6 g非挥发性溶质溶解于100 g水中(Kb=0.51),该溶液在100 kPa下沸点为100.5℃,则此溶液中溶质的摩尔质量为() A 14 g mol-1 B 28 g mol-1 C 56 g mol-1 D 112 g mol-1 7 欲使溶胶的稳定性提高,可采用的方法是() A. 通电 B. 加明胶溶液 C. 加热 D. 加Na2SO4溶液 8 土壤中养分的保持和释放是属于( )。 A. 分子吸附 B. 离子选择吸附 C. 离子交换吸附 D. 无法判断 二、填空题 1.某蛋白质的饱和水溶液5.18g·L-1,在293K时的渗透压为0.413kPa,此蛋白质的摩尔质量为。 2.在下列溶液中:①1mol·dm-3 H2SO4;②1mol·dm-3 NaCl;③1mol·dm-3 C6H12O6;④0.1mol·dm-3 HAc;⑤0.1mol·dm-3 NaCl;⑥0.1mol·dm-3 C6H12O6;⑦0.1mol·dm-3 CaCl2;凝固点最低的是,凝固点最高的是,沸点最高的是,沸点最低的是。 3.As2S3溶胶胶团结构式为,电解质NaCl,MgCl2,(NH4)2SO4对此溶胶聚沉值最小的是。 4.溶胶分子具有稳定性的主要原因是,高分子溶液具有稳定性的主要原因是。

相关文档
相关文档 最新文档