文档库 最新最全的文档下载
当前位置:文档库 › 2.4GHzPCB天线

2.4GHzPCB天线

2.4GHzPCB天线
2.4GHzPCB天线

2.4GHZ 2.4GHZ倒F及弯曲线 及弯曲线PCB蓝牙 PCB蓝牙天线 蓝牙天线
设计指导 设计指导
1

Contents
1 2 3 4 5 6 7 8 9 Introduction .................................................................................................................................................... 3 Inverted-F Antenna ........................................................................................................................................ 4 Meander Line Antenna................................................................................................................................... 5 Real Designs .................................................................................................................................................. 6 Proximity to Metal Objects ............................................................................................................................ 7 Proximity to Dielectric Materials................................................................................................................... 8 Network Analyser........................................................................................................................................... 9 Final Tuning.................................................................................................................................................. 10 Conclusion ................................................................................................................................................... 12
Terms and Definitions ........................................................................................................................................ 13 Document History ............................................................................................................................................... 14
List of Figures Figure 2.1: Inv erted-F Antenna ............................................................................................................................... 4 Figure 3.1: Meander Line Antenna .......................................................................................................................... 5 Figure 3.2: Input Impedance of Two Meander Line Antennas................................................................................. 5 Figure 4.1: Approximate Dimensions of Inverted-F Antenna................................................................................... 6 Figure 4.2: Approximate Dimensions of Meander Line Antenna ............................................................................. 6 Figure 7.1: Preparation Before Measurement ......................................................................................................... 9 Figure 7.2: Assembled System Ready to Measure ................................................................................................. 9 Figure 8.1: Locating Product in Far Field of Antenna............................................................................................ 10 Figure 8.2: Final Tuning Procedure....................................................................................................................... 11
第 2 页 共 13 页

1
Introduction
This document outlines two ty pes of Printed Circuit Board (PCB) antennas used by CSR, which can be used with 2.4GHz radios. ■ Inverted-F ■ Meander Line In addition, this document discusses the effect of placing metallic or dielectric materials near an antenna.
第 3 页 共 13 页

2
Inverted-F Antenna
Quarterwave
Input Output
Figure 2.1: Inverted-F Antenna The inv erted-F is a quarterwav e antenna. It is bent into an L-shape. The shorter side is connected to earth. The longer side is left open-circuit at the end. The f eed point is located somewhere between the earth end and the open end. The resulting structure resembles the letter F and possesses the properties of both a loop antenna due to the circulating current from the f eed point to ground and a whip antenna due to the open circuited straight section. In the PCB v ersion, the antenna is printed on the top layer and a ground plane is placed near the antenna on the top lay er. There must not be a ground plane underneath the antenna. The aim is to make the quarterwav e section resonate at the midband frequency (which is 2441MHz f or 2.4GHz ISM radios). The f eed point (which is the input/output connection) is connected to the L-Shape at the point corresponding to 50∧ . Experiment with measurement to determine the correct location for the feed point and length of this antenna.
第 4 页 共 13 页

3
Meander Line Antenna
S Ground Plane Input Output
第 5 页 共 13 页

Figure 3.1: Meander Line Antenna The length of the meander line antenna is difficult to predict. It is usually a bit longer than a quarterwav e but dependent on its exact geometry and proximity to the ground plane.
Note:
In Figure 3.1 the ground plane is shown in black. S is the distance from the ground plane. See Figure 4.2 for approximate dimensions. This ty pe of antenna is alway s a PCB version. The antenna is printed on the top lay er and a ground plane is placed near the antenna on the top lay er. There must be no ground plane underneath the radiating section of the antenna.
Smith Chart
A
B
Figure 3.2: Input Impedance of Two Meander Line Antennas The real part of the impedance of this antenna is about 15∧ to 25∧ , depending on geometry and proximity to the ground plane. The impedance matching is done by adjusting the length of the antenna until the input impedance is at the unity conductance circle (when normalised to 50∧ ), in the top half of the Smith chart (Point A). A shunt capacitor is then connected between the antenna input and ground to match to 50∧ (Point B). Experimental measurement is used to determine the correct design.
4
Real Designs
18.0mm
13.5mm Width=0.8mm 6 .0mm 5 .0mm Not to scale
Ground Plane
Actual Size
Figure 4.1: Approximate Dimensions of Inverted-F Antenna
第 6 页 共 13 页

1.5mm
1.0mm
4.4mm Width=0.5mm 2.8mm 1.7mm Ground Plane Not to scale
1.5pF Capacitor
Placed immediatel y after F eedpoint
8 .0 mm Feedpoint
Actual Size
Figure 4.2: Approximate Dimensions of Meander Line Antenna
第 7 页 共 13 页

5
Proximity to Metal Objects
CSR recommends keeping metal objects as far away f rom the antenna as possible. Keeping metallic objects out of the near field is usually adequate. Near Field = 2D / λ D is the largest dimension of the antenna. In the case of these antennas, this is approximately a quarterwav e (λ/4).
Notes:
2
λ is the wav elength of the signal in f reespace. In the 2.4GHz ISM band, λ=122mm in freespace. Substituting D=λ/4 into the Near Field equation giv es Near Field = λ/8. Near Field = 122/8 mm = 15.25mm.
第 8 页 共 13 页

6
Proximity to Dielectric Materials
Dielectric materials (like plastic or FR-4) detune an antenna by lowering its resonant frequency. The effect is not as serious as placing an antenna next to metal objects and can be corrected by reducing the length of the antenna. Theref ore, it is important to tune the antenna when it is in the product. This is done during the dev elopment of the product.
第 9 页 共 13 页

7
1. 2.
Network Analyser
Cut the PCB track (trace) just before the antenna matching network to isolate the f ilter and previous stages f rom the measurement. Connect a coaxial cable between the VNA and the PCB of the product. The coaxial cable must hav e f errite beads fitted over its outer sleeve. The f errite beads help to prev ent RF currents from f lowing on the outer sleeve, which would disturb the measurement. Solder the outer sleeve of the coaxial cable to the ground plane of the PCB as close as possible to the input of the antenna-matching network. Perf orm a One-Port calibration on the VNA with Open, Short, Loads connected at the end of the coaxial cable inside the product. Solder the inner conductor of the coaxial cable to the input of the antenna-matching network. Tune the antenna by adjusting the values of any “matching network” components, the feed point of the antenna or the length of the antenna until the S11 trace (display ed on the VNA) is at the centre of the Smith chart at the midband f requency 2441MHz. Repair the cut track by putting a small amount of solder over the cut.
Use a v ector network analyser (VNA) to perform the initial tuning of the antenna:
3. 4. 5.
6.
Figure 7.1: Preparation Before Measurement
VNA
Ferrite Beads
Antenna 2.4GHz Radio
Figure 7.2: Assembled System Ready to Measure
第 10 页 共 13 页

8
Final Tuning
After tuning the antenna using the VNA procedure, it is necessary to perf orm fine-tuning. This y ields a small improv ement and is the f inal optimisation of the antenna. It is best to perf orm this procedure in an anechoic chamber, but when this is not possible, an indoor or outdoor test range can be used. It is important to minimise radio signal reflections. Avoid metallic objects such as lab-benches, filing cabinets, lampposts and cars.
Approximately 2m RX Antenna
2.4GHz Radio
Spectrum Analy ser
Figure 8.1: Locating Product in Far Field of Antenna
第 11 页 共 13 页

Connect omni directional receive antenna to a spectrum analyser Place fully assembled product approximatel y 2m away from receive antenna Put product into continuous transmit
Watch power level of received signal on the specturm anal yser while moving receive antenna ±10cm in each of x,y,z planes to ensure it is not located in a null point. A sudden dip in received power indicates a null point
Yes
Is antenna located in a null point?
No Rotate product around in the x,y,z planes until the maximum power level is observed on the spectrum anal yser. This ensures that the dominant polarisation mode of the antenna is measured.
No
Has the maximum possible power level been observed on the spectrum anal yser?
Yes Record power level observed on the spectrum analyser. Turn off product, disassemble it and make adjustments to length of antenna, feed point or matching components
Reassemble product and place it in the same location and orientation as before
No
Has the maximum receive power been obtained?
Yes End of procedure Repeat process on multiple devices to ensure results are repeatable
Figure 8.2: Final Tuning Procedure
第 12 页 共 13 页

9
Conclusion
Metal objects should be kept at least 15.25mm away from the Inverted-F and Meander Line types of antennas in the 2.4GHz ISM band f or the antenna to work efficiently. If that is not possible, experiment to determine an acceptable trade-off between antenna performance and product size. Ev en by f ollowing these rules, antenna detuning can occur. This usually results in lowering the resonant frequency of the antenna. Correct this by reducing the length of the antenna
Terms and Definitions
ISM PCB RF VNA Industrial, Scientific and Medical Printed Circuit Board Radio Frequency Vector Network Analyser
第 13 页 共 13 页

天线增益

1、增益是用来表示天线集中辐射的程度。其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。增益的单位用“dBi”或“dBd”表示。 2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。天线增益对移动通信系统运行极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。 可以这样来理解增益的物理含义------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源)。如果以半波对称振子作比较对象,其增益的单位是dBd 。半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为G=8.15–2.15=6dBd 。 对于水平极化方式的天线来讲,通常以一个半波水平放置的偶极子天线为标准天线,其增益为0dB(实际指dBd)。调频二偶极子反射板天线的增益通过计算和实验数据,其结果基本一致。相对于半波偶极子天线的增益最高只能做到7.5dB。当天线在进行组阵时,天线系统增益为7.5dB。计算推论如下:总功率在一层四面分配时,天线功率将损失6dB,此时天线增益为7.5-6.5=1.5dB;再根据天线层数增加一倍时天线系统增益将增加3dB的原理,因此两层天线增益就为1.5+3=4.5dB;当天线层数为四层时,天线系统增益就为1.5+3+3=7.5dB,故四层四面调频二偶极子板天线系统增益也只能做到7.5dB。 若天线为全波长二偶极子板天线时,其单片天线增益可以做到8-8.5dB,四层四面分配组阵时,其单片天线增益为8-8.5dB。 目前使用的天线增益,一般在0dBi到20dBi之间 室内:一般采用0 - 8 dBi增益的天线 室外:一般采用9 - 18 dBi增益的天线 高速公路:一般采用20dBi增益的天线 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2} 式中,D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0}

业余无线电 短波便携GP天线

PAC-12 Kit Contents Part Quantity Screws: 8/32 x 3/8” 8 Screws: 8-32 x 5/16” 2 Screw: 8-32 x 1/4” 1 #8 internal tooth washers 8 #8 solder lug ring terminals 6 Bolt: Aluminum, 1/4-20 x 1.5” 1 1/4” internal tooth washer 1 Nut: Aluminum hex, 1/4-20 1 Stainless wing nut, 1/4-20 1 1/4” ring terminals 3 BNC connector 1 BNC mounting plate 1 Wire, PVC insulated stranded 12” Wire, 18AWG enamel copper 1 14 conductor ribbon cable roll 1 Feedpoint insulator PVC tube 1 Feedpoint insulator end caps 2 6” Coil form, PVC 1 3.5” Coil form, PVC 1 Coil form end caps 4 Aluminum Rods 12” 2 Aluminum hex coupling nuts 1 72” telescoping antenna 1 Antenna whip adapter 1 Aluminum ground spike 1 Tools Needed Soldering iron Phillips screwdriver Wire stripper Wrenches, 7/16” and 1/2” Terminal crimp tool Pliers Solder

短波天线原理和应用

短波天线的原理和应用 摘要:本文从电波传播和电离层分布特性的角度解释了短波电波辐射的特点,并介绍了常用短波天线的种类和特性。对各类短波天线的架设要求和注意事项给出了建议和参考。最后对短波天线的接地系统的设计给出了一些参考方案。 关键词:天线、电离层、极化、接地 1.序 无线电通信就是依赖于无线电电波在空间的传播而建立通信链路的,因此电波传播是 无线电的一个重要环节。对于不同的工作频段,电波的传播特性将有所不同。同时所采用的辐射天线也将有很大的不同。本文将就电波的传播特性和短波常用天线以及电台架设的注意问题作一些介绍。 1.1 电离层特性 电波在空间传播将会受到电离层的影响,尤其是中短波的传播就是依赖于电离层的反射进行传输的,因此对电离层应有一些了解。 a)电离层的产生 地球表面有1000公里高的大气层,由于太阳光辐射(x射线,紫外线)空气不断电离同时不断复合,这样空气中将存在着游离的带电粒子; b)带电粒子随高度增加而增加,在离地面较近的地方每立方米只有几个或几十个粒子,到接近1000公里时,每立方米将有上千或上万个带电粒子。因电离层一般按如下分层: C层D层E层F1层F2层 0~50kM 60~90kM 100~120kM 170~220kM 225~450kM c)电离层在白天、黑夜,一年四季将会有不同的变化。白天由于有阳光,低层(D层)电离层浓度升高,反之黑夜时将降低。一年四季变化也是由于因受阳光照射时间长或短而变化。 d)电离层在不断上下或水平运动,从而造成电波反射传播过程中的瑞利衰落和多普勒效应。 e)电离层具有非均匀分布性,类似云彩的特点,因而造成电波反射时的散射,多径时延。f)电离层对电波的吸收随工作频率升高而减少。对中长波吸收很大,如10~20kW的中波广播机覆盖面在100km左右,而1kW的短波可传送3000km。即频率愈高的中短波信号愈容易穿越低层(D层)的电离层。 1.2 大地对电波的影响 大地对电波的影响主要是地波传播的影响,大地不能视为良导体也不能视为绝缘体,由于地质不同应区分对待。 a)对于如海水、淡水、湿地,对电波的吸收较小,但由于地面反射波与入射波有180o 相位差,将会吸收紧靠地面的电波,使波瓣抬高; b)对于干燥地质对电波吸收会较大(主要对短波吸收); c)对于金属矿藏地质如铁矿地带,对电波吸收是非常大的,千万不要在这里设立电台(收发信台);

SAS-58X标准增益喇叭天线组

SAS-58x (标准增益喇叭天线组) 标准增益天线组,用于在1GHz-40GHz频率范围内进行辐射和敏感度测试。每个天线都经过线性极化,具有中等增益,低VSWR和恒定的天线因子。标准增益喇叭的性能是非常精确的,能由设计参数进行预测。天线因子和增益的实测值和计算值之间的误差为+/-0.5 dB。所以,这组天线能当作标准参考,类似于1GHz以下的共鸣偶极子天线一样。同轴到波导的适配器,是整个天线上唯一对功率有限制的元件,如果需要很大的场强,可以把这个适配器去掉。每个标准增益天线都可以安装到标准三角架上【?-20母螺纹】。通过旋转三角架上的天线,可以得到水平和垂直极化。 增益:15dB,也有10dB的和20dB的。 标准增益喇叭天线组包括: 型号频率范围说明增益 SAS-580 1.12 GHz - 1.70 GHz 喇叭天线,标准增益14.7 SAS-581 1.70 GHz - 2.60 GHz 喇叭天线,标准增益14.5 SAS-582 2.60 GHz - 3.95 GHz 喇叭天线,标准增益15.1 SAS-583 3.95 GHz - 5.85 GHz 喇叭天线,标准增益14.5 SAS-584 5.85 GHz - 8.20 GHz 喇叭天线,标准增益14.8 SAS-585 8.2 GHz - 12.4 GHz 喇叭天线,标准增益15.6 SAS-586 12.4 GHz - 18.0 GHz 喇叭天线,标准增益14.9 SAS-587 18.0 GHz - 26.5 GHz 喇叭天线,标准增益14.8 SAS-588 26.5 GHz - 40.0 GHz 喇叭天线,标准增益14.6

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

第一章 天线增益测量

天线与电波教学实验指导书 实验三 天线增益测量 3.1实验内容和目的: 用绝对测量法(即测传播损耗的方法)和相对测量法(即比较法)测量喇叭天线的增益,掌握天线增益的一般测量方法。 3.2测量原理 1.天线增益的绝对测量 根据福里斯公式,当发射功率为P t ,发射天线增益为G t ,接收天线增益为 G r ,收发天线相距 R ,则位于远场区的接收天线的最大接收功率为 2244??? ? ??=?=R G G P A R G P P r t t r er t t r πληπ 当收发天线完全相同即G t =G r =G 时,接收功率为 2244??? ? ??=?=R G P A R G P P t r er t t r πληπ 由此可求出每个天线的增益为 G P P R r t =?4πλ 如用dB 表示,则为 ??? ? ???+??? ??=t r P P R dB G lg 10214lg 10)(λπ 因此,如果测出收发电平差、工作频率和收发距离,即可通过上式求出被测天线的增益。 2.天线增益的相对测量 被测天线增益G 和参考天线增益G 0间存在简单的关系: G=gG 0 式中,g 是被测天线相对于参考天线的增益。

因此如果参考天线的增益已知,只要测出g ,即可按上式求出被测天线的增益。 用比较法测天线增益,常用半波对称振子(或折合振子)作线天线的标准增益天线(其增益约为1.64或2.15dB );常用按最佳方向性系数设计的标准增益喇叭作面天线的增益标准天线,其增益理论设计值和实际值相当吻合,可按下式估算: )(4lg 102dB Ak D G λ π≈≈ 式中,A 是喇叭口面面积,k 是口面利用率。对角锥喇叭天线k 取0.51。 3. 天线增益的综合测量 设三个不同天线的增益分别为G G G 010203、、,先用比较法测得1和2对3的相对增益 03 02 203011G G G G G G ==, 当G 03已知时,则 03 20203101G G G G G G ==,, 用dB 表示,即 ) ()()()()()(0320203101dB G dB G dB G dB G dB G dB G +=+=, 当G dB 03()未知时,可用上述1项(天线增益的绝对测量)的方法测出G dB G dB 0102()()+,与上两式联立求出G dB 03()。 3.3 测量方框图: 3.4主要测试设备: 发射源:厘米波分频锁相源(带隔离器,具连续波或1KHz 内方波调制输出,带数字频率指示和功率相对指示,工作频率11GHz ±250MHz ,输出功率连续可调,

短波天线

优化短波通信的方法 1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率: (1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线

天线增益相关知识

h t t p ://w w w. m s c b s c .c o m h t t p ://w w w. m s c b s c .c o m /a s k p r o / 本文档来源于移动通信网(mscbsc)技术问答,原文地址:https://www.wendangku.net/doc/0b14644124.html,/askpro/question5283 天线增益是什么意思? 对天线增益概念理解有点模糊,哪位给详解一下? --------------- 提问者:chgfagy 提问时间:2009-05-19 18:14:00———————————————————————————— 答: 1、增益是用来表示天线集中辐射的程度。其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。增益的单位用“dBi”或“dBd”表示。 2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。天线增益对移动通信系统运行极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。如果以半波对称振子作比较对象,其增益的单位是 dBd 。半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15–2.15=6dBd 。 对于水平极化方式的天线来讲,通常以一个半波水平放置的偶极子天线为标准天线,其增益为0dB(实际指dBd)。调频二偶极子反射板天线的增益通过计算和实验数据,其结果基本一致。相对于半波偶极子天线的增益最高只能做到7.5dB。当天线在进行组阵时,天线系统增益为7.5dB。计算推论如下:总功率在一层四面分配时,天线功率将损失6dB,此时天线增益为7.5-6.5=1.5dB;再根据天线层数增

天线增益的计算及单位转换

天线增益的计算及单位转换 增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。 如果以半波对称振子作比较对象,其增益的单位是 dBd 。 半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2} 式中, D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中, L 为天线长度; λ0 为中心工作波长; 关于天线的db, dBi,dBd等单位 有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。

天线增益的计算

天线增益的计算 增益是指: 在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G=13dB=20的某定向天线作为发射天线时,输入功率只需 100/20=5W。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为G= 2.15dBi。4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G= 8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)。 如果以半波对称振子作比较对象,其增益的单位是dBd。 半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。)垂直四元阵,其增益约为G= 8.15– 2.15=6dBd。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;

32000是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{ 4.5×(D/λ0)2} 式中,D为抛物面直径; λ0为中心工作波长; 4.5是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中,L为天线xx; λ0为中心工作波长; 关于天线的db,dBi,dBd等单位 有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。 (1)dB,这单纯是一个相对值,也就是说A比B的值的对数。常常用于说A 比B高或低多少dB,但是单独说A的增益是多少dB,是不合理的,因为我们不知道B是什么。只是我们许多同好有时为了简省就口头说多少dB了,但这样是不够确切的,不过常常也就将错就错,默认理解为dBi吧,要么您就再问问清楚。 (2)dBd,这是有标准参考值的,即B规定为自由空间的半波偶极子天线,这样A与B的值比起来就有来统一的参照物,您告诉同好这个天线10dBd,他就明白您的天线比半波偶极子天线在主辐射方向上能聚集10倍的能量,即好10倍。

平面印刷天线的设计

编号 潍坊学院 毕业设计技术报告 课题名称:平面印刷天线的设计 学生姓名:胡郭伟 学号: 11021340107 专业:通信工程 班级: 2011级1班 指导教师:李厚荣 2015年6月

平面印刷天线的设计 【摘要】:在本世纪,电子技术和无线通信技术得到了迅速发展。作为现代无线通信系统中的重要组成部分,它们经常需要具有小天线,多频带和宽带特性。目前,由于采用先进的印刷电路板技术和工艺,印刷天线,因为易加工,重量轻,低轮廓,容易与有源器件和微波电路集成的特点已经广泛的关注和研究。微带贴片天线具有良好的指向性图案,在双极化和圆极化方面容易实现,适合阵列的组合从而得到一个高增益;印刷单极和隙缝天线全向性好,容易实现多频带和宽带特性,这些平面印刷天线被广泛用于雷达,卫星通信,移动通信和其他通信设备之间。因此,对平面印刷天线的研究有着很大的价值和实际意义。在本文中,结合科研的需要和各种无线通信系统的需求,对双极化微带阵列天线和多频带和宽频带平板天线的印刷的相关几个问题展开了研究。本文先是对国内天线技术进行了分析,了解了一下国内外对平面印刷天线的研究的情况,并且了解了对该技术研究的现状,并且重点研究了多层双极化微带阵列天线技术和多频带平面印刷天线设计,并对它们做了一系列的研究的分析。对多层双极化未带阵列天线技术主要分析了单脉冲技术、双极化微带天线、以及阵列的排布方式和其方向图的估算方面。最后并且对结果做了分析。在多频带平面印刷天线设计方面主要讲解了多频段环形单极天线、加载曲折线枝节的矩形环天线和双频段U形环天线方面,并且做了一系列的研究,展示研究结果。研究了多频带平面印刷天线的相关方面。通过在矩形环内部加载直线枝节和曲折线枝节,设计出两种三频带矩形环单极天线,可用于WLAN/WiMAX 2.5/3.5/S.SGHz无线通信。 【关键词】:平面印刷天线微带天线阵列天线单脉冲多频段天线

短波通信盲区及解决方法及天线架设秘籍之一

短波通信盲区及解决方法及天线架设秘籍之一————天线防雷全攻略 作者:佚名 短波通信的发展前景 尽管当前新型无线通信系统不断涌现,短波这一最古老和传统的通信方式仍然受到全世界的普遍重视,在卫星通信和移动通信快速发展的今天,短波通信不仅没有被淘汰,还在快速发展。其原因是:短波通信距离远、抗毁能力和自主通信能力强、运行成本低。 短波通信技术发展状况 近年来,短波通信技术在世界范围内获得了长足进步,出现了很多新电台、新装备和新技术。其主要特点是: 1、短波电台 短波单边带电台体积越来越小,功能越来越多,性能越来越好,兼容性越来越强。数字化是短波电台的必然发展趋势。 2、短波天线 短波天线主要是向宽带、全向、无“盲区”、高增益方向发展。体积越来越小,效率越来越高。现推出了多款新型基站天线和车载天线。 3、频率选择 在频率选择方面,除已广泛使用的ASAPS测频系统和ALE自适应选频方法外,又推出了短波全频段实时自适应选频系统和频率管理系统。 4、噪声消除 在抗噪声方面推出了多种静噪、消噪方式,尤其是美国SGC公司最近推出的ADSP2单端消噪器,可以串接在任何无线电台的收信音频放大电路中或做成消噪扬声器,消除信道中的背境噪声,使短波电台的收听质量,达到或接近超短波电台的收听水平。 5、组网通信 在组网通信方面,除自适应(ALE)功能中的选呼组网方式外,国外己推出了CCIR493数字选呼系,该系使每一部电台分得一个不重复的ID码(4~6位),通过它可组成万台级的大网,现在澳大利亚生产的短波电台,欧、美生产的部份短波电台,己作为常规功能,固化于整机中。CCIR493数字选呼系统可实现单呼、组呼、群呼,收发短信息,传送GPS定位信号,传送警报信号,实现短波/市话网双向自动拨号等功能。 短波通信盲区及解决方法 一、短波传播方式 无线电广播、无线电通信、电视、雷达等都要靠无线电波的传播来实现。

短波电台的选址和天线的架设

短波电台的选址和天线的架设 这里简要介绍短波通信的一般概念,短波电台的选址和天线的架设。 一、短波通信的一般原理 1.1、无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。 无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: 地波(地表面波)传播

沿大地与空气的分界面传播的电波叫地表面波,简称地波。地波的传播途径如图1.1 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。 天波传播 天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波。电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。 1.2 、电离层的作用 电离层对短波通信起着主要作用,因此是我们研究的重点。 电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层。上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。产生电离的大气层称为电离层。电离层分为D、E、F1、F2四层。D层高度60~90公里,白天可反射2~9MHz的频率。E层高度85~150公里,这一层对短波的反射作用较小。F层对短波的反射作用最大,分为F1和F2两层。F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持

路由器天线增益发射功率与信号关系

路由器天线增益发射功率与信号关系 一、路由器无线天线增益对信号的影响 我们在无线路由器参数中,常常可以看到天线的增益是3dBi、5dBi或者7dBi类似这样的标注,以dBi单位为结尾的就表明了无线天线的增益大小。从理论上来说,天线增益越大能够将无线信号传的更远。可以说,天线的增益对于无线路由器发射的无线信号起着放大的作用,并且与无线信号的发射方向有着密切的联系。在日常生活中,我们常见的无线路由器天线增益一般为3dBi和5dBi,一些主打穿墙能力突出的产品则采用了7dBi增益的无线天线。 二、发射功率对信号的影响 首先,各国对无线路由器的发射功率都有规定,一般不得超过100mW,也就是20dBm(2.4GHz频段)。所以我们可以看到,其实按照国家标准,发射端的信号强度是固定的。而决定无线信号强弱的另一方面就在用户的接收设备上。它的接收灵敏度若是不高,那么用户就会觉得无线信号不好,上网的实际体验就会很差。这样一来,消费者很容易被厂商忽悠,甚至浪费钱财买来了“多余”的天线。

“MIMO”技术。使用MIMO发射技术,需要有多天线的支持,路由器可以将数据分成多份从不同天线发出,在接收端在进行整合。以2x2MIMO为例,就像两个人同时干活,将原来的工作效率变为两倍,提高了无线速率并且明显改善了通信质量。 发射功率基本确定,只能靠电线的多少来确定信号的强度,天线越多信号越强,天线增益越大发射半径越大,但是发射信号波具有集束型,例如5DBI的信号是椭圆的,当你在椭圆的信号范围内时,手机接收信号很强,当在椭圆信号之外时,信号会锐减,所以出现了一种,全方向天线信号发射路由器,这样就能解决信号的集束问题。 一般路由器的覆盖半径是30-100米,但是在家中的话,就会出现当路由器穿过3堵墙之后信号就会变得很小,所以选择路由器是应该选择正规厂商的产品,并且选择多天线的,高DBI的路由器。

天线的主要性能指标

天线的主要性能指标 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化,双极化天线的隔离度,及三阶交调等。 1、方向图 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功率波瓣宽度为65o,在120o 的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,

在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。一般移动通信天线的输入阻抗为50Ω。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加

第四章 增益测量

第四章 增益测量 第一节 引言 天线的方向增益(通常称方向性系数)是表征天线所辐射的能量在空间分布情况的量,定义为在相同辐射功率情况下,该天线辐射强度),(?θp 与平均辐射强度之比,即 0p 0 ) ,(),(p p D ?θ?θ= (4﹒1) 由于辐射强度正比于电场强度的平方,因此,方向性系数也可写为 2 2),(),(E E D ?θ?θ= (相同辐射功率) (4﹒2) 式中,),(?θE 是该天线在),(?θ方向产生相同电场强度的条件下,点源天线的总辐射功率与该天线的总辐射功率之比,即 ) ,(),(0?θ?θT T P P D = (相同电场强度) (4﹒3) 一般情况均指最大辐射方向的方向性系数,因此,式(4﹒1)、(4﹒2)、(4﹒3)可写为 2 02 0E E p p D m m m == (相同辐射功率) mT oT P P = (相同电场强度) (4﹒4) 方向性系数是以辐射功率为基点,没有考虑天线能量转换率。为了更完整地描述天线的特性,我们以天线输入功率为基点,将该天线与点源天线作比较,于是,仿照方向性系数所定义的量就叫做天线的功率增益(通常称为增益系数),即 2 2),(),(E E G ?θ?θ= (相同输入功率) (4﹒5) 或 ) ,(),(0?θ?θin in P P G = (相同电场强度) (4﹒6) 式中,和in P 0),(?θin P 分别是点源天线和该天线的输入功率。 若指天线最大辐射方向的增益,则式(4﹒5)和(4﹒6)可写为 2 2E E G m m = (相同输入功率)

inm in P P 0= (相同电场强度) (4﹒7) 将式( 4﹒7)进行简单的换算,则有 A m inm mT mT oT oT in inm oin m D P P P P P P P P G ηη??=? ?== 00 (4﹒8) 式中,0η和A η分别是点源天线和某天线的效率。 令点源天线效率10=η,并因一般谈及方向性系数或增益系数均指最大发射方向,为简化书写,我们将足标“”去掉,于是式(4﹒8)就变为 m D G A η= (4﹒9) 可见,天线的增益系数等于天线的效率与方向性系数之积。如果天线效率为100%,则天线的方向性系数也就是天线的增益系数了。 天线增益的测量可以根据定义测取相对功率或相对场强而得到,基本方法有两大类:一类是比较法,另一类是绝对法。 第二节 比较法测天线增益 比较法是将待测天线与一已知增益的标准天线进行比较而测得其增益值的。定义增益时,以点源天线作比较标准,但辐射球状方向图的标准点源天线实际上难以实现。因此,测量时,通常是用有方向特性的天线(如半波偶极天线或喇叭天线等)作比较标准,相对于标准天线增益的待测天线增益则为 s G G P P G G s s = (相同电场强度) (4﹒10) 或 2 2s s E E G G = (相同输入功率) (4﹒11) 为了简单,式中功率P 和场强E 的足标已省掉。按式(4﹒10)或式(4﹒11)用比较法进行天线增益测量时,可以有多种方案。 一、标准天线和待测天线作发射 1. 相对功率法 测试电路如图4﹒1所示,步骤如下: ⑴辅助天线接入发射端,并调整匹配,是输出功率最大; ⑵辅助天线接入接收端,并使其最大辐射方向与发射天线的最大辐射方向对准; ⑶调节可变衰减器,使接收端指示器指示适当的值A,记下功率计读数; s P

短波通信

短波通信是指波长100-10米(频率为3-30mhz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。2.极性:极性定义了天线最大辐射方向 电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(vswr):天线系统的输入阻抗直接影响天线发射效率。当驻波比(vswr)1:1时没有反射波,电压反射比为1。当vswr大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:vswr为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5db。vswr为1.5:1时,损失4%功率,信号降低0.18db。 二、几种常用的短波天线 1.八木天线(yagiantenna)八木天线在短波通信中 通常用于大于6mhz以上频段,八木天线在理想情况下增益可达到19db,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上 具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。2.对数周期天线(logperiodicantenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(long-wireantennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3db,当线长8倍于波长时,增益高6db,仰角下降到18度,图1为长线天线增益示图。 4.车载移动天线(mobileantennas)移动天线一般工作在2.0~25mhz频段上,为垂直极性天线,性能与机械特性有关,天线长度较短,在低仰角工作时,发射效率适中。在通常情况下,车载天线仰角应大于45度,因为天线长度较短,是低效天线。在汽车上,机械特性限制了天线的选择,但天线可以放置为倒"l"型,这样增加了天线的垂直辐射面,可以提高发射效率,倒"l"天线适宜用于中短波通信。 三、常用短波天线性能 方向性天线、简单的双极天线适用于短距离通信,但短波远距离通信信号微弱,甚至被各种噪音淹没时,天线就需要选择比双极天线增益更高的天线。理想方向性天线在工作方向上具有很高增益而无用方向上增益为0。 四、不同环境下天线选型 1.固定站间远/近距离通讯由于固定站间通讯方向是固定不变的,所以一般采用高增益,方向性强的短波天线。通信距离在1000-3000公里,可使用高增益,低仰角对数周期天线(lp),但天线价格

短波天线选型

短波通信中的天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向 电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中 通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高

相关文档