文档库 最新最全的文档下载
当前位置:文档库 › 医用高分子常用材料(精)

医用高分子常用材料(精)

医用高分子常用材料(精)
医用高分子常用材料(精)

医用高分子常用材料

学校名称:华南农业大学

院系名称:材料与能源学院

时间:2017年2月27日

3.结构与性能

3.3 常用材料

1.硅橡胶

硅橡胶是一种以Si-O-Si为主链的直链状高分子量的聚有机硅氧烷为基础,添加某些特定组分,按照一定的工艺要求加工后,制成具有一定强度和伸长率的橡胶态弹性体。

硅橡胶具有良好的生物相容性、血液相容性及组织相容性,植入体内无毒副反应,易于成型加工、适于做成各种形状的管、片、制品,是目前医用高分子材料中应用最广、能基本满足不同使用要求的一类主要材料。

具体应用有:静脉插管、透析管、导尿管、胸腔引流管、输血、输液管以及主要的医疗整容整形材料。

2.聚乳酸

聚乳酸是以乳酸或丙交酯为单体化学合成的一类聚合物,属于生物降解的热塑性聚酯,具有无毒、无刺激、良好的生物相容性、可生物分解吸收、强度高、可塑性加工成型的合成类生物降解高分子材料。

其降解产物是乳酸、CO2和H2O。经FDA批准可用作手术缝合线、注射用微胶囊、微球及埋置剂等制药的材料。u=3351883538,102612699&fm=21&gp=0

3.聚氨酯

聚氨酯是指高分子主链上含有氨基甲酸酯基团的聚合物,简称PU,是由异氰酸酯和羟基或氨基化合物通过逐步聚合反应制成的,其分子链由软段和硬段组成。聚氨酯具有一个主要的物理结构特征是微相分离结构,其微相分离表面结构与生物膜相似。

由于存在着不同表面自由能分布状态,改进了材料对血清蛋白的吸附力,抑

制血小板黏附,具有良好的生物相容性和血液相容性。目前医用聚氨酯被用于人工心脏、心血导管、血管涂层、人工瓣膜等领域。

参考文献

[1] 李小静,张东慧,张瑾,等.医用高分子材料应用五大新趋势[J].CPRJ中国塑料橡胶,2016

[2]杂志社学术部,医用高分子材料的临床应用:现状和发展趋势.中国组织工程研究与临床康复,2010,14(8)

医用高分子常用材料(精)

医用高分子常用材料 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

3.结构与性能 3.3 常用材料 1.硅橡胶 硅橡胶是一种以Si-O-Si为主链的直链状高分子量的聚有机硅氧烷为基础,添加某些特定组分,按照一定的工艺要求加工后,制成具有一定强度和伸长率的橡胶态弹性体。 硅橡胶具有良好的生物相容性、血液相容性及组织相容性,植入体内无毒副反应,易于成型加工、适于做成各种形状的管、片、制品,是目前医用高分子材料中应用最广、能基本满足不同使用要求的一类主要材料。 具体应用有:静脉插管、透析管、导尿管、胸腔引流管、输血、输液管以及主要的医疗整容整形材料。 2.聚乳酸 聚乳酸是以乳酸或丙交酯为单体化学合成的一类聚合物,属于生物降解的热塑性聚酯,具有无毒、无刺激、良好的生物相容性、可生物分解吸收、强度高、可塑性加工成型的合成类生物降解高分子材料。 其降解产物是乳酸、CO2和H2O。经FDA批准可用作手术缝合线、注射用微胶囊、微球及埋置剂等制药的材料。u=3351883538,102612699&fm=21&gp=0 3.聚氨酯 聚氨酯是指高分子主链上含有氨基甲酸酯基团的聚合物,简称PU,是由异氰酸酯和羟基或氨基化合物通过逐步聚合反应制成的,其分子链由软段和硬段组成。聚氨酯具有一个主要的物理结构特征是微相分离结构,其微相分离表面结构与生物膜相似。 由于存在着不同表面自由能分布状态,改进了材料对血清蛋白的吸附力,抑

制血小板黏附,具有良好的生物相容性和血液相容性。目前医用聚氨酯被用于人工心脏、心血导管、血管涂层、人工瓣膜等领域。 参考文献 [1] 李小静,张东慧,张瑾,等.医用高分子材料应用五大新趋势[J].CPRJ中国塑料橡胶,2016 [2]杂志社学术部,医用高分子材料的临床应用:现状和发展趋势.中国组织工程研究与临床康复,2010,14(8)

生物医用高分子材料

生物医用高分子材料 一、生物医用材料 生物医用材料简介: 生物医用材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。 生物医用材料分类: 生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。 二、生物医用高分子材料 1、定义:生物医用高分子材料是指对生物体进行诊断、治疗和置换损坏组织、器官或增进其功能的材料。生物医学材料中发展最早、应用最广泛、用量最大的材料,也是一个正在迅速发展的材料。它既可以来源于天然产物,又可以人工合成。此类材料除应满足一般的物理、化学性能要求外,还必须具有足够好的生物相容性。 2、分类: 按材料来源分: (1)医用金属和合金。主要用于承力的骨、关节和牙等硬组织的修复和替换。 (2)医用高分子生物材料。高分子化合物是构成人体绝大部分组织和器官的物质,医用高分子生物材料包括合成(如:聚酯、硅橡胶)和天然高分子(如:胶原、甲壳素)。(3)医用生物陶瓷。有惰性生物陶瓷和活性生物陶瓷(羟基磷灰石陶瓷、可吸收磷酸三钙陶瓷等) (4)医用生物复合材料。如羟基磷灰石涂复钛合金,炭纤维或生物活性玻璃纤维增强聚乳酸等高分子材料。 (5)生物衍生材料。这类材料是将活性的生物体组织,包括自体和异体组织,经处理改性而获得的无活性的生物材料。 按用途分: (1)手术治疗用高分子材料,如: 缝合线,黏胶剂,止血剂,各种导管,引流管,一次性输血输液器材 (2)药用及药物传递用高分子材料,如: 靶向性高分子载体(肝靶向性,肿瘤靶向性),高分子药物(干扰素,降胆敏),高分子控制释放载体(胶囊,水凝胶,脂质体) (3)人造器官或组织,如: 人造皮肤,血管,骨,关节,肠道,心脏,肾等。 按降解性能分 (1)可生物降解材料-指聚合物在生物体内酶、酸碱性环境下或微生物存在的情况下可以发生分子量下降、生成水和二氧化碳等对生物体或环境无毒害的小分子化合物的性能。

生物医用材料详解

2011–2012学年第2学期 生物医用材料期末论文 题目:壳聚糖生物材料的研究进展姓名:黄清优 学号: 20090413310072 专业: 09材料科学与工程 学院:材料与化工学院 任课教师:曹阳王江唐敏 完成日期: 2012年6月7日

壳聚糖生物材料的研究进展 黄清优 (海南大学材料科学与工程专业海口570228) 摘要:壳聚糖作为一种新型天然生物材料,越来越成为国内外研究热点。本文对近年来壳聚糖改性方面的研究进展及其在生物医学方面的应用进行了综述,并对壳聚糖的发展趋势进行了展望。 关键词:壳聚糖;化学改性;应用;生物材料 The Research Progress of Chitosan Biomaterial Qingyou Huang (Department of Material Science and Engineering Hainan University Haikou 570228) Abstract: Chitosan, as a kind of novel natural biomaterials, increasingly becomes a research pot at home and abroad. This paper summarized the progress in chemical modification of chitosan,and application of it in biomedical fields recently. At last, the developing trend of chitosan was predicted. Keywords: chitosan; chemical modification; application; biomaterial 1前言 壳聚糖是一种新型的天然生物医用材料。虾、蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保、经济可持续发展的角度来考虑,壳聚糖作为一种天然的材料,不仅无毒、无污染,而且还具有很好的生物降解性和相容性。因此非常有必要加大对壳聚糖的研究,以开发更多的产品[1,2]。 由于壳聚糖安全性良好,且具有可降性和组织相容性,在医药领域具有很高的应用价值。但壳聚糖存在水溶性、稳定性、力学性能差等缺点,在一定程度上使其应用受到很大限制。对壳聚糖进行化学改性,可改善其物理、化学性质,拓宽了壳聚糖及其衍生物的应用领域,是近几年壳聚糖研究的热点之一。文章综述了近几年壳聚糖化学改性方面的研究进展,及其在生物医用方面的应用[2,3]。

医用高分子材料论文

医用高分子材料 高分子材料科学与工程,高材1006班,王中伟,20100221276 摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外, 医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料.医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 正文: 一、医用高分子材料的概念及简介:医用高分子材料是依据高分子材料的某些特性及特征, 如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求

高分子材料常用抗氧剂

抗氧剂1010 化学名称:四[β-(3,5-二叔丁基4-羟基苯基)丙酸]季戊四醇酯 英文名称:Pentaerythritol-tetra-[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate]分子量:1178 质量标准: 性能:本品为白色粉末,无嗅无味。熔点110℃—125℃,性质稳定,易溶于苯,丙酮和酯等溶剂,不溶于水,微溶于乙醇。本品无污染,耐热和耐水抽出性能好。与抗氧剂ETHAPHOS368等并用能发挥协同效应,提高抗氧化效果。 用途:本品是一种多元受阻酚抗氧剂,与大多数聚合物相溶性好,是PP树脂优良的抗氧剂,也可用于PE,PS,ABS树脂,聚氨酯,PBT树脂,PVC,聚酯,聚甲醛,聚酰胺以及各种合成橡胶等高分子材料中,也用来防止油脂和涂料的热氧老化。 毒性:本品毒性甚微,白鼠半致死量LD50≥mg(雄性小白鼠口服) 贮存: 本品化学性状稳定,无特殊贮存要求,应防潮,隔热. 包装:纸板箱内衬塑料袋,每箱净重25 KG. 抗氧剂168 化学名称:三(2,4-二叔丁基苯基)亚磷酸酯 英文名称:Tris-(2,4-di-tert-butyl-pheny)-phosphite 分子量:646 分子式:C42H43O3P 质量标准: 性能:外观为白色结晶粉末,熔点182℃-186.5℃,闪点257℃,易溶于甲苯,二氯甲烷等有机溶剂,微溶于酯类,不溶于水。 用途:本品是一种高性能固体有机亚磷酸酯抗氧剂,对聚合物的色泽有良好的保护作用,优于其它亚磷酸酯,一般不单独使用,经常与抗氧剂BTHANOX310等酚类主抗氧剂复合使用,能提高聚合物加工过程的热稳定性,本品与酚类抗氧剂复配后广泛用于PE,PP ,PS,聚酰胺,聚碳酸酯,ABS等高分子材料。 贮存:本品耐水解较差,应注意防潮,防热。 包装:纸板桶(箱)内衬塑料袋,每桶(箱)净重25KG。 最佳添加量:一般用量为0.1%-0.3%

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

《生物医用材料》课程教学大纲

《生物医用材料》课程教学大纲 课程编号:BFMA2004 课程类别:专业基础课 授课对象:材化部生物功能材料专业大学三年级本科生 开课学期:春季 学分:3 学分/54 学时 主讲教师:孟凤华教授 指定教材:巴迪?D.拉特纳等编著、顾忠伟等译校的《生物材料料学:医用材料导论(原书第2版中文版)》,2011。 教学目的: 生物医用材料学是生物医学科学中的最新分支学科,是生物、医学、化学和材料科学交叉形成的边缘学科。生物医用材料学是生物医学工程学的四大支柱之一,因此生物医用材料学是生物医学工程系本科学生必不可少的的一门专业课程。生物医学材料学是多门学科相互借鉴结合、相互交叉渗透、突破旧有学科的狭小范围而开创的一门新学科。本课程较系统的介绍生物医用材料学的基本概念,主要内容,研究现状及发展趋势,力求对生物医用材料学领域所涉及的材料学、化学、生物学、医学的有关知识进行较详细的介绍。以《生物医学材料学》为主要讲授内容,并结合科研和本学科发展最新动态,补充讲授纳米药物输送、组织工程等新内容。通过本课程的学习,使学生对生物医用材料学科的内容和知识有一个全面的了解,开拓知识面,为今后的深造和科研打下基础。 概述 课时:共1课时 教学内容: 序言 生物材料科学:多学科奋进的科学 生物材料的发展历史 第1部分材料科学与工程 第1章材料性质 课时:共2课时 教学内容: 1.1 引言 1.2 材料的本体性质 1.3 有限元分析 1.4 材料的表面性质和表征 1.5 水在生物材料中的作用 思考题: 1、简述影响材料的本体性质及测定方法。 2、简述材料的表面性质及常用的表面分析方法。 3、水在生物材料中起什么作用? 第2章医用材料的种类 课时:共12课时 教学内容:

生物医用高分子材料

生物医用高分子材料

————————————————————————————————作者:————————————————————————————————日期:

生物医用高分子材料 080804106 黄涛 摘要:: 阐述了生物医用高分子材料的应用研究与发展状况,综述了生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 关键词: 生物医用高分子材料分类进展综述发展趋势 1 概述 在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。研究领域涉及材料学、化学、医学、生命科学。虽已有四十多年的研究历史,但蓬勃发展始于20世纪70年代。简单地说,所谓生物医用高分子材料( Poly-mericbio - materials)是指在生理环境中使用的高分子材料,它们中有的可以全部植入体内,有的也可以部分植入体内而部分暴露在体外,或置于体外而通过某种方式作用于体内组织。 近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 2生物医用高分子材料分类 生物医用高分子材料主要有天然生物材料和合成高分子材料。 2 . 1 天 然 生 物 材 料 天 然 生 物 材 料 是

并得到迅速推广应用的一类天然生物材料。由 家蚕丝脱胶后可得到纯丝素蛋 白 成分 , 丝素 蛋白是 一种优质 的生 物医 学材料 ,具有无刺良好的2 . 2 合成高分子材料 合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能 ,因而可以 植入人体 ,部分或全部取代有关器官。因此 ,在现代 医学领域得到了最为广泛的应用 ,成为现代医学的重要支柱材料。与天然生物材料相比 ,合成高分 子材料具有优异的生物相容性 ,不会因与体液接触 而产生排斥和致癌作用 ,在人体环境中的老化不明 显。通过选用不同成分聚合物和添加剂 ,改变表面 活性状态等方法可进一步改善其抗血栓性和耐久性 ,从而获得高度可靠和适当有机物功能响应的生 物合成高 分子材 料。目 前 ,使用于人体植入产品的高分子合成材料 包 括聚环氧聚聚乙聚乳 目前为止 ,开发的具有生态可降解性的高分子材料主要以国外产品为主 ,国内这方面还远远不能 满足需要 ,尚处于国外产品的复制和仿制阶段。聚 乳酸类高分子是目前已开发应用于生命科学新增长 点 ———组织工程的生物可降解材料。一般以组织工程为应用目的的生物材料应符合 1) 表面能使细胞黏附并生长 ; 2 ) 植入 体内后 ,高分子材料及其降解产物不会引起炎症及 毒副作用 ;3) 材料能加工成三维结构 ;4) 为了保证细 胞2高分子反应能大面积进行 ,并提供细胞外再生的 足够空间 ,且在体外人工培养时有最小的扩散 ,材料 孔隙率不得降低于 90 % ; 5) 在完成组织再生后 ,高 分子能立即被机体吸收 ; 6) 高分子支架的降解速率 应控制在与不同组织细胞再生速度相匹配。对聚乳 酸高分子材料进行的研究 ,在力求符合上述要求时已形成了多种品种 ,如未经编织的单纤维合成材料 , 经编织的网状合成材料 ,具有包囊的多孔海绵状材 料等。尽管如此 ,目前应3 生物医用高分子材料特性 人们常 用的医用高分子 材料

生物医用材料项目计划书

生物医用材料项目 计划书 规划设计/投资分析/产业运营

报告说明— 生物医用材料是当代科学技术中涉及学科最为广泛的多学科交叉领域,涉及材料、生物和医学等相关学科,是现代医学两大支柱—生物技术和生 物医学工程的重要基础。由于当代材料科学与技术、细胞生物学和分子生 物学的进展,在分子水平上深化了材料与机体间相互作用的认识,加之现 代医学的进展和临床巨大需求的驱动,当代生物材料科学与产业正在发生 革命性的变革,并已处于实现意义重大的突破的边缘─再生人体组织,进 一步,整个人体器官,打开无生命的材料转变为有生命的组织的大门。在 我国常规高技术生物医用材料市场基本上为外商垄断的情况下,抓住生物 材料科学与工程正在发生革命性变革的有利时机,前瞻未来20-30年的世 界生物材料科学与产业,刻意提高创新能力,不仅可为振兴我国生物材料 科学与产业,赶超世界先进水平赢得难得的机遇,且可为人类科学事业的 发展做出中国科学家的巨大贡献。 该生物医用材料项目计划总投资18499.76万元,其中:固定资产投资15275.39万元,占项目总投资的82.57%;流动资金3224.37万元,占项目 总投资的17.43%。 达产年营业收入25185.00万元,总成本费用19480.33万元,税金及 附加309.62万元,利润总额5704.67万元,利税总额6801.14万元,税后 净利润4278.50万元,达产年纳税总额2522.64万元;达产年投资利润率

30.84%,投资利税率36.76%,投资回报率23.13%,全部投资回收期5.82年,提供就业职位434个。 生物医用材料及植入器械产业是学科交叉最多、知识密集的高技术产业,其发展需要上、下游知识、技术和相关环境的支撑,因此产业高度集 中(垄断),产品多样或多角化是生物医用材料产业发展的又一特点和趋势。2010年世界医疗器械产业由27000个医疗器械公司构成,其中90%以上为 中小企业。发达国家的中小企业主要从事新产品、新技术研发,通过向大 公司转让技术或被大公司兼并维持生存。大规模产品生产及市场运作基本 上由大公司进行。不同于我国医疗器械企业“多、小、散”的局面,发达 国家医疗器械产业已形成“寡头”统治的局面,全球市场也呈现类似的格局。2009年,排名前50位的跨国大公司占有全球医疗器械市场的88%,其 中排名前25位的公司占有75%;2008年6家美、英公司:DePuy,Zimmer,Stryker,Biomet,Medtronic,SynthesMathys和Smith&Nephew占有全球 骨科材料和器械市场的≈75%,其中前4家美国公司和英国Smith&Nephew 公司占有人工关节市场的90%;6家大公司:Johnson&Johnson,Abbott,BostonScientific,Medtronic,CRBard(美国),Terumo(日本)公司占有心 脑血管系统修复材料及植(介)入器械市场的80-90%;5家大公司:BaxterInternational(美国),Fresenius(德国),Gambro(瑞典),Terumo 和AsahiMedia(日本)占有血液净化及体外循环系统材料和装置市场的80%;牙种植体和牙科材料市场基本上为Straumann(瑞士),

耐老化高分子材料的研究及应用

耐老化高分子材料的研究及应用 聚合物及其制品在使用或贮存过程中,由于受众多环境因素(光、热、氧、潮湿、应力、化学侵蚀等)的影响,其性能(强度、弹性、硬度、颜色等)逐渐变坏,如外观上变色发黄、变软发粘,变脆发硬,物化性质上分子量、溶解度、玻璃化温度的增减,力学性能上强度、弹性的消失等等,这些现象统称为老化。其实它跟金属的腐蚀是相似的。 高分子的老化方式主要有光氧化、热氧化、化学侵蚀、生物侵蚀等。 一、光氧化 涂料、塑料、橡胶、合成纤维等制品在日光或强的荧光下(因为含有害紫外线较普通荧光灯多),因吸收紫外线而引发自我氧化,导致聚合物降解,使制品的外观和物理机械性能恶化,这一过程称为光氧化还原或光老化 聚合物在光的照射下,分子链的断裂取决于光的波长与聚合物的键能,各种键的离解能为167~586kJ/mol 。在可见光范围内,聚合物一般不被离解,但呈激发状态。应此在氧存在下,聚合物易发生光氧化过程。例如聚烯烃RH,被激发了的C —H 键容易与氧作用。 —RH+ O2 —→R?+?O—OH R?+O2—→R—O—O?—RH→R—O2H+R? 此后开始连锁式的自动氧化降解过程。水、微量的金属元素特别是过渡金属及其化合物都能加速光氧化过程。为延缓或防止聚合物的光氧化过程,需要加入光稳定剂。 光稳定剂凡能屏障或抑制光氧化还原或光老化过程而加入的一些物质称为 光稳定剂。太阳辐射的电磁波在通过空间和臭氧层时,290nm以下和3000nm以

上的射线几乎都被滤除,实际到达地面的为290nm—3000nm的电磁波,其中波长范围为400—800nm(约占40%)的是可见光,波长约为800—3000nm(约占55%)的是红外线,而波长约为290—400nm(仅占5%)的是紫外线,其中,紫外线对聚合物的破坏作用最大。为了阻止紫外线对高分子材料的老化作用,可以加入光稳定剂。工业上对光老化的有效防止阻缓,多以两种以上有不同作用机理的抗老化剂复配,因为各种抗老化剂特别是光吸收剂都有自身对紫外线不同的吸收波段。复配配方如:二笨甲酮+苯并三唑类加受阻胺(HAL)类,可以起到单一光稳定剂所无法达到的最佳效果。 表-1 西欧各种塑料使用光稳定剂的量……○1 目前工业上使用的光稳定剂有:光屏蔽剂、紫外光吸收剂和能量转移剂(又称淬灭剂)等。 (1)光屏蔽剂

医用高分子材料

刘熙高分子092班 5701109065 生活中的高分子材料 ——医用高分子材料 摘要:我国医用高分子材料的研究起步较早、发展较快。医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官,具有延长病人生命、提高病人生存质量等作用。 关键词:生物医用高分子材料 科技关爱健康,医用高分子材料的应运而生是医疗技术发展史上的一次飞跃。高分子材料充分体现了人类智慧,是人类科学技术的重要科技进步成果之一。高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 而医用高分子材料是一类可对有机体组织进行修复、替代与再生, 具有特殊功能作用的合成高分子材料, 可以利用聚合的方法进行制备, 是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质, 以满足不同的需求, 耐生物老化, 作为长期植入材料具有良好的生物稳定性和物理、机械性能, 易加工成型, 原料易得, 便于消毒灭菌, 因此受到人们普遍关注, 已成为生物材料中用途最广、用量最大的品种, 近年来发展需求量增长十分迅速。目前全世界应用的90多个品种, 西方国家消耗的医用高分子材料每年以10%~20%的速度增长。以美国为例, 每年有数以百万计的人患有各种组织、器官的丧失或功能障碍, 需进800万次手术进行修复, 年耗资超过400亿美元, 器官衰竭和组织缺损所需治疗费占整个医疗费用的一半。随着人民生活水平的提高和对生命质量的追求, 我国对医用高分子材料的需求也会不断增加。

生物医用高分子

生物医用高分子https://www.wendangku.net/doc/0c11689947.html,work Information Technology Company.2020YEAR

《生物医用高分子材料》复习题 一、名词解释: 1、人工器官: 即人造器官,是模仿人体或生物体器官的部分或全部功能,通过特定的方式和方法制造的器官。 2、血液净化 血液净化是把血液引出体外,通过一个净化装置清除血液中的有害成物质,或补充营养成分到血液中达到治疗某些疾病的目的。 3、血浆分离 血浆分离是对患有某些疾病病人的血液进行整体处理,将其血浆分出,然后从血浆中除去致病的大分子蛋白质,用以治疗某些难于对付的血液和免疫性疾病。 4、血液灌流 让溶解在血液中的物质,如某些代谢产物、外源性药物和毒物质吸附到具有丰富表面积的固态物质上,从而清除血中的毒物。 5、缓释制剂 指用药后能在较长时间内持续释放药物以达到长效作用的制剂,其中药物按一级速率释放。 6、控释制剂:是指药物能在预定时间范围办自动以预定速率释放,使血 药浓度长时间恒定维持在有效范围内的制剂。 7、人工肾 又称人工透析机,人工肾是一种透析治疗设备。是用人工方法模仿人体肾小球的过滤作用,在体外循环的情况下,去除人体血液内过剩的含氮化合物、新陈代谢产物或逾量药物,调节水和电解质平衡,以使血液净化的一种高技术医疗仪器。 8、药用高分子:

药用高分子指的是药品生产和制造加工过程中使用的高分子材料,包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装贮运高分子材料。 9、人工血液 也称人工替代血液,是利用和血红蛋白相同的加工处理方法,维持血压不变,在扮演搬运各种物质角色的白蛋白中放入血红素分子,制成白蛋白血红素,这就是人工血液,严格来说只能取代人体血液携带氧气的功能,并无法取代白血球的免疫功能与血小板的凝血功能。 10、磁性生物高分子微球: 指通过适当的方法使有机高分子与无机磁性物质结合起来形成具有一定磁性及特殊结构的微球。 11、软组织 软组织是指人体的皮肤、皮下组织、肌肉、肌腱、韧带、关节囊、滑膜囊、神经、血管等 二、简答题: 1. 高分子药物按分子结构和制剂的形式,它可分为哪三大类: 答:(1)高分子化的低分子药物(即高分子载体药物) (2)本身具有药理活性的高分子药物 (3)物理包埋的低分子药物 2. 理想透析膜材料的特点主要有哪些?

生物医用材料产业发展现状及思考

生物医用材料产业发展现状及思考生物医用材料是用于诊断、治疗、修复或替换人体组织或器官或增进其功能的一类高技术新材料,与人类的健康息息相关。随着经济发展水平提高,大健康概念日趋升温,加之当代材料科学与技术、细胞生物学和分子生物学的进展在分子水平上深化了材料与机体间相互作用的认识,当代生物医用材料产业已经成为快速发展的高科技新兴产业。 一、生物医用材料及其产业概述 生物医用材料又称为生物材料,其传统领域主要包括支持运动功能人工器官(骨科植入物、人工骨、人工关节、人工假肢等),血液循环功能人工器官(人工血管、人工心脏瓣膜等),整形美容功能人工器官、感觉功能人工器官(人工晶体、人工耳蜗等)等,新型领域主要包括分子诊断、3D打印等。 生物医用材料的特征主要包括:安全性、耐老化、亲和性,及物理和力学性质稳定、易于加工成型、价格适当。同时,便于消毒灭菌、无毒无热源,不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。其产业特征包括:低原材料消耗、低能耗、低环境污染、高技术附加值,高投入、高风险、高收益、知识与技术密集。 二、生物医用材料及其产业发展现状 (一)市场分析 - 1 - / 11

2016年全球生物医用材料市场规模为709亿美元,预计2021年将达到1491.7亿美元,2016~2021年的复合年增长率为16%。骨科植入材料和心血管材料是生物医用材料市场占比最高的两个细分领域,其中骨科植入材料占据了全球生物医用材料市场的头把交椅,市场占有率为37.5%。心血管材料占据生物医用材料市场的36.1%。其他的主要细分领域还包括牙科材料、血液净化材料、生物再生材料和医用耗材。 (二)竞争态势 全球生物医用材料和制品持续增长,美国、欧盟、日本仍然占据绝对领先优势。2015年,在全球医疗器械生产和消费方面,美国、欧盟、日本的市场占比分别为41%、31%和14%。美国的生物医用材料产业集聚于技术资源丰富的硅谷、128 号公路科技园、北卡罗来纳研究三角园,以及临床资源丰富的明尼阿波利斯及克利夫兰医学中心等;德国聚集于巴州艾尔格兰、图林根州等地区;日本聚集于筑波、神奈川、九州科技园等。 图1:主要国家生物医用材料销售收入占全球医疗器械市场比例分析

抗氧剂

抗氧剂是一类化学物质,当其在聚合物体系中仅少量存在时,就可延缓或抑制聚合物氧化过程的进行,从而阻止聚合物的老化并延长其使用寿命,又被称为"防老剂"。 对工程塑料加工来说,抗氧剂可以防止某些聚合物(如ABS等)加工过程中的热氧化降解,使其成型加工能顺利进行。抗氧剂的添加量-般只有0.1-0.5份。 理想抗氧剂应具备以下条件: ①应具有高的抗氧化能力; ②与树脂的相容性好,不析出; ③加工性能良好.在高聚物的加工温度下不挥发、不分解; ④耐抽出性好,不溶于水和油中; ⑤本身颜色最好为无色或浅色.以不污染制品; ⑥无毒或低毒; ⑦价格低廉。 事实上,任何一种抗氧剂都不能完全满足这些条件,因此,实际使用中常根据工程塑料的种类、用途和加工方法,利用各种助剂之长,配合使用,以生产协同效应。 广义上说,多数弱还原剂都是抗氧化剂,只是根据不同的工业用途选取合适的。有较高化学、物理稳定性的,或是低毒性的弱还原剂,都可以巧妙的运用于配方中作为抗氧化剂。例如:柠檬酸是有弱还原性的有机酸,我们可以将其运用于饮料配方中起着抗氧化剂的作用;食品摆放时间长了容易氧化变质,可以加入少量抗氧剂来延长它们的储存时间;塑料、合成纤维和橡胶等高分子材料容易发生热氧降解反应,加入抗氧剂可以保持高分子材料的优良性能,延长使用寿命…… 有机化合物的热氧化过程是一系列的自由基链式反应,在热、光或氧的作用下,有机分子的化学键发生断裂,生成活泼的自由基和氢过氧化物。氢过氧化物发生分解反应,也生成烃氧自由基和羟基自由基。这些自由基可以引发一系列的自由基链式反应,导致有机化合物的结构和性质发生根本变化。抗氧剂的作用是消除刚刚产生的自由基,或者促使氢过氧化物的分解,阻止链式反应的进行。能消除自由基的抗氧剂有芳香胺和受阻酚等化合物及其衍生物,称为主抗氧剂;能分解氢过氧化物的抗氧剂有含磷和含硫的有机化合物,称为辅助抗氧剂。 1、芳香胺类抗氧剂 芳香胺类抗氧剂,又称为橡胶防老剂,是生产数量最多的一类,这类抗氧剂价格低廉,抗氧效果显著,但由于使制品变色,限制了它们在浅色和白色制品方面的应用,主要用在塑料、合成纤维、乳胶、石油制品、食品、药物和化妆品中。重要的芳香胺类抗氧剂有:二苯胺、对苯二胺和二氢喹啉等化合物及其衍生物或聚合物,可用在天然橡胶、丁苯橡胶、氯丁橡胶和异戊橡胶等制品中。 2、受阻酚类抗氧剂 受阻酚类抗氧剂是一些具有空间阻碍的酚类化合物,它们的抗热氧化效果显著,不会污染制品,发展很快。这类抗氧剂的品种很多,重要的产品有:2,6-三级丁基-4-甲基苯酚、双(3,5-三级丁基-4-羟基苯基)硫醚、四〔β-(3,5-三级丁基-4-羟基苯基)丙酸〕季戊四醇酯等。这类抗氧剂主要用在塑料、合成纤维、乳胶、石油制品、食品、药物和化妆品中。(右图为受阻酚类抗氧剂的结构) 3、辅助抗氧剂 硫代二丙酸双酯是一类辅助抗氧剂,常与受阻酚类抗氧剂并用,效果显著,如:硫代二丙酸双酯,常与受阻酚类抗氧剂并用,效果显著,主要产品有:双十二碳醇酯、双十四碳醇酯和双十八碳醇酯。

生物医用高分子材料

摘要 本文简述了生物医用高分子材料发展的历史;着重指出生物医用高分子材料所需要的性能要求,并且根据其特征进行分类;详细描述了人工器官、治疗器具的主要材料和用途,探讨对于生物医用高分子重要性的认识;最后对于其发展前景和产业化趋势做出简要点评。 关键词:生物医用高分子材料,性能分类,人工器官、治疗器具,应用前景, 产业化趋势 华东理工大学 温乐斐

10103638 Abstract Thehistoriesof the development about the biomedical polymeric materials are simply summarized in this paper. The emphasisof thispaper is placed on the performing requirements about the biomedical polymeric materials and being classified according to their characteristics.Detailed description of the artificial organs and the treatment instruments on their main materials and final uses. Then exploring the importance of the biomedical polymeric materials. At last, the strategic position and some future investigating trends are also presented. Keywords:TheBiomedical Polymeric Materials, Characteristics, Artificial Organs & Treatment Instruments, The Prospects & Future Investigating Trends

生物医用材料

生物医用材料 高分子材料、无机材料及金属材料均已在生物医学领域被应用,作为人体修复材料。但从生物相容性的特性分析,则高分子材料与无机材料有着更大的应用前景。美国于1996年对人工骨与各类关节的市场需求量预测为约200万件,中国骨折病人约10倍于此。是一项重大的社会福利问题。 无机生物医用材料可分为三大类,即惰性材料、表面活性材料及可吸收材料。属于惰性材料类的有氧化物陶瓷、非氧化物陶瓷、生物微晶玻璃、复合材料及涂层材料。属于表面活性材料类的有生物活性玻璃、生物活性微晶玻璃、磷灰石类材料、复合及涂层材料。属于可吸收材料类的主要是羟基磷灰石及可吸收的磷酸钙材料。 本文拟对涂层材料稍加介绍。其制备方法是以上述三类材料中的任何一种为对象,一般以钛合金为基底,用等离子喷涂方法将它们在基底材料上形成一层结合牢固的涂层。这类涂层材料具有若干优点,首先可使具有生物相容性好的材料直接与生物体相接触;其次可以利用钛合金基底的强度与韧性;另外涂层材料含有许多微孔,又与被植入体周围的生物体相容,在动物中大量、长期试验证明,生物组织可以长入到微孔中,亲合性好,形成紧密的结合体。因此是比较理想的植入体。现已有肘关节、膝关节及髋关节产品,可供医生选用。在上海一地已有二百多病例。根据对植入髋关节病人的实例统计,在未植入前,有2/3的病人在没有手杖时,就完全不能行走;而在植入后则有90%的病人借助手杖即可长距离行走,其中3/4的病人可脱开手杖行走,效果相当明显。 以上谈了四点不求全面,但已看出高性能无机材料可具有多种优异的性能,因而获得了广泛的应用,并有着巨大的发展潜力和美好的前景。新材料和材料科学与工程本身就是高技术的重要组成部分;而且其他众多高技术领域的发展,都离不开新材料作为它们的基础与支撑。因此展望高性能无机材料的未来,将是一幅十分诱人的图画。

最新医用高分子材料的应用

医用高分子材料的应 用

医用高分子材料的应用 1概述 医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的合成高分子材料,可以利用聚合的方法进行制备,是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。 2种类和应用 2.1与血液接触的高分子材料 与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料,要求这种材料要有良好的抗凝血性、抗细菌粘附性,即在材料表面不产生血栓、不引起血小板变形,不发生以生物材料为中心的感染。此外,还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。人工血管用材料有尼龙、聚酯、聚四氟乙烯、聚丙烯及聚氨酯等。人工心脏材料多用聚醚氨酯和硅橡胶等。人工肺则多用聚四氟乙烯、硅橡胶、超薄聚(涂在多孔PP膜上)、超薄乙基纤维(涂在PE无纺布或多孔PP膜上)等材料。人工肾用材料除要求具备良好的血液相容性外,还要求材料具有足够的湿态强度、有适宜的超滤渗透性等,可充当这一使命的材料有乙酸纤维素、铜氨再生纤维素、尼龙、聚砜及聚醚砜等。 2.2组织工程用高分子材料 组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构-功能关系,以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究,使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。生物相容性材料的开发是组织工程核心技术之

生物医用高分子材料论文

医用功能材料及应用学院化工学院 指导老师乔红斌 专业班级高091班 学生姓名张如心 学号 099034030

医用功能材料及应用 摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料生物医用高分子材料。 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的,而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 1.生物医用功能高分子 生物医用功能高分子材料主要以医疗为目的,用于与组织接触以形成功能的无生命材料。其被广泛地用来取代或恢复那些受创伤或退化的组织或器官的功能,从而达到治疗的目的。主要包括医用高分子材料(以修复、替代为主)、药用高分子材料(以药理疗效为主)。生物医用高分子材料融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。由于其与人体的组织和器官接触,因此,医用高分子材料必须满足如下的基本要求:①在化学上是惰性的,会因为与体液接触而发生反应;②对人体组织不会引起炎症或异物反应;③不会致癌;④具有良好的血液相容性,不会在材料表面凝血;⑤长期植入体内,不会减小机械强度;⑥能经受必要的清洁消毒措施而不产生变形;⑦易于加工成需要的复杂形状。 2.医用高分子材料发展的4个阶段 第1阶段:时间大约是7千年前至19世纪中叶,是被动地使用天然高分子材料阶段。这一时期的高分子材料有,大漆及其制品、蚕丝及织物、麻、棉、羊皮、羊毛、纸、桐油等。 第2阶段:从19世纪中页到20世纪20年代,是对天然高分子材料进行化

相关文档
相关文档 最新文档