文档库 最新最全的文档下载
当前位置:文档库 › 9N50C

9N50C

9N50C
9N50C

NOTES:

1. Repetitive Rating : Pulse width limited by maximum junction temperature

2. L = 8mH, I AS = 9A, V DD = 50V, R G = 25 ?, Starting T J = 25°C

3. I SD ≤ 9A, di/dt ≤ 200A/μs, V DD ≤ BV DSS, Starting T J = 25°C

4. Pulse Test : Pulse width ≤ 300μs, Duty cycle ≤ 2%

5. Essentially independent of operating temperature

On Characteristics

V GS(th)Gate Threshold Voltage

V DS = V GS , I D = 250 μA 2.0-- 4.0V R DS(on)Static Drain-Source On-Resistance V GS = 10 V, I D = 4.5A

--0.70.85?g FS Forward Transconductance V DS = 40 V, I D = 4.5 A (Note 4)-- 6.5--S Dynamic Characteristics

C iss Input Capacitance V DS = 25 V, V GS = 0 V, f = 1.0 MHz

--7901030pF C oss Output Capacitance

--130170pF C rss Reverse Transfer Capacitance --2430pF Switching Characteristics

t d(on)Turn-On Delay Time V DD = 250 V, I D = 9A,R G = 25 ?

(Note 4, 5)

--1845ns t r Turn-On Rise Time --65140ns t d(off)Turn-Off Delay Time --

93195ns t f Turn-Off Fall Time --64125ns Q g Total Gate Charge V DS = 400 V, I D = 9A,V GS = 10 V

(Note 4, 5)

--2835nC Q gs Gate-Source Charge --4--nC Q gd Gate-Drain Charge

--15--nC Drain-Source Diode Characteristics and Maximum Ratings

I S Maximum Continuous Drain-Source Diode Forward Current ----9A I SM Maximum Pulsed Drain-Source Diode Forward Current ----36A V SD Drain-Source Diode Forward Voltage V GS = 0 V, I S = 9 A

---- 1.4V t rr Reverse Recovery Time V GS = 0 V, I S = 9 A,

dI F / dt = 100 A/μs (Note 4)

--100--ns Q rr

Reverse Recovery Charge

--

300

--nC

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms ScalarPump?UHC?

The Power Franchise?

Programmable Active Droop?

Datasheet Identification Product Status Definition

Advance Information Formative or In

Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.

Preliminary First Production This datasheet contains preliminary data, and

supplementary data will be published at a later date.

Fairchild Semiconductor reserves the right to make

changes at any time without notice in order to improve

design.

No Identification Needed Full Production This datasheet contains final specifications. Fairchild

Semiconductor reserves the right to make changes at

any time without notice in order to improve design.

Obsolete Not In Production This datasheet contains specifications on a product

that has been discontinued by Fairchild semiconductor.

The datasheet is printed for reference information only.

Rev. I20

1标准技术参数

1标准技术参数 我公司已认真逐项填写金属氧化物避雷器标准技术参数表(见表1)中投标人保证值,无空格,无“响应”两字代替,无改动招标人要求值。如有偏差,已填写投标人技术偏差表(见表7)。 表1金属氧化物避雷器标准技术参数表 表1(续)

注 1. 项目单位对表1中参数有偏差时,可在项目需求部分的项目单位技术偏差表(见表6)中给出,我公司已对表6响应。表6与表1中参数不同时,以表6给出的参数为准。 2. 参数名称栏中带*的参数为重要参数。如不能满足要求,将被视为实质性不符合招标文件要求。 3. 投标人可选择是否提供电压分布不均匀系数,若提供电压分布实测或计算结果,加速老化试验U c t可按实际不均匀系数计算, 否则U c t=U c×(1+0.15H),H为避雷器高度。 2项目需求部分

2.1 货物需求及供货范围一览表 货物需求及供货范围一览表见表2。 表2 货物需求及供货范围一览表 2.2 必备的备品备件、专用工具和仪器仪表供货表 必 备的备品备件、专用工具和仪器仪表供货表见表3。 表3 必备的备品备件、专用工具和仪器仪表供货表 2.3 图纸资料提交单位 经确认的图纸资料应由投标人提交投标人提交的须经确认的图纸资料及其接收单位(见表4)所列的单位。 表4 投标人提交的须经确认的图纸资料及其接收单位 2.4 工程概况 2.4.1 项目名称:2011年度焦作供电公司自筹资金电网项目 2.4.2 项目单位:焦作供电公司 2.4.3 工程规模:安装150台避雷器 2.4.4 工程地址:沁阳市 2.4.5 交通、运输:汽运 2.5 使用条件 使用条件表见表5。 表5 使 用 条 件

地铁线路平面曲线设计相关参数的确定(精)

地铁线路平面曲线设计相关参数的确定 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数, 各参数相互关联制约。1993 年发布的现行《地下铁道设计规范》( GB50157 92) (以下简称《设规》) 中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用, 因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。 1 曲线半径选择 曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。例如,天津地铁1 号线南段,因受津萍大厦桩基(地下线) 和城市干道交叉口及地铁设站位置(高架线) 控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。 2 曲线超高与限速计算 列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。 列车在曲线上运行时产生惯性离心力使乘客有不适感。因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。 从理论上分析,车体重力P 产生的离心力为: J= Pv 2/gR (1) 由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1) 为Fn= P h/s (2) 当Fn =J 时,可得h = Sv 2/gR = 11. 8 V2/R (3) 式中g 重力加速度,9. 8 m/ s2 ;

汽车零部件检测设施及相关参数

汽车零部件检测设施及相关参数 一、制动系统 1.制动部件试验系统 a 气压真空密封性能试验台 最大真空度98kPa 最大气压0.85 Mpa b 液压制动部件总成性能试验台 最大液压25Mpa c 真空助力器及液压制动部件耐久试验台 最大真空度98kPa 最大液压25Mpa 环境控制温度-50℃~155℃ d 液压密封性刚性试验台 最大液压58Mpa e 制动钳拖带力矩试验台 最大扭矩10Nm f 制动器扭转疲劳强度试验台 最大液压20 MPa 2.电动振动台 频率5~2500Hz, 最大加速度980m/s2, 最大振幅51mm 3.拉力试验机 4.制动软管试验系统 a液压制动软管容积膨胀测定仪 b液压、气压和真空制动软管爆裂强度试验台最大液压60Mpa c液压制动软管制动液相容性试验台 最高温度140℃ d液压制动软管挠曲疲劳试验机 最大液压1620kpa 最大转速810rpm e气压制动软管气密性和长度变化率试验台 最大气压2Mpa f真空制动软管耐负压试验装置 最大真空度95kPa g液压制动软管耐高温脉冲性试验机 最大液压0~30Mpa 最高温度150℃ 二、电器仪表系统 1.汽车仪表试验系统 a汽车仪表性能试验台 频率0~20000kHz, 转速0~8000r/min 电阻0~1000Ω b汽车仪表耐久试验台

电压0~35V, 电流0~20A 2.汽车组合开关/翘板开关试验系统 a汽车组合开关试验台 电压5~35V, 电流0~60A b测力测扭试验台 力矩0~3N2m, 力0~98N 3.汽车点火开关/点烟器试验系统 a汽车点火开关试验台 电压5~35V, 电流0~60A b测力测扭试验台 力矩0~3N2m, 力0~98N 4.汽车微电机试验系统 a汽车微电机试验台 压力0~300KPa, 流量0~3L/min b恒温恒湿试验箱 温度-40~+150 湿度10~98% 5.电动振动台 频率5~2500Hz, 最大加速度980m/s2, 最大振幅51mm 三、车身及附件系统 1.汽车座椅及头枕冲击试验台 最大速度30km/h 最大加速度300g 最大行程600mm 2.汽车座椅及头枕强度试验台 3.汽车安全带固定点强度试验台 荷重出力5000KG 油压缸行程1000mm 油压缸可以分别上下、左右移动:±100mm 4.汽车门锁门铰链耐久试验台 侧门侧滑门:0~15次/min 背门:0~15次/min 铰链:0~20次/min 行程(位移.角度):600~750mm 45~120°5.汽车减振器特性及耐久试验台 额定静负荷拉压为30KN 频率范围0.01~35HZ 振动速度0.1~1.6m/s 6.汽车燃油箱综合测试系统

建筑配电设计全参数要求规范

市城市居住区供配电设施建设技术导则补充说明(讨论定稿)

前言 《市城市居住区供配电设施建设技术导则(试行)》于2009年发布执行,截止2017年,该技术导则在指导我市有关居住区供配电设施建设过程中发挥了重要的作用。为满足社会经济发展对供电可靠性不断增长的需要、促进小区供配电设施与国家能源发展战略相协调, 结合贯彻配电网建设标准化、智能化的要求,根据我市经济发展以及配电网现状,本着以人为本、安全经济、实用可靠、适度超前的原则,在不违背原有技术导则的前提下,对原技术导则进行补充说明。本次补充说明的主要容是: 1、补充、更新了部分规性引用文件。 2、新增了部分术语和定义。 3、根据市地理位置及电力负荷增长的需求,对配电容量配置原则进行了调整;新增了地下车库有充电桩时的容量配置要求;新增了低压干线及分接表箱电缆截面配置原则;细化了公用变电所的供电围。 4、根据电力用户对供电可靠性的需求,新增了开关站双电源的接入,配套增加了备用电源自动投入装置。 5、根据不同小区建设规模及用电需求的不同,对原来居住区的典型供电方案进行了细化,明确了A、B等三类供电方式。 6、明确了居住区环网室、开关站、配电室的所址选择原则。 7、统一了开关站、环网室、配电室高低压柜等设备的选型原则,对高、低压电缆、

备用电源自动投入装置也进行了统一的要求。 8、新增了配电网自动化系统。 9、新增配套土建通道建设要求。

一、补充、更新的规性引用文件 GB 1094.1 电力变压器 GB/T 10228 干式变压器技术条件和要求 DL/T 404 户交流高压开关柜订货技术条件 GB/T 11022 高压开关设备和控制设备的技术要求 GB 1984 高压交流断路器 GB/T 22582 电力电容器低压功率因数补偿装置 GB 11032 交流无间隙金属氧化物避雷器 GB 16926 高压交流负荷开关熔断器组合电器 DL/T 728 气体绝缘金属封闭开关设备选用原则 GB 3906 3.6kV~40.5kV交流金属封闭开关设备和控制设备DL/T 5222 导体和电器选择设计技术规定 GB 3096声环境质量标准 GB 4208 外壳防护等级(IPB 代码) GB 311.1 高压输变电设备的绝缘配合 GB 50061 66kV 及以下架空电力线路设计规 GB 14049 额定电压10kV、35kV 架空绝缘电缆

1、求下列各平面的坐标式参数方程和一般方程(精)

1、求下列各平面的坐标式参数方程和一般方程 (1)通过点)1,1,3(1M 和)0,1,1(2-M 且平行于矢量}2,0,1{-的平面; (3)已知四点A (5,1,3),B (1,6,2),C (5,0,4),D (4,0,6),求通过直线AB 且平行直线CD 的平面,并求通过直线AB 且与△ABC 所在平面垂直的平面 2、求下列平面的一般方程 (1)过点M (3,2,-4)且在X 轴和Y 轴上截距分另为-2和-3的平面 (2)已知两点M 1(3,-1,2),M 2(4,-2,-1),通过M 1且垂直于M 1M 2的平面 (3)过点M 1(3,-5,1)和M 2(4,1,2)且垂直于平面x-8y+3z-1=0的平面 3、将下列平面的一般方程化为法式方程 (1)x-2y+5z-3=0 (2) x+2=0 4、求自坐标原点向平面2x+3y+6z-35=0所引垂线的长和批向平面的单位法矢量的方向余弦 5、已知三角形顶点为A(0,-7,0),B(2,-1,1),C(2,2,2),求平面于△ABC 所在的平面且与它相距为 2个单位的平面方程 6、求在X 轴上且到平面12x-16y+15z+1=0和2x+2y-z-1=0距离相等的点 7、已知四面体的四个顶点为S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),计算从顶点S 向底面ABC 所引的高 8、求中心在C3,-5,-2)且与平面2x-y-3z+11=0相切的球面方程。 9、求与9x-y+2z-14=0和9x-y+2z+6=0平面距离相等的点的轨迹 10、判别点M(2,-1,1)和N(1,2,-3)在由下列相交平面所构成的同一个二面角内,还是分别在 相邻二面角内,或是在对顶的二面角内? (1)0323:1=-+-z y x π与042:2=+--z y x π (2)0152:1=-+-z y x π与01623:2=-+-z y x π 11、分别在下列条件下确定l,m,n 的值使lx+y-3z+1=0与7x-2y-z=0表示二平行平面 12、求下列两平行平面19x-4y+8z+21=0和19x-4y+8z+42=0间的距离 13、求两平面2x-3y+6z-12=0和x+2y+2z-7=0所成的角 14、求过Z 轴且与平面0752=--+z y x 成 60角的平面 15、 求下列各直线的方程 (1)通过点),,(0000z y x M 且平行于两相交平面0:1=+++i i i i D z C y B x A π)2,1(=i 的 直线 (2)通过点M (1,0,-2)且与两直线 11111-+==-z y x 和0 1111+=--=z y x 垂直的直线 16、求下列各平面的方程: (1) (1) 通过点P (2,0,1),且又通过直线 3 2121-=-=+z y x 的平面 (2) (2) 通过直线113312-+=-+=-z y x 且与直线???=--+=-+-052032z y x z y x 平行的平面 (3) (3) 通过直线 2 23221-=-+=-z y x 且与平面3x+2y-z-5=0垂直的平面 (4) (4) 通过直线???=-+-=+-+014209385z y x z y x 向三坐标面引的三个射影平面 17、化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦 (1)???=---=+-+0 323012z y x z y x

汽车零件参数化标准模板

汽车车身零件参数化标准模板1、车身零件建模统一参数化模板:SJTC_model

2、模板结构树说明: 2.1 PartBody:用“Final Part”中零件片体增厚,厚度为零件设计料厚,只允许存在一个片体增厚的结果。 2.2 external geometry:外部提取的参考面及重要特征,与其它零件无关联。 2.3 Final Part:零件片体设计的最后结果,通过命令“invert orientation”生成,作为“PartBody”的父级。 2.4 part difinition:零件片体参数化设计过程。 2.4.1 Eng_Tool_Direction:零件片体增厚方向标识。其中“DIE_PLANE”为零件基准平面;“Original_DIE_Point”为零件基准点;“DIE_DIR”为零件料厚线,线长为零件料厚的100倍,线型为实线,线型3:0.7mm,颜色为黄色。例:零件料厚d=1.2mm,则料厚线长L=120mm。 2.4.2 Main part:零件参数化过程。 2.4.2.1 working part:零件参数化设计中的重要过程。分别将“basic surface”、“depressions”、“flanges”、“trim”、“holes”中的结果通过命令“invert orientation”生成到“working part”中。“depressions”必须引用“working part”中的结果,不得在“basic surface”中引用。“flanges”、“trim”、“holes”的引用原则同上。 2.4.2.2 basic surface:零件基础面设计。 2.4.2.3 depressions:零件独立特征设计。

地铁线路平面曲线设计相关参数的确定

收稿日期:20030317 作者简介:欧阳全裕(1938)),男,高级工程师,1963年毕业于长沙铁道学院铁道建筑专业。 地铁线路平面曲线设计相关参数的确定 欧阳全裕 (铁道第三勘察设计院 天津 300051) 摘 要 针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词 地铁 线路 曲线 设计 参数 确定 地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数,各参数相互关联制约。1993年发布的现行5地下铁道设计规范6(GB5015792)(以下简称5设规6)中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用,因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。1 曲线半径选择 曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁5设规6规定:/最小曲线半径一般情况300m,困难情况250m 。0在实际设计中,对250m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300m 。例如,天津地铁1号线南段,因受津萍大厦桩基(地下线)和城市干道交叉口及地铁设站位置(高架线)控制,经多次研究比选,设计了3处300m 半径曲线,最终经市建委审批确定。2 曲线超高与限速计算 列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。 列车在曲线上运行时产生惯性离心力使乘客有不适感。因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。 从理论上分析,车体重力P 产生的离心力为: J =Pv 2/gR (1) 由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1)为 F n =P h/s (2)当F n =J 时,可得 h =Sv 2 /gR =11.8V 2 /R (3) 式中 g )))重力加速度,9.8m/s 2; r )))曲线半径,m ; s )))内外轨头中心距离,取1500mm ;v 、V ))) 行车速度,v 单位为m/s ,V 单位为 km/h ; h )))所需外轨超高度,mm 。 图1 超高与向心力关系图 由式(3)可见,当曲线半径一定时,速度越高,要求设置的超高就越大。为保证行车安全,又必须限制超高的最大值h max ,因此,当速度要求的超高超过h max 时,即产生了欠超高h q 和未被平衡的离心力而影响乘客舒适度,因而对欠超高值也必须有所限制。我国客货混运铁路规定,一般情况下,曲线最大超高150mm ,允许欠超高75mm ,曲线限速为4.32R 。地铁5设规6规定了曲线最大超高值120mm ,而对欠超高值未作条文规定,但从乘客舒适要求角度,根据国内外试验资料,规定/允许有不超过0.4m/s 2 的未被平衡横向加速度0,据此可推算出地铁线路允许的最大欠超高值。 对某一实设曲线而言,超高h 是定值。当列车以v max 通过时,将产生最大的欠超高h qma x 为 #线路/路基#

耳机设计的一些基本参数要求及规范

耳机设计的一些基本参数要求及测试规范 一、耳机设计几个关键的尺寸:这几个关键尺寸的数据会关系到耳机佩戴的舒适 性。 1、耳机头带的宽度尺寸:这个尺寸关系到头戴式耳机佩戴的贴耳性与头带 夹持力,根据耳机类型的不同,具体的尺寸要求也有所不同:一般的小 型的耳机(包括后带式耳机)该尺寸的要求:105~115mm,中型耳机: 115~130mm,大型耳机:140~150mm,尺寸的取数范围是头带两边与滑 动臂连接的位置,此位置也是头带的最宽处; 2、耳机的头带高度尺寸:这个尺寸关系到耳机能适用不同大小头型的人的 佩戴,尺寸范围是指耳机头带最顶部内侧到SP垫中心点的垂直距离, 该尺寸要求也是根据不同类型的耳机有不同的具体要求:一般的小型耳 机(包括后戴式耳机):105~115mm,中型耳机:125~130mm,大型耳 机:130~135mm; 3、耳壳之间的夹角尺寸:此尺寸会影响到耳机佩戴的舒适性和夹持力以及 耳套的贴耳性,并会影响耳机的音质效果,这个尺寸是指两个SP垫之 前形成的角度尺寸,一般头戴式耳机的夹角尺寸:50~60度,后戴式耳 机尺寸; 4、滑动臂的抽拉尺寸:为了适应不同的人头高度,除了要求头带的高度还 需要通过滑动的的拉伸来调节,以保障不同人佩戴的舒适度,一般滑动 臂的抽拉尺寸:25~35mm 5、耳壳转动角度:有些耳机的外形决定了耳壳会有一定的转动角度,用来 调节耳套的贴耳性,防止漏音。一般调节角度:5~7度。

6、咪杆转动角度:带咪耳机分为,固定咪、转动咪和隐藏式咪,转动咪的 转动角度一般选择:120~125度。 二、耳机设计需要注意的一些细节 1、滑动臂拉伸部分设计是应该要做成两个同心内切圆,以保证滑动臂抽拉的顺畅; 2、为了保证耳套固定的可靠性,要求SP垫的螺丝柱到边缘的距离不少于10mm;(这里指的是锁好SP垫以后再套耳套的情况) 3、SP垫的设计一定要充分保证喇叭声音能够出来,喇叭固定圈的台阶高度0.8~1.5mm。

平面设计参数 印刷参数大全

常用标准尺寸 ?办公用纸标准尺寸单位:mm A1026×37B1031×44 ●A组纸张尺寸的长宽比都是,然后舍去到最接近的毫米值。 A0定义成面积为1平方米,长宽比为的纸张。接下来的A1、A2、A3……等纸张尺寸,都是定义成将编号少一号的纸张沿著长边对折,然后舍去到最接近的毫米值。 最常用到的纸张尺寸是A4,后来为了能在打印出全副A3大小的图像,又定义了A3+和SRA3大小,就是人们通常说的“出血”纸,A3+的大小是457mmx305mm,SRA3的大小是450mmx320mm。 ●B组纸张尺寸是编号相同与编号少一号的A组纸张的几何平均。举例来说,B1是A1和A0 的几何平均。 ●C组纸张尺寸是编号相同的A、B组纸张的几何平均。举例来说,C2是B2和A2的几何平均。 ●C组纸张尺寸主要使用于信封。一张A4大小的纸张可以刚好放进一个C4大小的信封。 如果你把A4纸张对折变成A5纸张,那它就可以刚好放进C5大小的信封,同理类推。 ?常见证件照对应尺寸 1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm 港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm 车照60mm×91mm ?印刷标准尺寸 1、海报尺寸+招贴画尺寸 A3海报尺寸:成品尺寸420*285mm四开海报尺寸:成品尺寸420*580mm 对开海报尺寸:成品尺寸860*580mm 2、手提袋常规尺寸 大2开手提袋尺寸:330mm(宽)*450mm(高)*90mm(侧面) 正2开手提袋尺寸:280mm(宽)*420mm(高)*80mm(侧面) 大3开手提袋尺寸:250mm(宽)*350mm(高)*80mm(侧面) 正3开手提袋尺寸:240mm(宽)*290mm(高)*80mm(侧面) 3、宣传册尺寸 宣传册最通用尺寸:16K,210mmx285mm

数模-零件的参数设计

零件的参数设计 摘要: 本题目对零件的参数这一问题,综合考虑重新设计零件的参数(包括标定值和容差),并与原设计进行比较,得出最优化的数学模型,并对模型进行求解,最后用计算机模拟对模型的最优解进行检验。由题意知粒子分离器的参数y 由零件参数1234567,,,,,,x x x x x x x 的参数决定,参数i x 的容差等级决定了产品的成本,y 偏离0y 的值决定了产品的损失,问题就是寻找零件的最优标定值和最优等级搭配,使得批量生产时的总费用最少。 一、 问题的重述: 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括 标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。 进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为: 7616 .1242 3 56 .02485.01235136.0162.2142.174x x x x x x x x x x x Y ??? ? ????? ? ????? ??? ??--???? ? ??-????? ???=- y 的目标值(记作0y )为1.50。当y 偏离0y ±0.1时,产品为次品,质量损失为1,000元;当y 偏离0y ±0.3时,产品为废品,损失为9,000元。 零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为±1%,B等为±5%,C等为±10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

方正书版参数详解

1.尺寸和行距的参数可以用整数或小数;而字距的参数只能用整数。 2.画横线时用字数来指定长度,画竖线时用行数来指定长度。 第一章行调整 (HS) 行数注解一般用语多行内容的标题或多级标题。例如[HS (7)《行数内容》[HS]]是指行数内容占7行的空间,不过标题自动修饰的很好。(使用开闭弧) (KH) 空行注解(不加参数D、X)只用于调整本行与下行的距离,下一行开头自动空两格,可以看作与行距注解的用法差不多。而加了参数的空行注解,则无论加的是D还是X,下一行开头都顶格排文字。(不使用开闭弧) (HJ) 行距注解加的数字参数可以改变当前所有页面的行距,它作用到下一个行距注解为止。注意需要恢复版心。(不使用开闭弧)(HK) 行宽注解(参数为字距)将当前行宽改为指定宽度,并将指定了行宽的内容排在当前版心的中间。注意需要HK恢复版心(不使用开闭弧) (GK) 改宽注解(参数为—字距!—字距)其中“—”为减号,它表示扩大行宽,缺省则为紧缩行宽。“!”为左右缩扩分解线。最后必须用HJ恢复版心。(不使用开闭弧) (HZ) 行中注解一般将开闭弧中的多行内容作为一个整体,好象装在一个盒子当中,令这个整体的中线与原所在行的中线一致(但需要注意这些多行内容必须用“换行符号”或“换段符号”换行)。另外它一般与对齐注解(或撑满注解)一同使用。(使用开闭弧)(DQ) 对齐注解(参数为字距)用于在给定参数的范围内,所要求的内容左右对齐。eg:[DQ(13<对齐的内容>[DQ](使用开闭弧)(JX)基线注解一般用于将内容上移(加符号“—”)或下移(不加符号)多少行,可为整数或小数。对需要移动字数也有规定,位置处于上下方向的后面,形式为“。<字数>”,若不使用字数参数则表示从当前位置起到这一行结束。(不使用开闭弧) 第二章文字修饰注解

四参数及七参数的简介及测量中的应用

关于四参数和七参数的认识 一、参数的概念: 1、不同的二维平面直角坐标系之间转换时,通常使用四个参数。 (1)两个坐标平移量(△X,△Y),即两个平面坐标系的坐标原点之间的坐标差值; (2)平面坐标轴的旋转角度A,通过旋转一个角度,可以使两个坐标系的X和Y轴重合在一起。 (3)尺度因子K,即两个坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常K值几乎等于1. 通常至少需要两个公共已知点,在两个不同平面直角坐标系中的四对XY坐标值,才能推算出这四个未知参数,计算出了这四个参数,就可以通过四参数方程组,将一个平面直角坐标系下一个点的XY坐标值转换为另一个平面直角坐标系下的XY坐标值。 2、两个不同的三维空间直角坐标系之间转换时,,在该模型中有七个未知参数。 (1)三个坐标平移量(△X,△Y,△Z),即两个空间坐标系的坐标原点之间坐标差值; (2)三个坐标轴的旋转角度(△α,△β,△γ)),通过按顺序旋转三个坐标轴指定角度,可以使两个空间直角坐标系的XYZ轴重合在一起。

(3)尺度因子K,即两个空间坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常K值几乎等于1. 通常至少需要三个公共已知点,在两个不同空间直角坐标系中的六对XYZ坐标值,才能推算出这七个未知参数,计算出了这七个参数,就可以通过七参数方程组,将一个空间直角坐标系下一个点的XYZ坐标值转换为另一个空间直角坐标系下的XYZ坐标值。 二、参数的实际使用。 1.四参数是指相同点在不同平面坐标系中坐标的转换的参数。在测绘工程中,高斯投影平面直角坐标系就是平面直角坐标系,而在一个平面直角坐标系下由于工程建设的需要而建立的建筑坐标系,这就涉及到从测量坐标系到建筑坐标系的转化。在数字化测图中,坐标转化也有许多的应用,比如; 一、测站改正(一个测站上架设一起算观测的坐标数据因为测站点及后视点设置问题,比如测站点设置错误,或者后视点错误导致整个测站数据的错误)可用四参数转换,将坐标数据转换成正确的数据 二、自由设站法中的运用。当使用全站仪进行数字化测图时,由于通视条件的限制,可采用只自由设站法:根据所测地形任一点架设仪器,后视坐标由所测距离假设方位角计算得出。在此测站上测两个或以上的以往测量的点的坐标,作为坐标转换点。根据这些公共点的坐标即可计算自由测站数据与正确数据之间的转换四参数。 2.目前我们外业测量采用RTK仪器比较居多,而RTK获取的

数学建模竞赛-零件参数设计

零件参数设计 例8.5 (零件参数设计) 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3 倍。 粒子分离器某参数(记作y )由7个零件的参数(记作7 2 1 ,,,x x x ?)决定, 经验公式为 7 616 .1242 356 .024 85.012 35136.0162.2142.174x x x x x x x x x x x y ??? ? ????? ???????? ? ??--????? ??-???? ??=- 当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大。y 的目标值(记作0 y )为1.50.当 y 偏离1.00 ±y 时, 产品为次品, 质量损失为1000(元); 当y 偏离3 .00 ±y 时,产品为废品,损失为9000(元). 问题是要求对于给定的零件参数标定值和容差,计算产品的损失,从而在此基础上进行零件参数最优化设计。 表8.2给定引例中某设计方案7个零件参数标定值及容差。 容差分为A ﹑B ﹑C 三个等级, 用与标定值的相对值表示, A 等为%1±, B 等为%5±, C 等为%15±。求每件产品的平均损失。

表8.2 零件参数标定值及容差 解:在这个问题中,主要的困难是产品的参数值y是一个随机变 量,而由于y与各零件参数间是一个复杂的函数关系,无法解析的得到y的概率分布。我们采用随机模拟的方法计算。这一方法的思路其实很简单:用计算机模拟工厂生产大量"产品"(如10000件),计算产品的总损失,从而得到每件产品的平均损失。可以假设7个零件参数服从正态分布。根据表8.2及标定值和容差的定义,x1~N(0.1, (0.005/3)2), x 2~N(0.3,0.0052), x 3~N(0.1, (0.005/3)2), x4~N(0.1,0.0052), x5~N(1.5,(0.225/3)2), x6~N(16,(0.8/3)2), x ~N(0.75,(0.0375/3)2), 下面的M脚本eg8_5.m产生1000对零件参数7 随机数,通过随机模拟法求得近似解约f=2900元。 %M文件eg8_5.m clear;mu=[.1 .3 .1 .1 1.5 16 .75]; sigma=[.005/3,.005,.005/3,.005,.225/3,.8/3,.0375/3]; for i=1:7 x(:,i)=normrnd(mu(i),sigma(i),1000,1);

焊接参数规范

焊接参数规范 不同的板厚,应采用不同的焊接线能量进行焊接(焊接线能量过大会使焊缝热影响区软化以及接头冲击韧性降低,线能量过小又易导致产生冷裂纹)。输入线能量计算: Q=0.85×U×I×60/1000V 其中Q=输入线能量(KJ/mm),U=电压(V),I=电流(A),V=焊接速度(m/min)。 所示。 焊接电流和焊接电压相匹配焊丝直径为0.8~1.2mm时,焊接电流与焊接电压的关系如图3 Q235和含碳量偏下限的Q345(16Mn)钢的过热敏感性不大,淬硬倾向亦较小,故焊接热输入一般不予限制,而含碳量偏高的Q345(16Mn)钢其淬硬倾向增加。为防止冷裂纹,焊接时,宜选用偏大一些的焊接热输入。由于Q235焊接性能良好,本规范对于Q235和Q345采用相同的焊接参数规范。 3.5. 4.1.1采用混合气体保护焊接角焊缝所推荐的工艺参数见表7(考虑到电缆电压损失和电流电压表不准的影响,电弧电压可根据焊缝成形和飞溅情况作微调)。 表7 角焊推荐工艺参数

3.5. 4.1.2对接焊一般应开坡口,采用Ф1.2mm焊丝、混合气体保护焊所推荐的工艺参数见表8(考虑到电缆电压损失和电流电压表不准的影响,电弧电压可根据焊缝成形和飞溅情况作微调)。 表8 不同板厚的对接焊推荐工艺 表9 对接焊推荐工艺参数 3.6焊接典型接头焊接 3.6.1Q235钢及Q345钢典型接头推荐规范: 对接焊:对接焊坡口如图5所示,每层不超过4mm,δ≤8的开V型坡口,焊接参数规范参见表10,

表10 6mm板开V型坡口对接焊规范 表11 12mm板开X型坡口对接焊规范 对接焊,δ>10 表12 12mm板开K型坡口对接焊规范 焊角>8时,盖面层需多道焊,后道焊缝必须覆盖前道焊缝一半以上,具体层数根据焊角高决定。轴套与腹板的角焊缝成形应平缓过渡。

分享RTK测量中平面转换参数问题的一些探讨

RTK 测量中平面转换参数问题的一些探讨 程 锋 (诸暨市勘测设计研究院, 诸暨 311800) 摘 要:本文探讨了RTK 测量中平面转换参数的求解方法和产生原因,简单分析了诸暨市RTK 测量系统平面转换参数的变化规律。 关键词:RTK ;转换参数;平面加高程转换模型 1 引言测绘信息网https://www.wendangku.net/doc/0b15164684.html, RTK (Real Time Kinematic )测量系统地面部分通常包括基准站和流动站。基准站接收GPS 卫星发射的数据,并将接收到的数据发送给流动站;流动站接收GPS 卫星和基准站发射的数据,将两者进行差分处理,求解出基准站和流动站在WGS-84参考椭球体下的相对位置关系,然后通过WGS-84坐标系和地方坐标系之间的转换参数,将WGS-84坐标系下的成果转换到地方坐标系中。因而,获得WGS-84坐标系和地方坐标系之间的转换参数是RTK 测量中的必要条件之一。WGS-84坐标系与地方坐标系(1980国家坐标系、1954北京坐标系或各地独立的地方坐标系)之间的转换可分为三维转换和平面加高程转换两种模式。 三维转换模式是在空间直角坐标系下进行的,大多采用bursa-wolf 模型,可分为七参数以及简化的三参数方法,七参数转换模型比较严密,适合于大区域,简化的三参数方法适合于小区域。平面加高程转换模式是将平面转换和高程转换分别进行,这种方式易于实现,也适合于小区域。平面加高程转换模式中平面转换参数通常包括平移参数(0x ?,0y ?)、尺度参数m 和旋转参数ω。由于WGS-84坐标系数据可以用空间直角坐标、大地坐标、平面直角坐标等形式表示,对于不同表示形式的起算数据,尺度参数和旋转参数代表的含义会有所不同。下面结合实际工作中的经验,仅就平面加高程转换模式中平面转换参数问题作一些粗浅的探讨。测绘信息网https://www.wendangku.net/doc/0b15164684.html, 2平面加高程转换模式基本流程 平面加高程转换模式中平面转换参数的求解流程一般表述如下: (1)WGS-84系下的空间直角坐标(XYZ )84转换为大地坐标(BLH)84 ; (2)WGS-84的大地坐标(BLH)84采用高斯投影转换为平面直角坐标(xyH)84; (3)WGS-84的平面直角坐标(xyH)84采用平面坐标转换公式一转换为地方坐标系下的(xyH)L 。 G G L y x y x m y x y x ??? ?????????'-'+??????'+?? ?? ????=??????11 00ωω (1式)

设备规范及主要参数

设备规范及主要参数 4.1设备规范 设备名称:工业蒸汽供汽联箱 型式:卧式 设计参数: 1.5Mpa,400℃ 安装位置:厂区0m,露天 数量:1台 4.2主要技术数据 几何容积:?610mm,长约5.2米 接口数量及型式:7个法兰接口,配供反法兰,配两只安全阀 介质:蒸汽 工作压力: 1.5Mpa 设计温度:400℃ 材质:Q345R 备注:工业蒸汽供汽联箱要配供1套固定支架、1套滑动支架和1套疏水装置,自动疏水阀采用电动真空阀,接口型式和位置以设计院要求为准。设备必须采用球形封头,不得采用平板封头。 工业蒸汽供汽联箱接口尺寸及设备外形如下图:

疏水装置型式如下图:

4.3技术要求 4.3.1 投标方所提供的产品均应为通过试验的定型产品,并符合国家有关技术条件的规定。 4.3.2 设备的制造和加工应符合国家相关标准及行业标准,严格按压力容器有关标准生产、制造。 4.3.3 设备所使用材料的化学成分、机械性能及噪音、振动均应符合有关国家标准或部颁标准的规定。 4.3.4工业蒸汽供汽联箱应配装两只安全阀、自动疏水阀、手动疏水阀和放水阀并进行压力试验4.3.5 设备的出厂试验应按国家标准技术条件中规定的比例进行出厂试验,试验方法应符合有关规定。 4.3.6 设备外涂漆应符合压力容器涂漆技术条件的要求。 4.3.7 设备应采用球形(椭球形)封头,不得采用平板封头。 4.3.8 设备所供阀门和设备接口均应配供反法兰和相关连接附件. 4.3.9 设备一个支架为固定支架,另一个支架为滑动支架。 4.3.10投标方应保证所供设备及其附件的使用寿命为30年。 4.3.11 设备外形接口及支架形式安排生产前,应由设计院确认方可投料生产,但并不因此减少投标方对设备设计和制造质量的责任。 4.3.12 管道接口位置与设计院配合,按设计院的要求进行设置。 4.4仪表和控制要求(I&C) 4.4.1投标方提供工业蒸汽供汽联箱上的仪表及其连接件。提供就地压力表和温度计,并提供1个热电阻温度管座和压力变送器接口,热电阻和压力变送器由招标方另行采购。 4.4.2 就地压力表接口为25mm,表盘尺寸为Φ150。压力表配仪表管和一次门及附件。 4.4.3就地温度计应采用可抽芯的双金属温度计(万向型),表盘尺寸Φ150。温度计必须带套管。留有M27x2内螺纹热电阻温度管座,管座高度为70mm。 5.质量保证及考核试验 5.1 质量保证 5.1.1 投标方应满足本技术规范书所提出的技术要求。 5.1.2 投标方应向招标方保证所提供的设备是技术先进、成熟可靠且经国家鉴定合格的全新产品。并附有质量证明书,不得采用国家已公布的淘汰产品。在图纸设计和材料选择方面应准确无误,加工工艺无任何缺陷和差错。技术文件及图纸要清晰、正确、完整,能满足设备安装、启、停及正常运行和维护的要求。 5.1.3 投标方应具备有效方法,全面协调并负责其承包和委托分包出去的所有项目的质量和服务,均应符合本标书的要求。 5.1.5 招标方有权派代表到投标方制造工厂和分包及外购件工厂检查制造过程,检查按合同交付的货物质量,检验按合同交付的元件、组件及使用材料是否符合标准及其它合同上规定的要求,并

天然大理石板材相关技术参数规范要求

材料应满足的规范要求 除另有说明或得到设计单位同意外,地面铺装的物料和施工应符合本设计施工图要求及中华人民共和国有关国家标准及项目工程当地地方标准,主要依据包括: 1、规范 《建筑装饰装修工程质量验收规范》(GB50210—2001) 《建筑内部装修设计防火规范》(GB50222—95) 天然花岗石及石板地面的实施应满足GBJ300—88 其他相关规范和规定及济南市相关行业标准 2. 执行标准 a. GB 191-2000包装储运图示标志; b. GB 9966.1-2001 天然饰面石材试验方法干燥、水饱和、冻融循环后压缩强度 试验方法; c. GB 9966.2-2001 天然饰面石材试验方法弯曲强度试验方法; d. GB 9966.3-2001 天然饰面石材试验方法体积密度、真密度、真气孔率、吸水 率试验方法; e. GB 9966.5-2001 天然饰面石材试验方法镜面光泽度试验方法。 f. GB 6566-2001 建筑材料放射性核素限量 材料基本技术参数要求 天然大理石的质量通用要求 允许偏差值序号项目 优等品 1 长度0~-1.0 2 厚度(不含背胶)+0.5,-1.5

允许偏差值序号项目 优等品 3 平面度( 板材长度〉=800,〈1000 ) ≤0.7 4 角度(板材长度〉400)≤0.5 5 裂纹不允许 缺棱(长度不超过8㎜,宽度不超过3㎜,每米长 不允许6 允许个数(个)) 缺角(沿板材边长顺延方向,长度≤3㎜,宽度≤3 7 不允许㎜,每块板允许个数(个)) 色斑(面积不超过6㎝2每块板允许个数(个)) 不允许8 (面积不超过2㎝2不计) 9 砂眼(直径2㎜以下,每块板允许个数(个))不允许 10 镜面板材镜向光泽值≥85 11 体积密度(g/㎝3)≥2.6 12 吸水率(%)≤0. 5 13 干燥压缩强(Mpa)≥50 14 干燥(水饱和)弯曲强度(Mpa)≥7 15 耐磨度(1/㎝3)≥10 镭-226、钍-232、钾-40的放射性比活度内照 ≤1 16 射指数(IRA) 镭-226、钍-232、钾-40的放射性比活度内照 ≤1.3 17 射指数(Ir)

平面四参数转换

平面四参数转换 引言: 我们求出四参数到底有什么意义呢? 假如我们用C#写一个画图的程序,比如在picturebox中画一个某一边是尖头的矩形。我们知道,picturebox的坐标系的原点在它的左上角,X轴是向指向右边的,Y轴是指向下边的。而测量坐标系中,X是指向上边的(北),Y是指向右边的(东),原点在左下角,为了方便用户设计图形,我们就用测量的坐标系来设计。 在船体坐标系中,如下图3(新坐标系,用户定义的坐标系): 我们知道四参数后,就可以把测量坐标系的几个点转换成picturebox坐标,然后画出来。当然也可以改变picturebox控件的坐标,但是这样效率很低,也不容易理解,特别是图形旋转的话也很难弄。 原始坐标系是: Xo-Yo 经过尺度缩放,坐标系旋转,然后再平移,变成了Xt-Yt 坐标系。如《控制测量》上的图1:

图1中,我们要注意的是: 1. X的方向是向右的,Y是向上的。 2. 旋转角是以顺时针方向为正的 这两点非常重要。如果X是向上的,那么四参数将会不一样;而如果旋转角是逆时针方向为正的,四参数也不一样。X有可能是向左或者向下的甚至是向任意方向的,所以关键是我们一定要能画出图形,并且推导出公式。 如《控制测量》书上的推导图就很典型可以做为参考,如图2:

这个图的优点就在于,它的源坐标系旋转后就成为水平和垂直的轴线,非常便于平移理解。 需要注意的是,图2中,源坐标系X向任意方向,Y轴的正方向和X轴的正方向逆时针旋转90度的方向一致,定义旋转角顺时针方向为正时。其实应该有4种情况,图上是下面提到的情况C。 假如源坐标系的X是向上的(其实X轴向哪个方向都没有关系,只要Y轴的正方向和X轴的正方向顺时针旋转90度的方向一致),Y是向右的,定义的旋转角逆时针旋转是正的,平面转换四参数的计算公式如下(公式1): 其中为新坐标,为两个平移参数,(1+m)为尺度,为旋转角,为原坐标。这就是下面提到的情况A。公式1也可以用在情况C。 令 , 则四参数公式可以写成:

相关文档