文档库 最新最全的文档下载
当前位置:文档库 › 7-5方向导数与梯度微积分,高等数学,北理工教材(极力推荐)

7-5方向导数与梯度微积分,高等数学,北理工教材(极力推荐)

7-5方向导数与梯度微积分,高等数学,北理工教材(极力推荐)
7-5方向导数与梯度微积分,高等数学,北理工教材(极力推荐)

方向导数和梯度

§ 3 方向导数和梯度 附录:数量场,向量场 数量场:设D 是n R 中的一个区域,f 是定义在D 内的一个实值函数,即R D f →:。则称在D 内有一个数量场f ,或称f 是D 内的数量场。 例如:教室中每一点的温度、位置等;点电荷形成的电位切; 磁铁周围磁力的大小. 等值面:设f 是D 内的一个数量场,称})({C x f D x s =∈= (C 是常数)是数量场f 的等值面,即在S 内每一点x 处,f 所对应的数值是相同的,都等于C. 特别当D 是2R 中的区域时,称S 等值线. 例如:天气预报中的等温面,等压面;地势图上的等高线(海拔相同). 向量场 一、 方向导数 1. 方向导数的定义 三元函数f 在点),,(0000z y x P 的三个偏导数,分别是函数f 在点),,(0000z y x P 沿着平行于坐标轴的直线方向(双向)上的变化率. 函数f 在点0P 沿射线l (单向)方向的变化率,即f 在点0P 沿方向l 的方向导数. 定义1(P124)设三元函数f 在点),,(0000z y x P 的某邻域)(0P ?3R 内有定义 , l 为从点0P 出 发的射线 . ),,(z y x P 为l 上且含于)(0P 内的任一点 , 以ρ表示P 与0P 两点间的距离 . 若极限 ρρρρf P f P f l ?=-++→→000lim )()(lim 存在 , 则称此极限为函数f 在点0P 沿方向l 的方向导数 , 记为0P l f ?? 或)(0P f l 、),,(000z y x f l . 定义1' 设D 是3R 中的一个区域,f 是D 内的一个数量场,D P ∈0,l 是3R 中的一个单位向量,即,1=l 如果t P f tl P f t )()(lim 000-++ →,存在,则称此极限是数量场f 在点0P 沿方向l 的方向导数,记为)(0P l f ??,即t P f tl P f P l f t )()(lim )(0000-+=??+→。也称它是函数f 在点0P 沿方向l 的方向导数,它表示数量场f 在点0P 沿方向l 的变化率。 易见,x f ??、y f ?? 和 z f ??是三元函数f 在点0P 分别沿X 轴正向、Y 轴正向和Z 轴正向的方向导数. 对二元函数),(y x f z =在点),(000y x P , 可仿此定义方向导数 . 根据定义计算方向导数 例1 (P125,有补充)),,(z y x f =32z y x ++. 求f 在点0P ) 1 , 1 , 1 (处沿l 方向的方向导数,

高等数学常用导数和积分公式

高等数学常用导数和积分公式 导数公式:基本积分表:三角函数的有理式积分: (一)含有的积分() 1.= 2.=() 3.= 4.= 5.= 6.= 7.= 8.= 9.= (二)含有的积分10.=11.=12.=13.=14.=15.=16.=17.=18.= (三)含有的积分19.=20.=21.= (四)含有的积分22.=23.=24.=25.=26.=27.=28.= (五)含有的积分29.=30.= (六)含有的积分31.==32.=33.=34.=35.=36.=37.=38.=39.=40.=41.=42.=43.=44.= (七)含有的积分45.==46.=47.=48.=49.=50.=51.=52.=53.=54.=55.=56.=57.=58.=

(八)含有的积分59.=60.=61.=62.=63.=64.=65.=66.=67.=68.=69.=70.=71.=72.=(九)含有的积分73.=74.=75.=76.=77.=78.=()含有或的积分79.=80.=81.=82.=(一)含有三角函数的积分83.=84.=85.=86.=87.==88.==89.=90.=91.=92.=93.=94.=95.=96.=97.=98.=99.==100.=101.=102.=103.=104.=105.=106.=107.=108.=109.=110.=111.=112.=(二)含有反三角函数的积分(其中)113.=114.=115.=116.=117.=118.=119.=120.=121. =(三)含有指数函数的积分122.=123.=124.=125.=126.=127.=128.=129.=130.=131.=(四)含有对数函数的积分132.=133.=134.=135.=136.=(五)含有双曲函数的积分137.=138.=139.=140.=141.=(六)定积分142.==0143.=0144.=145.=146.==147. ===(为大于1的正奇 数),=1 (为正偶数),=

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

14方向导数与梯度

方向导数与梯度第六节 经常需要研究函数在某点沿某一固定方向的变化率问在实际问题中,z?),xyz?f(实际上就是点的偏导数题,例如我们所学习的函数x?x)x,yP(沿轴方向变化时函数的变化率,由此引入方向导数的概念。一、方向导数PQ方向的变不难看出函数沿我们以二元函数为例介绍方向导数。化率可以用如下极限表示)f(Pf(Q)?lim||PQ0|PQ|?l)f(x,yz?)(x,yP)UP(内有定义,设函数在点的某邻域为一000e),bai?bj?(ae?LP相引射线,方向与,自点向量,其单位向量为exOy),yP(xL为方向向量的直线,由解同,由于面上通过点是且以00L析几何知射线的参数方程为tax??x?0??t?0?。 ?tb??yy?0ta?x?x?0)x,y(QL,则上任意取一点。在 ?y?y?tb?0Qetb)?,(?)?,xx?PQ(?yytaP两点间的距,所以到由于001 t?|?|t|?|PQ||t(a,b)离为 y L Q

P x O )y?f(x,z)P(x,ye的变化率我们可以用函数则函数在点处沿方向 00Q)(P(fQ)?ftP增量到点的比值与点的距离)fy(x,,f(x?tay?tb)?)(P)f(Q?f0000? tt?0?tQlP)时的极限来表示,该极限为函数当趋于点沿直线(即e)?zf(x,yP处沿方向的变化率,称为方向导数。在点l)(xy,?zf)x,Py(的某个邻域内有定义,设函数定义是在点00)b,(?ea 为,如果极限一非零向量,其单位向量l2 )y(x,(x?ta,y?tb)?ff0000lim t?0?t l)yz?f(x,),Py(x的方向导在点处沿方向存在,则称此极限为函数00f?|数,记作,即)x(,y 00l?),yy?tb)?f(xtaf(x?,f?0000|lim?。)yx,( t00?l?0t?f?),yz?f(x|就是函数由方向导数的定义可知,方向导数),y(x00l?l)Py(x,处沿方向在点的变化率。00f?),0?(1e?i|则在地特别,如果,存取,且l)x,y(x?00f?f??f),1j?(0e?|?||则存在取,。如果且,l)yx)(x,y,(),xy(x?x?000000l?f??f|?|。注意,反之未然。))y,(x,(xy y?0000l?方向导数的计算本质上仍然是一元函数导数的计算,因为若令 ?)?tb?ta,y?(t)f(x,则00??)xf(,y)y?f(xta,?tb?)?0(t()0000limlim?, tt??00t?t?3

最新导数微积分公式

导数微积分公式

导数、微分、积分公式总结 【导数】 (1)(u ± v)′=u′±v′ (2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前) ╭u╮′u′v- u v′ (4)│——│=———————( v ≠ 0 ) ╰v╯v2 【关于微分】 左边:d打头 右边:dx置后 再去掉导数符号′即可 【微分】 设函数u=u(x),v=v(x)皆可微,则有: (1)d(u ± v)= du ± dv (2)d(u v)= du·v + u·dv ╭u╮du·v - u·dv (3)d│——│=———————( v ≠ 0 ) ╰v╯v2 (5)复合函数(由外至里的“链式法则”) dy ——=f′(u)·φ′(x)

dx 其中y = f(u),u =φ′(x) (6)反函数的导数: 1 [ fˉ1(y)]′=————— f′(x) 其中,f′(x)≠ 0 【导数】 注:【】里面是次方的意思 (1)常数的导数: (c)′= 0 (2)x的α次幂: ╭【α】╮′【α - 1】 │x│=αx ╰╯ (3)指数类: ╭【x】╮′【x】 │a│=a lna(其中a > 0 ,a ≠ 1) ╰╯ ╭【x】╮′【x】 │e│=e ╰╯ (4)对数类:

╭╮′ 1 1 │logx│=——log e=———(其中a > 0 ,a ≠ 1) ╰a╯ x a xlna 1 (lnx)′=—— x (5)正弦余弦类: (sinx)′= cosx (cosx)′=-sinx 【微分】 注:【】里面是次方的意思 (1)常数的微分: dC = 0 (2)x的α次幂: 【α】【α - 1】 dx=αxdx (3)指数类: 【x】【x】 da=a lnadx(其中a > 0 ,a ≠ 1) 【x】【x】 de=e dx

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

(整理)第七节方向导数与梯度

第七节 方向导数与梯度 要求:了解方向导数与梯度的概念,会计算方向导数与梯度方法。 重点:方向导数与梯度的计算。 难点:梯度的几何意义,方向导数与梯度的联系。 作业:习题8-7(60P )2,4,6,8,10 一.方向导数 问题提出:在许多实际问题中,常常需要知道函数),(y x f z =在点(,)P x y 沿任意方向或某个方向的变化率.例如预报某地的风向和风力就必须知道气压在该处沿着哪个方向的变化率,在数学上就是多元函数在一点沿给定方向的方向导数问题. 1.方向导数定义 设函数),(y x f z =在点(,)P x y 的某一邻域内有定义,自P 点引有向直线L ,x 轴正向与直线L 夹角为?,在L 上任取一点'(,)P x x y y +?+?,若'P 沿着L 趋近于P 时,即当0)()(22→?+?= y x ρ时,极限 ρ ρ) ,(),(lim y x f y y x x f -?+?+→ 存在 则称此极限值为函数在点P 沿着L 方向的方向导数.记作 ρ ρ),(),(lim 0y x f y y x x f L f -?+?+=??→. 说明 (1)规定逆时针方向旋转生成的角是正角0>?,顺时针方向旋转生成的角是负角 0

(整理)第七节方向导数与梯度讲课稿

(整理)第七节方向导 数与梯度

第七节 方向导数与梯度 要求:了解方向导数与梯度的概念,会计算方向导数与梯度方法。 重点:方向导数与梯度的计算。 难点:梯度的几何意义,方向导数与梯度的联系。 作业:习题8-7(60P )2,4,6,8,10 一.方向导数 问题提出:在许多实际问题中,常常需要知道函数),(y x f z =在点(,)P x y 沿任意方向或某个方向的变化率.例如预报某地的风向和风力就必须知道气压在该处沿着哪个方向的变化率,在数学上就是多元函数在一点沿给定方向的方向导数问题. 1.方向导数定义 设函数),(y x f z =在点(,)P x y 的某一邻域内有定义,自P 点引有向直线L , x 轴正向与直线L 夹角为?,在L 上任取一点'(,)P x x y y +?+?,若'P 沿着L 趋 近于P 时,即当0)()(22→?+?=y x ρ时,极限 ρ ρ) ,(),(lim y x f y y x x f -?+?+→ 存在 则称此极限值为函数在点P 沿着L 方向的方向导数.记作 ρ ρ),(),(lim 0y x f y y x x f L f -?+?+=??→. 说明 (1)规定逆时针方向旋转生成的角是正角0>?,顺时针方向旋转生成的角是负角0

2.方向导数的计算 定理 若函数),(y x f z =在点(,)P x y 可微分,那么函数),(y x f z =在点 (,)P x y 沿任一方向L 的方向导数都存在,且有计算公式 ??sin cos y f x f L f ??+??=??{},cos ,sin ,f f f f e x y x y ??????????=?=????????????? r . 其中?为x 轴到方向L 的转角,e r 是与L 同方向的单位向量. 证明:因为函数),(y x f z =在点(,)P x y 可微分,所以有 ()f f f x y o x y ρ???= ?+?+??, 上式两边同除以ρ,得 ()() cos sin f f x f y o f f o x y x y ρρ??ρ ρρρρ ???????= ++=++????,则 0lim cos sin f f f f L x y ρ??ρ→????==+??? 例1.求函数y xe z 2=在点(1,0)P 处沿从点(1,0)P 到点)1,2(-Q 的方向的方向导数. 解 这里方向L 即向量{}1,1PQ =-u u u r 的方向,因此x 轴到L 方向的转角4π?=, 又因为y e x z 2=??,y xe y z 22=??,所以在点)0,1(处,1=??x z ,2=??y z , 于是方向导数为 2 2)4sin(2)4cos(1-=-+-?=??ππL z . 另一方法.

高等数学导数与微分练习题(完整资料).doc

【最新整理,下载后即可编辑】 作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin =; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1( +=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程?? ?-=-=) cos 1() sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二 阶导数22dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2 sin cos )sin (x x x x x x y -= '='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。 (4)解:][1 ])[ln(222 222'++++= '++='a x x a x x a x x y ])(21 1[1222 222'+++++=a x a x a x x

导数与微积分

第二章导数与微分 微分学是高等数学的重要组成部分,作为研究分析函数的工具和方法,其主要包含两个重要的基本概念导数与微分,其中导数反映了函数相对于自变量的变化的快慢程度,即变化率问题,而微分刻画了当自变量有微小变化时,函数变化的近似值。 一、教学目标与基本要求 (一)知识 1 ?记住导数和微分的各种术语和记号; 2?知道导函数与函数在一点的导数的区别和联系; 3?知道导数的几何意义,知道平面曲线的切线和法线的定义; 4?记住常数及基本初等函数的导数公式; 5?知道双曲函数与反双曲函数的导数公式; 6.知道高阶导数的定义; 7.知道隐函数的定义; &记住反函数的求导法则; 9?记住参数方程所确定的函数的一、二阶导数的求导公式; 10.知道对数求导法及其适用范围; 11知道相关变化率的定义及其简单应用; 12?记住基本初等函数的微分公式; 13?知道微分在近似计算及误差估计中的应用; 14?记住两函数乘积高阶导数的莱布尼兹公式。 (二)领会 1领会函数在一点的导数的三种等价定义和左、右导数的定义; 2?领会函数在某点的导数与曲线在对应点处的切线的斜率之间的关系; 3?领会导数的四则运算法则和复合函数的求导法则; 4?领会微分的定义以及导数与微分之间的区别和联系; 5?领会微分的运算法则及这些运算法则与相应的求导法则之间的联系; 6.领会微分形式的不变性; 7?领会函数在一点处可导、可微和连续之间的关系; 8?领会导数存在的充分必要条件是左、右导数存在且相等。 (三)运用 I.会用导数描述一些物理含义,如速度、加速度等; 2?会用导数的定义求一些极限,证明一些有关导数的命题,验证导数是否存在; 3.会用导数的几何意义求曲线在某点的切线方程和法线方程; 4.会用导数的定义或导数存在的充要条件讨论分段函数在分段点处的导数是否存在; 5.会用导数的四则运算法则及基本初等函数的求导公式求导数; 6.会求反函数的导数; 7.会求复合函数的导数; 8.会求隐函数的一阶、二阶导数; 9.会求参数方程所确定的函数的一阶、二阶导数; 10.会求函数的高阶导数; II.会用莱布尼兹公式求函数乘积的高阶导数; 12.会用对数求导法求幕指函数和具有复杂乘、除、乘方、开方运算的函数的导数。 13.会用微分定义和微分法则求微分; 14.会用一阶微分形式不变性求复合函数的微分和导数; 15.会用微分求函数的近似值。 (四)分析综合 1.综合运用基本初等函数的导数公式及各种导法则求初等函数的导数; 2.综合运用函数导数的定义,左、右导数与导数之间的关系以及可导与连续的关系等讨论函数的可导

导数-偏导数-方向导数-梯度及其关系

导数:()()()00' 00 0lim lim x x f x x f x y f x x x ? →?→+?-?==??,导数的意义为函数的变化率。由定义可知,导数是对应一元函数的。 偏 导 数 : ()()() 0000000 ,,,lim x x f x x y f x y f x y x ?→+?-=? ()()() 0000000 ,,,lim y y f x y y f x y f x y y ?→+?-=? 偏导数是对应于多元函数的。其意义是:偏 导数反应的是函数沿坐标轴方向的变化率。 方向导数:设l 为xOy 平面上以()000,P x y 为始发点的一条射线,()cos ,cos l αβ=e 是与l 同方向的单位向量。则该射线的参数方程为: 00cos cos x x t y y t αβ =+=+ ,那么,函数(,)f x y ,在 ()000,P x y 沿l 方向的方向导数为: () ()() 0000000 ,cos ,y cos ,lim t x y f x t t f x y f l t αβ+ →++-?=?。 从方向导数的定义可知,方向导数 () 00,x y f l ??就是函数(,)f x y 在点()000,P x y 沿方向l 的变 化率。方向导数也是对应于多元函数的。方向导数是一个标量值。 方向导数与偏导数的关系:如果函数(,)f x y 在点()000,P x y 可微分,那么函数在改点沿任意方向l 的方向导数存在,且有 () ()()000000,,cos ,cos x y x y f f x y f x y l αβ?=+? ,其中 ()cos ,cos l e αβ=为方向l 的方向余弦。 (若方向()1,0l =e 也就是x 轴方向,则() 0000,(,)x x y f f x y l ?=?,若方向()0,1l =e 也就是y 轴方向,则 () 0000,(,)y x y f f x y l ?=?) 梯度:设函数(,)f x y 在平面区域D 内有一阶连续偏导数,则对于每一个点()000,P x y D ∈都可以定出一个向量()()0000,,x y f x y f x y +i j ,这向量称为函数(,)f x y 在点()000,P x y 的梯度,即()()()000000 ,,,x y f x y f x y f x y =+grad i j 。

4.7—方向导数与梯度

第七节 方向导数与梯度 教学目的:(1) 理解方向导数和梯度的概念; (2) 掌握方向导数和梯度的计算方法。 教学重点:方向导数和梯度的计算 教学难点:方向导数和梯度的概念 教学方法:讲练结合 教学时数:2课时 一、问题的提出 实例:一块长方形的金属板,四个顶点的坐标是(1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火焰,它使金属板受热.假定板上任意一点处的温度与该点到原点的距离成反比.在(3,2)处有一个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到达较凉快的地点? 问题的实质:应沿由热变冷变化最骤烈的方向(即梯度方向)爬行. 二、方向导数 由偏导数的定义知,z x ??是),(y x f z =沿x 轴方向的变化率, z y ??是),(y x f z =沿y 轴 方向的变化率. 问题: 讨论函数),(y x f z =在一点0P 沿其他方向的变化率. 1、定义:设函数),(y x f z =在点0P 的某一邻域)(P U 内有定义,l 为非零向量,其方向 角为αβ和. 若极限 00000(cos ,cos )(,) lim f x y f x y ρραρβρ + →++-存在,则称 这极限为函数),(y x f z =在点0P 沿方向l 的方向导数。 记为 00000 (cos ,cos )(,) lim P f x y f x y f l ρραρβρ + →++-?=? 说明: (1). 方向导数的几何意义:方向导数 P f l ??就是函数),(y x f z =在点0P 沿方向l 的变化率. (2).依定义,函数),(y x f z =在点0P 处的偏导数存在时,则函数),(y x f 在点0P 沿着x 轴正向}0,1{1=e 、y 轴正向}1,0{2=e 的方向导数分别为y x f f ,;沿着x 轴负向、y 轴负向 o y x l (,) P x y ?? 000(,) P x y l e

(完整版)高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ) . (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=2 3 )(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3 ≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为 6 1 ,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

相关文档
相关文档 最新文档