文档库 最新最全的文档下载
当前位置:文档库 › 并行计算的现状与发展

并行计算的现状与发展

并行计算的现状与发展
并行计算的现状与发展

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

并行计算 - 练习题

2014年《并行计算系统》复习题 1.(15分)给出五种并行计算机体系结构的名称,并分别画出其典型结构。 ①并行向量处理机(PVP) ②对称多机系统(SMP) ③大规模并行处理机(MPP) ④分布式共享存储器多机系统(DSM)

⑤工作站机群(COW) 2.(10分)给出五种典型的访存模型,并分别简要描述其特点。 ①均匀访存模型(UMA): 物理存储器被所有处理机均匀共享 所有处理机访存时间相同 适于通用的或分时的应用程序类型 ②非均匀访存模型(NUMA): 是所有处理机的本地存储器的集合 访问本地LM的访存时间较短

访问远程LM的访存时间较长 ③Cache一致性非均匀访存模型(CC-NUMA): DSM结构 ④全局Cache访存模型(COMA): 是NUMA的一种特例,是采用各处理机的Cache组成的全局地址空间 远程Cache的访问是由Cache目录支持的 ⑤非远程访存模型(NORMA): 在分布式存储器多机系统中,如果所有存储器都是专用的,而且只能被本地存储机访问,则这种访问模型称为NORAM 绝大多数的NUMA支持NORAM 在DSM中,NORAM的特性被隐匿的 3. (15分)对于如下的静态互连网络,给出其网络直径、节点的度数、对剖宽度,说明该网络是否是一个对称网络。 网络直径:8 节点的度数:2

对剖宽度:2 该网络是一个对称网络 4. (15分)设一个计算任务,在一个处理机上执行需10个小时完成,其中可并行化的部分为9个小时,不可并行化的部分为1个小时。问: (1)该程序的串行比例因子是多少,并行比例因子是多少? 串行比例因子:1/10 并行比例因子:9/10 (2)如果有10个处理机并行执行该程序,可达到的加速比是多少?10/(9/10 + 1) = 5.263 (3)如果有20个处理机并行执行该程序,可达到的加速比是多少?10/(9/20 + 1)= 6.897 5.(15分)什么是并行计算系统的可扩放性?可放性包括哪些方面?可扩放性研究的目的是什么? 一个计算机系统(硬件、软件、算法、程序等)被称为可扩放的,是指其性能随处理机数目的增加而按比例提高。例如,工作负载能力和加速比都可随处理机的数目的增加而增加。 可扩放性包括: 1.机器规模的可扩放性

高性能复习提纲答案

高性能计算(并行计算)复习提纲 第一章并行计算机系统及其结构模型 1.了解并行计算机系统互联网络及其分类 不同带宽与距离的互连技术: 总线、SAN、LAN、MAN、WAN 1,静态互联网络:是指处理单元之间有着固定连接的一类网络,在程序执行期间,这种点到点的连接不变。典型的静态网络有一维线性阵列、二维网孔、树连接、超立方网络、立方环、洗牌交换网、蝶形网络等。2,动态互联网络:是用开关单元构成的,可按应用程序的要求动态的改变连接组态。典型的动态网络包括总线、交叉开关和多级互连网络等,3,标准互联网络 2.并行计算机系统结构,参见图1.20(P23)五种结构,要求理解这几种结构的硬件组成及工作方式。 2,并行计算机系统结构: 行向量处理机pvp :硬件:向量处理机vp、共享存储器SM。工作方式:高带宽的交叉开关网络将vp连向共享存储模块,存储器可以以兆字节每秒的速度想处理器提供数据。通常使用向量寄存器和指令缓冲器。 对称多处理机SMP:硬件:商品微处理器(具有片上或外设高速缓存)、共享存储器、 I/O设备。工作方式:微处理器由总线或交叉开关连向共享存储器。每个处理器可同等的访问共享存储器、I/O设备和操作系统

服务。 MPP一般是指超大型计算机系统,它具有如下特性:①处理节点采用商品微处理器;②系统中有物理上的分布式存储器;③采用高通信带宽和低延迟的互连网络;④能扩放至成百上千乃至上万个处理器;⑤它是一种异步的MIMD机器,程序系由多个进程组成,每个都有其私有地址空间,进程间采用传递消息相互作用DSM分布式共享存储多处理机 高速缓存目录DIR用以支持分布高速缓存的一致性。DSM和SMP的主要差别是,DSM在物理上有分布在各节点中的局存从而形成了一个共享的存储器。对用户而言,系统硬件和软件提供了一个单地址的编程空间. COW工作站机群 机群往往是低成本的变形的MPP。COW的重要界线和特征是:①每个节点都是一个完整的工作站(不包括监视器、键盘、鼠标等),一个节点也可以是一台PC或SMP;②各节点通过一种低成本的商品(标准)网络互连(;③各节点内总是有本地磁盘④节点内的网络接口是松散耦合到I/O 总线上的,⑤一个完整的操作系统驻留在每个节点中,而MPP中通常只是个微核,COW 的操作系统是工作站UNIX,加上一个附加的软件层以支持单一系统映像、并行度、通信和负载平衡等。 3并行计算机的几种访问存储模型。 访问存储模型:

并行计算-练习题

2014年《并行计算系统》复习题 (15分)给出五种并行计算机体系结构的名称,并分别画出其典型结构。 ①并行向量处理机(PVP) ②对称多机系统(SMP) ③大规模并行处理机(MPP) ④分布式共享存储器多机系统(DSM) ⑤工作站机群(COW) (10分)给出五种典型的访存模型,并分别简要描述其特点。 ①均匀访存模型(UMA): 物理存储器被所有处理机均匀共享 所有处理机访存时间相同 适于通用的或分时的应用程序类型 ②非均匀访存模型(NUMA): 是所有处理机的本地存储器的集合 访问本地LM的访存时间较短 访问远程LM的访存时间较长 ③Cache一致性非均匀访存模型(CC-NUMA): DSM结构 ④全局Cache访存模型(COMA): 是NUMA的一种特例,是采用各处理机的Cache组成的全局地址空间 远程Cache的访问是由Cache目录支持的 ⑤非远程访存模型(NORMA): 在分布式存储器多机系统中,如果所有存储器都是专用的,而且只能被本地存储机访问,则这种访问模型称为NORAM 绝大多数的NUMA支持NORAM 在DSM中,NORAM的特性被隐匿的 3. (15分)对于如下的静态互连网络,给出其网络直径、节点的度数、对剖宽度,说明该网络是否是一个对称网络。 网络直径:8 节点的度数:2 对剖宽度:2 该网络是一个对称网络 4. (15分)设一个计算任务,在一个处理机上执行需10个小时完成,其中可并行化的部分为9个小时,不可并行化的部分为1个小时。问: (1)该程序的串行比例因子是多少,并行比例因子是多少? 串行比例因子:1/10

并行比例因子:9/10 如果有10个处理机并行执行该程序,可达到的加速比是多少? 10/(9/10 + 1) = 5.263 (3)如果有20个处理机并行执行该程序,可达到的加速比是多少? 10/(9/20 + 1)= 6.897 (15分)什么是并行计算系统的可扩放性?可放性包括哪些方面?可扩放性研究的目的是什么? 一个计算机系统(硬件、软件、算法、程序等)被称为可扩放的,是指其性能随处理机数目的增加而按比例提高。例如,工作负载能力和加速比都可随处理机的数目的增加而增加。可扩放性包括: 1.机器规模的可扩放性 系统性能是如何随着处理机数目的增加而改善的 2.问题规模的可扩放性 系统的性能是如何随着数据规模和负载规模的增加而改善 3.技术的可扩放性 系统的性能上如何随着技术的改变而改善 可扩放性研究的目的: 确定解决某类问题时何种并行算法与何种并行体系结构的组合,可以有效的利用大量的处理器; 对于运用于某种并行机上的某种算法,根据在小规模处理机的运行性能预测移植到大规模处理机上的运行性能; 对固定问题规模,确定最优处理机数和可获得的最大的加速比 (15分)给出五个基本的并行计算模型,并说明其各自的优缺点。 ①PRAM:SIMD-SM 优点: 适于表示和分析并行计算的复杂性; 隐匿了并行计算机的大部底层细节(如通信、同步),从而易于使用。 缺点: 不适于MIMD计算机,存在存储器竞争和通信延迟问题。 ②APRAM:MIMD-SM 优点: 保存了PRAM的简单性; 可编程性和可调试性(correctness)好; 易于进行程序复杂性分析。 缺点: 不适于具有分布式存储器的MIMD计算机。 ③BSP:MIMD-DM 优点: 把计算和通信分割开来; 使用hashing自动进行存储器和通信管理; 提供了一个编程环境。 缺点: 显式的同步机制限制并行计算机数据的增加; 在一个Superstep中最多只能传递h各报文。

并行计算-期末考试模拟题原题

Reviews on parallel programming并行计算英文班复习考试范围及题型:(1—10章) 1 基本概念解释;Translation (Chinese) 2 问答题。Questions and answer 3 算法的画图描述。Graphical description on algorithms 4 编程。Algorithms Reviews on parallel programming并行计算 1 基本概念解释;Translation (Chinese) SMP MPP Cluster of Workstation Parallelism, pipelining, Network topology, diameter of a network, Bisection width, data decomposition, task dependency graphs granularity concurrency process processor, linear array, mesh, hypercube, reduction,

prefix-sum, gather, scatter, thread s, mutual exclusion shared address space, synchronization, the degree of concurrency, Dual of a communication operation, 2 问答题。Questions and answer Chapter 1 第1章 1) Why we need parallel computing? 1)为什么我们需要并行计算? 答: 2) Please explain what are the main difference between parallel computing and sequential computing 2)解释并行计算与串行计算在算法设计中的主要不同点在那里? 答: Chapter 2 第2章 1) What are SIMD, SPMD and MIMD denote? 1)解释SIMD, SPMD 和 MIMD是什么含义。 答: 2) Please draw a typical architecture of SIMD and a typical architecture of MIMD to explan. 2)请绘制一个典型的SIMD的体系结构和MIMD的架构。 答:

小学数学总复习简便运算400题(有答案)

小学数学简便运算专项练习400题 第一部分(1-50题) 12.06+5.07+2.94 30.34+9.76-10.34 83 ×3÷83 ×3 25 ×7×4 34÷4÷1.7 1.25÷32×0.8 102×7.3÷5.1 17 73+174-773 195-137-95 11 32+752+353 933-15.7-4.3 41.06 -19.72-20.28 752-383+83 8 74+295-95 700÷14÷5 18.6 ÷2.5÷0.4 1.96÷0.5÷4 1.06 ×2.5×4

13×1917÷1917 29÷2713×2713 19.68-(2.68+2.97) 5.68+(5.39+4.32) 19.68-(2.97+9.68) 7 172+(185-172) 576-(83-71 ) 0.74 ÷(71×10074) 1.25×( 8 ÷0.5) 0.25 ×( 4 × 1.2) 1.25×( 213×0.8) 9.3 ÷(4÷93100) 24×(1211-83-61+31) (12+ 72) ×7 0.92×1.41+0.92×8.59 516×137-53×137 1.3×11.6-1.6×1.3 59 ×11.6+18.4×59

9999+999+99+9 4821-998 3.2×12.5×25 1.25×88 7.6÷0.25 3.5÷0.125 1.8×99+1.8 3.8 ×9.9+0.38 257×103-257×2-25 7 1.01×9.6 102×0.87 2.6 ×9.9 327 ×31+327 1712×32+32÷517 第二部分(51-100题) 3733 ×36 3733×38

并行算法设计与分析考题与答案

《并行算法设计与分析》考题与答案 一、1.3,处理器PI的编号是: 解:对于n ×n 网孔结构,令位于第j行,第k 列(0≤j,k≤n-1)的处理器为P i(0≤i≤n2-1)。以16处理器网孔为例,n=4(假设j、k由0开始): 由p0=p(j,k)=p(0,0) P8=p(j,k)=p(2,0) P1=p(j,k)=p(0,1) P9=p(j,k)=p(2,1) P2=p(j,k)=p(0,2) P10=p(j,k)=p(2,2) P3=p(j,k)=p(0,3) P11=p(j,k)=p(2,3) P4=p(j,k)=p(1,0) P12=p(j,k)=p(3,0) P5=p(j,k)=p(1,1) P13=p(j,k)=p(3,1) P6=p(j,k)=p(1,2) P14=p(j,k)=p(3,2) P7=p(j,k)=p(1,3) P15=p(j,k)=p(3,3) 同时观察i和j、k之间的关系,可以得出i的表达式为:i= j * n+k

一、1.6矩阵相乘(心动算法) a)相乘过程 设 A 矩阵= 121221122121 4321 B 矩阵=1 23443212121121 2 【注】矩阵元素中A(i,l)表示自左向右移动的矩阵,B(l,j)表示自上向下移动的矩阵,黑色倾斜加粗标记表示已经计算出的矩阵元素,如12, C(i,j)= C(i,j)+ A(i,l)* B(l,j) 1 2、

4、

6、

8、

10 计算完毕 b)可以在10步后完成,移动矩阵长L=7,4*4矩阵N=4,所以需要L+N-1=10

(完整版)简便运算的练习题和答案汇总

运算定律练习题 (1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 5 ×289×2 (125×12)×8 125×(12×4) (2) 乘法交换律和结合律的变化练习 125×64 125×88 44×25 125×24 25×28 (3)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 357+288+143 158+395+105 167+289+33 129+235+171+165

378+527+73 169+78+22 58+39+42+61 138+293+62+107 (4)乘法分配律:(a+b)×c=a×c+b×c 正用练习 (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4)15×(20+3) (5)乘法分配律正用的变化练习: 36×3 25×41 39×101 125×88 201×24 (6)乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18

25×97+25×3 76×25+25×24 (7)乘法分配律反用的变化练习: 38×29+38 75×299+75 64×199+64 35×68+68+68×64 ☆思考题:(8)其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5 58×101-58 74×99 【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。 325÷25 =(325×4)÷(25×4) =1300÷100 =13 【练一练1】(1)450÷25(2)525÷25 (3)3500÷125

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.wendangku.net/doc/0e10785432.html, Eric Haskin haskin@https://www.wendangku.net/doc/0e10785432.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

LBGK模型的分布式并行计算

万方数据

2LBGKD2Q9模型的并行计算 2.1数据分布 将流场划分成N。xN,的网格。设有P=只×Pv个进程参与并行计算,进程号P。=H以(0≤i<只,0≤J<尸v)。将数据按照重叠一条边的分块分布到各进程中。其中,进程P。存储并处理的数据网格点集,如图l所示。 图1进程珊存储并处理的区域(斜线处为重叠部分) 2.2交替方向的Jacobi迭代通信 Jacobi迭代是一类典型的通信迭代操作。文献[4】主要讨论了一个方向的Jacobi迭代。根据数据分布及计算要求,需要采用2个方向交替的Jacobi迭代通信操作。本文认为,“即发即收”的通信策略能有效避免完全的“先发后收”可能造成的通信数据“堆积”过多,从而避免数据的丢失。进程Pli的通信操作如下(见图2): (1)Ifi≠只一1then发送数据到进程P¨,; (2)Ifi≠0then从进程Pf_J,接收数据; (3)If,≠只-1then发送数据到进程Pml; (4)IfJ≠0then从进程P—l接收数据。 各进程并行执行上述操作。 图2交普方向的Jacobi迭代 2.3通信时间理论 由一般的通信模型可知,若发送、接收信息长度为n字节的数据所需时间为:丁(n)=口+n∥,其中,常数口为通信启动时间;∥为常系数,则上述一次交替方向的Jacobi迭代通信操作的时间约为 20e+2fl'N、.P,=1 P。=1 其他 其中,∥7=∥sizeof(double)。 一般情况下,当等3鲁,即等=鲁时,通信的数据量(字节数)是最少的,为4口+4∥,./丝堡。可见,通信的信息 V只×0 总量和通信时间随进程总数只×尸v的增加而减少。 由于c语言中数组是按“行”存放的(Fortran是按“列”存放的),当存放、发送列数据时,需要一定的辅助操作,这就增加了并行计算的计算时间,因此在只:Pv无法恰好等于Nx:N。时,需要综合考虑流场形状及大小、数据在内存中的按“行”(或按“列”)的存放方式,以确定数据的最佳分布方案。 3数值实验 数值实验是在“自强3000”计算机上进行的ou自强3000”计算机拥有174个计算结点,每个计算结点上有2个3.06CPU,2GB内存。本文的实验使用了其中的32个计算结点共64个CPU。程序采用MPI及C语言编写,程序执行时,每个计算结点中启动2个进程。数值实验针对不同规模的网格划分、不同进程数以及不同的数据分布方案进行了大量实验,测得如下结果:不同的流场规模对应着各自的最佳网格划分方式;计算次数越多,加速比越大,越能体现并行计算的优越性。 由表1数据可以得知,对于规模为Nx×N、,=400x400,数据划分成6×6块时的加速比最高,而对于MXNy=600x200,数据划分为12×3块则更具优越性。合适的划分方式可以使总体通信量减至最少,从而提高加速比和并行效率。另外,计算规模越大,加速比越大。 表1并行计算D2Q9模型的加速比(进程数为36) 在固定计算规模,增加处理器的情况下,并行系统的加速比会上升,并行效率会下降;在固定处理器数目,增加计算规模的情况下,并行系统的加速比和效率都会随之增加。 从表2可见,流场规模越大,并行计算的优越性越显著。因为此时计算规模(粒度)较大,相对于通信量占有一定的优势。由图3可见,加速比随进程数呈线性增长,这表明LBGKD2Q9模型的并行计算具有良好的可扩展性。 表2漉场规模固定时并行计算D2Q9模型的加速比 0816243240485664 numofprocess 图3藐场规模固定时D2Q9模型并行计算的加速比 4结束语 本文讨论了LBGKD2Q9模型的分布式并行计算,通过大量的数值实验重点研究了数据分布方案如何与问题规模匹配,以获得更高的并行效率的问题。展示了LBGK模型方法良好的并行性和可扩展性。得到了二维LBGK模型并行计算数据分布的一般原则、交替方向Jacobi迭代的通信策略。这些结论对进一步开展三维LBGK模型的并行计算及其他类似问题的并行计算有一定的指导意义。(下转第104页) 一101—万方数据

计算机体系结构 习题与答案

第二章习题(P69-70) 一、复习题 1.简述冯?诺依曼原理,冯?诺依曼结构计算机包含哪几部分部件,其结构以何部件为中心? 答:冯?诺依曼理论的要点包括:指令像数据那样存放在存储器中,并可以像数据那样进行处理;指令格式使用二进制机器码表示;用程序存储控制方式工作。这3条合称冯?诺依曼原理 冯?诺依曼计算机由五大部分组成:运算器、控制器、存储器、输入设备、输出设备,整个结构一般以运算器为中心,也可以以控制器为中心。 (P51-P54) 2.简述计算机体系结构与组成、实现之间的关系。 答:计算机体系结构通常是指程序设计人员所见到的计算机系统的属性,是硬件子系统的结构概念及其功能特性。计算机组成(computer organization)是依据计算机体系结构确定并且分配了硬件系统的概念结构和功能特性的基础上,设计计算机各部件的具体组成,它们之间的连接关系,实现机器指令级的各种功能和特性。同时,为实现指令的控制功能,还需要设计相应的软件系统来构成一个完整的运算系统。计算机实现,是计算机组成的物理实现, 就是把完成逻辑设计的计算机组成方案转换为真实的计算机。计算机体系结构、计算机组成和计算机实现是三个不同的概念,各自有不同的含义,但是又有着密切的联系,而且随着时间和技术的进步,这些含意也会有所改变。在某些情况下,有时也无须特意地去区分计算机体系结构和计算机组成的不同含义。 (P47-P48) 3.根据指令系统结构划分,现代计算机包含哪两种主要的体系结构? 答:根据指令系统结构划分,现代计算机主要包含:CISC和RISC两种结构。 (P55) 4.简述RISC技术的特点? 答:从指令系统结构上看,RISC 体系结构一般具有如下特点: (1) 精简指令系统。可以通过对过去大量的机器语言程序进行指令使用频度的统计,来选取其中常用的基本指令,并根据对操作系统、高级语言和应用环境等的支持增设一些最常用的指令; (2) 减少指令系统可采用的寻址方式种类,一般限制在2或3种; (3) 在指令的功能、格式和编码设计上尽可能地简化和规整,让所有指令尽可能等长; (4) 单机器周期指令,即大多数的指令都可以在一个机器周期内完成,并且允许处理器在同一时间内执行一系列的指令。 (P57-58) 5.有人认为,RISC技术将全面替代CISC,这种观点是否正确,说明理由? 答:不正确。与CISC 架构相比较,RISC计算机具备结构简单、易于设计和程序执行效率高的特点,但并不能认为RISC 架构就可以取代CISC 架构。事实上,RISC 和CISC 各有优势,CISC计算机功能丰富,指令执行更加灵活,这些时RISC计算机无法比拟的,当今时代,两者正在逐步融合,成为CPU设计的新趋势。 (P55-59) 6.什么是流水线技术? 答:流水线技术,指的是允许一个机器周期内的计算机各处理步骤重叠进行。特别是,当执行一条指令时,可以读取下一条指令,也就意味着,在任何一个时刻可以有不止一条指令在“流水线”上,每条指令处在不同的执行阶段。这样,即便读取和执行每条指令的时间保持不变,而计算机的总的吞吐量提高了。 (P60-62) 7.多处理器结构包含哪几种主要的体系结构,分别有什么特点? 答:多处理器系统:主要通过资源共享,让共享输入/输出子系统、数据库资源及共享或不共享存储的一组处理机在统一的操作系统全盘控制下,实现软件和硬件各级上相互作用,达到时间和空间上的异步并行。 SIMD计算机有多个处理单元,由单一的指令部件控制,按照同一指令流的要求为他们

传统并行计算框架与MR的区别

现在MapReduce/Hadoop以及相关的数据处理技术非常热,因此我想在这里将MapReduce的优势汇总一下,将MapReduce与传统基于HPC集群的并行计算模型做一个简要比较,也算是对前一阵子所学的MapReduce知识做一个总结和梳理。 随着互联网数据量的不断增长,对处理数据能力的要求也变得越来越高。当计算量超出单机的处理能力极限时,采取并行计算是一种自然而然的解决之道。在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce,MapReduce相较于传统的并行计算框架有什么优势,这是本文关注的问题。 文章之初先给出一个传统并行计算框架与MapReduce的对比表格,然后一项项对其进行剖析。 MapReduce和HPC集群并行计算优劣对比 ▲ 在传统的并行计算中,计算资源通常展示为一台逻辑上统一的计算机。对于一个由多个刀片、SAN构成的HPC集群来说,展现给程序员的仍旧是一台计算机,只不过这台计算拥有为数众多的CPU,以及容量巨大的主存与磁盘。在物理上,计算资源与存储资源是两个相对分离的部分,数据从数据节点通过数据总线或者高速网络传输到达计算节点。对于数据量较小的计算密集型处理,这并不是问题。而对于数据密集型处理,计算节点与存储节点之间的I/O将成为整个系统的性能瓶颈。共享式架构造成数据集中放置,从而造成I/O传输瓶颈。此外,由于集群组件间耦合、依赖较紧密,集群容错性较差。 而实际上,当数据规模大的时候,数据会体现出一定的局部性特征,因此将数据统一存放、统一读出的做法并不是最佳的。 MapReduce致力于解决大规模数据处理的问题,因此在设计之初就考虑了数据的局部性原理,利用局部性原理将整个问题分而治之。MapReduce集群由普通PC机构成,为无共享式架构。在处理之前,将数据集分布至各个节点。处理时,每个节点就近读取本地存储的数据处理(map),将处理后的数据进行合并(combine)、排序(shuffle and sort)后再分发(至reduce节点),避免了大量数据的传输,提高了处理效率。无共享式架构的另一个好处是配合复制(replication)策略,集群可以具有良好的容错性,一部分节点的down机对集群的正常工作不会造成影响。 硬件/价格/扩展性 传统的HPC集群由高级硬件构成,十分昂贵,若想提高HPC集群的性能,通常采取纵向扩展的方式:即换用更快的CPU、增加刀片、增加内存、扩展磁盘等。但这种扩展方式不能支撑长期的计算扩展(很容易就到顶了)且升级费用昂贵。因此相对于MapReduce集群,HPC集群的扩展性较差。 MapReduce集群由普通PC机构成,普通PC机拥有更高的性价比,因此同等计算能力的集群,MapReduce集群的价格要低得多。不仅如此,MapReduce集群

20100428第三章 并行计算模型和任务分解策略

第三章并行计算模型和任务分解策略 首先,我们将研究不同类型的并行计算机,为了不严格限定于某个指定机型,我们通过模型把并行计算机抽象为几个特定属性。为了说明并行程序中处理器之间的通信概念模型我们讨论了不同的程序模型,另外为了分析和评估我们算法的性能,我们讨论了多计算机架构下评估并行算法复杂度的代价模型。在介绍并分析的各种代价模型的基础上给出了改进型的代价模型。 其次我们定义这样几个指标如负载均衡和网络半径等用来研究图分解问题的主要特性。并把图分解问题归纳为一般类型和空间映射图类型。我们重点研究的是后者,因为多尺度配置真实感光照渲染算法可以很方便的描述成空间映射图形式。 3.1 并行计算机模型 以下给出并行计算机的模型的概述,根据其结构并行计算机大致可分为以下几类。 多计算机(Multicomputer):一个von Neumann计算机由一个中央处理器(CPU)和一个存储单元组成。一个多计算机则由很多von Neumann计算机通过互联网络连接而成的计算机系统。见图3.1。每个计算机(节点)执行自己的计算并只能访问本地的存储。通过消息实现各计算机之间的互相通讯。在理想的网络中,两个计算节点之间的信息传送代价与本地的计算节点和它的网络阻塞无关,只和消息的长度相关。以上多计算机和分布式存储的MIMD机器之间的主要区别在于后者的两个节点间的信息传输不依赖于本地计算和其它网络阻塞。 分布式存储的MIMD类型的机器主要有IBM的SP, Intel的Paragon, 曙光4000系列, Cray 的T3E, Meiko的CS-2, NEC的Cenju 3, 和nCUBE等。通过本地网络的连接的集群系统可以认为是分布式存储的MIMD型计算机。 多处理器(Multiprocessor):一个多处理器型并行计算机(共享存储的MIMD计算机)由大量处理器组成,所有的处理器都访问一个共同的存储。理论上理想的模型就是PRAM模型(并行的随机访问系统),即任何一个处理器访问任一存储单元都是等效的(见图3.2)。并发存储访问是否允许取决于所使用的真正的模型【34】。 混合模型:分布式共享存储(DMS)计算机,提供了一个统一的存储访问地址空间但是分布式物理存储模块。编译器和运行时系统负责具体的并行化应用。这种系统软件比较复杂。 图3.1 多计算机模型图3.2 PRAM 模型 SIMD计算机:在一个SIMD(单指令流多数据流)计算机中在不同数据流阶段所有的处理器执行同样的指令流。典型的机型有MasPar的MP, 和联想机器CM2。 多计算机系统具有良好的可扩展性,价格低廉的集群式并行计算机就属于这种模型,本文中的算法主要基于多计算机体系结构。 3.2 程序模型 并行程序的编程语言如C或Fortan。并行结构以某种类库的形式直接整合进这些编程语言中。编程模型确定了并行程序的风格。一般可分为数据并行、共享存储和消息传递等模型[35]。 数据并行编程:数据并行模型开始于编写同步SIMD并行计算机程序。程序员需要在每个处理器上独立执行一个程序,每个处理器均有其自己的存储器。程序员需要定义数据如何分配到每个局部存储中。实际应用中大量的条件分支的需要使得其很难高效的运行在SIMD型的机器上。 共享存储编程:共享存储模型是一个简单的模型,因为程序员写并行程序就像写串行程序一样。一个程序的执行与几个处理器独立,也不需要同步。一个处理器的执行状态独立于其它处理器的运

并行计算(陈国良版)课后答案

第三章互连网络 对于一颗K级二叉树(根为0级,叶为k-1级),共有N=2^k-1个节点,当推广至m-元树时(即每个非叶节点有m个子节点)时,试写出总节点数N的表达式。 答: 推广至M元树时,k级M元树总结点数N的表达式为: N=1+m^1+m^2+...+m^(k-1)=(1-m^k)*1/(1-m); 二元胖树如图所示,此时所有非根节点均有2个父节点。如果将图中的每个椭圆均视为单个节点,并且成对节点间的多条边视为一条边,则他实际上就是一个二叉树。试问:如果不管椭圆,只把小方块视为节点,则他从叶到根形成什么样的多级互联网络 答:8输入的完全混洗三级互联网络。 四元胖树如图所示,试问:每个内节点有几个子节点和几个父节点你知道那个机器使用了此种形式的胖树 答:每个内节点有4个子节点,2个父节点。CM-5使用了此类胖树结构。 试构造一个N=64的立方环网络,并将其直径和节点度与N=64的超立方比较之,你的结论是什么 答:A N=64的立方环网络,为4立方环(将4维超立方每个顶点以4面体替代得到),直径d=9,节点度n=4 B N=64的超立方网络,为六维超立方(将一个立方体分为8个小立方,以每个小立方作为简单立方体的节点,互联成6维超立方),直径d=6,节点度n=6 一个N=2^k个节点的 de Bruijin 。 。。。试问:该网络的直径和对剖宽度是多少 答:N=2^k个节点的 de Bruijin网络直径d=k 对剖宽带w=2^(k-1)

一个N=2^n个节点的洗牌交换网络如图所示。试问:此网络节点度==网络直径==网络对剖宽度== 答:N=2^n个节点的洗牌交换网络,网络节点度为=2 ,网络直径=n-1 ,网络对剖宽度=4 一个N=(k+1)2^k个节点的蝶形网络如图所示。试问:此网络节点度=网络直径=网络对剖宽度= 答:N=(k+1)2^k个节点的蝶形网络,网络节点度=4 ,网络直径=2*k ,网络对剖宽度=2^k 对于如下列举的网络技术,用体系结构描述,速率范围,电缆长度等填充下表中的各项。(提示:根据讨论的时间年限,每项可能是一个范围) 答: 如图所示,信包的片0,1,2,3要分别去向目的地A,B,C,D。此时片0占据信道CB,片1占据信道DC,片2占据信道AD,片3占据信道BA。试问: 1)这将会发生什么现象 2)如果采用X-Y选路策略,可避免上述现象吗为什么 答: 1)通路中形成环,发生死锁

并行计算总复习之秘笈

并行计算总复习 第一章: 1并行计算与串行计算在算法和编程上有哪些显著差异? 答:·并行算法设计与并行计算机处理器的拓扑连接相关 ·并行算法设计和采用的并行计算模型有关。 ·并行计算有独自的通讯函数 ·并行算法设计时,如何将问题分解成独立的子问题是科学研究问题,并非所有的问 题都可以进行分解。 2多核与多处理机的异同点? 多处理机:把多个处理器通过网络互连形成一个新机器。可以是专用,也可以是通用。拓扑连接是可以改变的。 多核:在过去单个处理器芯片上实现多个“执行核”。但这些执行核都有独立的执行命令集合和体系结构。这些独立的执行核+超线程SMT技术组成多核处理器 3对单处理器速度提高的主要限制是什么? 答:晶体管的集成密度,功耗和CPU表面温度等 第二章 1 SIMD 和MIMD 所代表的计算模型是什么?主要区别和各自的系统结构示意图。SPMD的含义是什么? SIMD指单指令多数据流模型;MIMD指多指令多数据流模型; SPMD指单程序多数据流模型,在SIMD中把指令改为程序表示每个处理器并行的执行程序。 SIMD MIMD 硬件较少处理器较多处理器 内存一个寻址系统,存储 量小多个寻址系统,存储量大 耗费较高,难开发易于开发(多个商业 组件可用) 加速高取决于应用

2 若按通讯方式对并行算法进行分类有几种分类方法,各自的特点是什么? 基于共享地址空间:并行平台支持一个公共的数据空间,所有处理器都可以访问这些空间。处理器通过修改存储在共享地址空间的数据来实现交互。 基于消息传递:消息传递平台有p个处理节点构成,每个节点有自己的独立地址空间。运行在不同节点上的进程之间的交互必须用消息来完成,称为消息传递。这种消息交换用来传递数据、操作以及使多个进程间的行为同步。 3 在理想并行计算模型中(并行随机访问计算机parallel random access machine(PRAM), EREW, ERCW CREW, 和CRCW表示的意思是什么? EREW:互斥读互斥写,这一类的PRAM独占访问内存单元,不允许并发的读写操作。最弱的PRAM模型,对内存访问提供最小的并发性。 CREW:并发读互斥写。对内存单元允许多读,但对内存位置多写是串行的 ERCW:互斥读并发写。对内存单元允许多写,但多读是串行的。 CRCW:并发读并发写。对内存单元允许多读多写。最强大 4 能画出多处理机系统中处理单元的基本互连结构图,Mesh, hypercube, 网络,注意对顶点 编号的要求。

并行计算试题及复习资料

计算机学院研究生《并行计算》课程 考试试题 (2010级研究生,2011.1) 1.(12分)定义图中节点u 和v 之间的距离为从u 到v 最短路径的长度。已知一个d 维的超立方体,1)指定其中的一个源节点s ,问有多少个节点与s 的距离为i ,其中0≤i ≤d 。证明你的结论。2)证明如果在一个超立方体中节点u 与节点v 的距离为i ,则存在i !条从u 到v 的长度为i 的路径。 1)有i d C 个节点与s 的距离为i 。 证明:由超立方体的性质知: 一个d 维的超立方体的每个节点都可由d 位二进制来表示,则与某个节 点的距离为i 的节点必定在这d 位二进制中有i 位与之不同,那么随机从d 位中选择i 位就有i d C 种选择方式,即与s 的距离为i 得节点就有i d C 个。 2) 证明:由1)所述可知: 节点u 与节点v 的距离为i 则分别表示u 、v 节点的二进制位数中有i 位是不同的。设节点u 表示为:121D .........j j i j i d D D D D D +-+,节点v 表示为: ''121D .........j j i j i d D D D D D +-+,则现在就是要求得从 121D .........j j i j i d D D D D D +-+变换到''121D .........j j i j i d D D D D D +-+ 的途径有多 少种。那么利用组合理论知识可知共有*(1)*(2)*...*2*1i i i --即!i 中途径。所以存在i !条从u 到v 的长度为i 的路径。 2.(18分)6个并行程序的执行时间,用I-VI 表示,在1-8个处理器上执行了测试。下表表示了各程序达到的加速比。

并行计算习题答案

2.1 对于一颗K 级二叉树(根为0级,叶为k-1级),共有N=2^k-1个节点,当推广至m-元树时(即每个非叶节点有m 个子节点)时,试写出总节点数N 的表达式。 答: 推广至M 元树时,k 级M 元树总结点数N 的表达式为: N=1+m 1+m 2+...+m (k-1)=(1-m k )*1/(1-m); 2.4 试构造一个N=64的立方环网络,并将其直径和节点度与N=64的超立方比较之,你的结论是什么? 答: N=64的立方环网络,为4立方环(将4维超立方每个顶点以4面体替代得到),直径 d=9,节点度n=4 4.11 一个在p 个处理器上运行的并行程序加速比是p-1,根据Amdahl 定律,串行分量为多少? 答: p/(1+f(p-1))=p-1, f=1/(p-1)2 5.5假定开始时P i (1《i 《n)存有数据 d i ,所谓累加求和是指用 ∑=i j i d 1,来代替中的原始值d i ,算法5.3给出了在PRAM 模型上累加求和算法。 Input: di are kept in Pi, where Output: replaces di in processor Pi Begin for j=0 to logn-1 do for i=2j +1 to n par-do (i) di= d i + d i-2j (ii) Pi=di end for end for End (1)试用n=8为例子,按照上述算法逐步计算出累加和。 (2)分析算法的时间复杂度。

6.3 7.2(1) 例:A={1,3,6,8,11,13} p=6;B={2,4,5,7,10,12,14} ,q=7 p =3, q =3 A={1,3,6*,8,11,13*} B={2,4,5*,7,10 ,12*,14}, B ’={2,4,5,6*,7,10 12,13*,14} A11={1,3} , A12={8,11} , A13={} B11={2,4,5} , B12={7,10 12} , B13={14} A11={1,3*} , A12={8,11*} , B11={2,4*,5} , B12={7,10* , 12} , B11’={2, 3* , 4,5} , B12’={7,10 , 11* , 12} , A111={1},A112={} A121={8},A122={} B111={2},B112={4,5} B121={7,10 },B122={12} A111={1 *} A121={8 *} B111={2 *} B121={7,10 * } 33 54 21 13 33 82 40 72

相关文档