文档库 最新最全的文档下载
当前位置:文档库 › 温室中的绿色生态臭氧病虫害防治数学建模论文00Word版

温室中的绿色生态臭氧病虫害防治数学建模论文00Word版

温室中的绿色生态臭氧病虫害防治数学建模论文00Word版
温室中的绿色生态臭氧病虫害防治数学建模论文00Word版

安徽建筑工业学院数学建模

竞赛论文

论文题目:温室中的绿色生态臭氧病虫害防治

姓名1:代明学号:08207010129 专业:信息与计算科学姓名1:郭成维学号:08207010105专业:信息与计算科学姓名1:唐磐石学号:08207010141 专业:信息与计算科学 2010 年5月23日

目录

一.摘要 (3)

二.建模过程..........................................................

1.问题一..................................... 4错误!未定义书签。

1.模型假设....................................................

2.建立模型....................................................

3.模型求解....................................................

2.问题二 (9)

1.基本假设...................................................

2.建立模型....................................................

3.模型求解....................................................

3.问题三 (11)

1.基本假设....................................................

2.模型建立与求解..............................................

3.模型分析....................................................

4效用评价函数. ...............................................

5.方案........................................................

4.问题四 (15)

1.基本假设....................................................

2.模型建立动态分布图...........................................

3评价方案. ...................................................

三.模型的评价与改进 (17)

四.参考文献 (19)

一. 摘要:

“温室中的绿色生态臭氧病虫害防治”是通过建立数学模型的方式来分析出害虫密度与水稻产量的关系,这包括要考虑农药的使用量价格,水稻种子的发芽率价格,水稻的亩产量及其出售价格,在这些情况下以期待获得最大的收益。在第一小题中,在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析,我们提取中华稻蝗和稻纵卷叶螟两种病虫的密度和相应的减产量这两组数据进行分析,在坐标系里表示出这些数据,再用曲线连接起来,会发现所构得曲线非常近似于一条指数曲线,因此我们用曲线拟合的最小二乘法求出这条近似指数曲线的函数即可。对于第二题,我们用excel软件建立时间与植株中残留量,我们观察这个图像,在用各种拟合方法拟合这条曲线后发现在用二次

函数拟合的函数误差最小,因此先设f(t)= f(t)=a

0t2+a

1

t+a

2

提取表中数据再

用最小二乘法求出相应的未知数。对于第三题建立臭氧对温室植物与病虫害作用的数学模型,同样运用excel建立出臭氧浓度与病虫剩余数量比例的图像,观察图像在用各种拟合方法拟合图像后发现用二次指数函数拟合后的误差最小,故在求解函数可先设函数方程为y=ae bx 在这里x代表臭氧浓度,y代表臭氧处理后的病虫剩余数量比例,同样运用最小二乘法求出相应的未知数即可,再次运用同样的方法建立出臭氧分解速率与温度的函数,其同样近似于指数函数。由表 5可知随着时间的增加臭氧浓度不断增加,而病虫害经臭氧处理时剩余数量不断减少臭氧浓度低于0.05×10-6g/cm3 时对作物生长具有保护作用,当臭氧浓度高于0.08×10-6 g/cm3 且作用时间超过一小时对作物具有危害。而通过上式当害虫的剩余量S=0时可解得臭氧浓度。对于第四题,先建立出该温室的模型,假设臭氧从温室扩散进入温室,由之前建立的臭氧的分解速率与温度的函数以及温室的长、宽、高可求出臭氧在三处扩散的时间,比较三个时间取最长的时间作为温室释放臭氧所需的最优时间,因为只有在此时间下温室的臭氧扩散最充分,相应的杀虫效果也最好。对于第五题可以参考以求出的臭氧分解速率与温度的关系,保病虫的残余量和浓度的关系来综合考虑。

问题一:

模型假设:

1.假设在实验中,水稻生长的变量仅是,施肥量、害虫, 其它影响因子均相同,

该田中水稻生长处于同等水平

2.在实际中, 水稻产量受作物品种优良、气候条件以及害虫对杀虫剂的抵抗性

等各种因素的影响,但是在实验中忽略上述因素的影响,仅考虑杀虫剂对生长作物的影响。

3.忽略植物各阶段的生长特点对杀虫剂的各种需求量。

4.假设病虫的繁殖忽略不计,假设不施药它不会在水稻生长这段时间内有显著

增加基本保持一定。

2.建立模型:

表 1 中华稲蝗虫和水稻作用的数据:

密度(头/m2)穗花被害率

(%)

结实率(%)千粒重(g)减产率(%)

0 —94.4 21.37 —

3 0.273 93.2 20.60 2.4

10 2.260 92.1 20.60 12.9

20 2.550 91.5 20.50 16.3

30 2.920 89.9 20.60 20.1

40 3.950 87.9 20.13 26.8

x——单位面积内害虫的数量 y——生长作物的减产率

根据中华稲蝗虫密度和水稻减产率(x,y)描点得到如下的图。

模型解析:根据给定的数据(X i,Y i)(i=0,1,2,3,4)描图后可以确定拟合曲线方程近似为y=ae bx,它不是线性的,对此公式进行处理lny=lna +bx,若令

A=lna,则得lny=A+bx, Φ={1,x}.为了确定A,b,我们要做的是将表中减产率的数据进行处理,并以此运用最小二乘法处理即可。数据如下:

密度(头/m2)

穗花被害率

(%)

结实率(%)千粒重(g)减产率(%)

0 —94.4 21.37 —

3 0.273 93.2 20.60 2.4

10 2.260 92.1 20.60 12.9

20 2.550 91.5 20.50 16.3

30 2.920 89.9 20.60 20.1

40 3.950 87.9 20.13 26.8

取出密度,减产率这两个数据建立(x,lny)这一坐标得到,

(3,0.8754687),(10,2.557227),(20,2.791165),(30,3.000719)(40,3.288401)

根据最小二乘法,取Φ

0(x)=3,Φ

1

(x)=x,W(x)=1,得

0 ,Φ

)=5,

0 ,Φ

1

)=∑ X

i

=103 (i=0,1,2,3,4),

1 ,Φ

1

)=∑ X

i

2=3009 (i=0,1,2,3,4),

0 ,lny)=∑ lny

i

=12.51298 (i=0,1,2,3,4),

1 ,lny)=∑ X

i

*lny

i

=305.560206 (i=0,1,2,3,4),

故有法方程:

5A+103b=12.51298,

103A+3009b=305.560206

从而解出: A=1.392889,

b=0.0538692,

从而得出最小二乘法拟合曲线为:

y=e^(1.392889+0.538692x),

表 2 稻纵卷叶螟与水稻作用的数据:

密度(头/m2)产量损失率(%)卷叶率(%)空壳率(%)

3.75 0.73 0.76 1

4.22

7.50 1.11 1.11 14.43

11.25 2.2 2.22 15.34

15.00 3.37 3.54 15.95

18.75 5.05 4.72 16.87

30.00 6.78 6.73 17.10

37.50 7.16 7.63 17.21

56.25 9.39 14.82 20.59

75.00 14.11 14.93 23.19

112.50 20.09 20.40 25.16 通过以上数据可知,虫害的密度与产量损失率之间有必然的联系,通过稻纵卷叶螟密度与水稻作用的数据(x,y)描点可得如下的图像:

可推测出其大致也是符合指数函数,故用指数函数的拟合:

模型解析:根据给定的数据(X

i ,Y

i

)(i=0,1,2,3,4,5,6,7,8,9)描图后可以确

定拟合曲线方程为近似为 y=ae bx,它不是线性的,对此公式进行处理lny=lna +bx,若令A=lna,则得lny=A+bx, Φ={1,x}.为了确定A,b,我们要做的是将表中减产率的数据进行处理,并以此运用最小二乘法处理即可。数据如下:

密度(头/m2)产量损失率(%)卷叶率(%)空壳率(%)

3.75 0.73 0.76 1

4.22

7.50 1.11 1.11 14.43

11.25 2.2 2.22 15.34

15.00 3.37 3.54 15.95

18.75 5.05 4.72 16.87

30.00 6.78 6.73 17.10

37.50 7.16 7.63 17.21

56.25 9.39 14.82 20.59

75.00 14.11 14.93 23.19

112.50 20.09 20.40 25.16

取出密度,产量损失率这两个数据建立(x,lny)这一坐标得,

(3.75,-0.314710),(7.5,0.1043600),(11.25,0.788457),(15.00,1.2149127),(18.75,1.61938824),(30,1.91397710),(37.5,1.9685099),(56.25,2.23964593),(75,2.64688376),(112.5,3.00022217);

根据最小二乘法,取Φ

0(x)=3.75,Φ

1

(x)=x,W(x)=1,得

0 ,Φ

)=5,

0 ,Φ

1

)=∑ X

i

=367.5 (i=0,1,……,9),

1 ,Φ

1

)=∑ X

i

2=24525 (i=0,1,……,9),

0 ,lny)=∑ lny

i

=15.170310384 (i=0,1,……,9),

1 ,lny)=∑ X

i

*lny

i

=850.32796512 (i=0,1,……,9),

故有法方程:

5A+367.5b=15.17031.

367.5A+24525b=850.32796512,

从而解出:

A=-4.790855869,

b=0.1064614676,

从而得出最小二乘法拟合曲线为:

y=e^(-4.790855869+0.1064614676x),

问题二:

1.基本假设

1.在实验地里,在害虫密度不同的地方,相应使用不同量的锐劲特使得水稻的产量是个定值,故其条件类似于问题一的模型。

2.在实验中, 除施肥量, 其它影响因子如环境条件、种植密度、土壤肥力等, 均处于同等水平

3.实验中忽略各种因素的影响,仅仅考虑杀虫剂量的多少对生长作物的影响。

4.假设植物各阶段的对杀虫剂的敏感程度不变,水稻不会因为不断长大对杀虫剂的需求量增加。

5.忽略病虫的繁殖周期以及各阶段的生长情况,将它以为是不变的生长速率。

6.锐劲特符合农药的使用理论:农药浓度大小对作物生长作用取决于其浓度大小,在一定范围内,随着浓度的增大促进作用增大,当大于某一浓度,开始起抑制作用。

7.假设该过程中的害虫为问题一中的中华稻蝗或稻纵卷叶螟有且仅有一种害虫作用两者不同时对作物进行影响。

2:建立模型:

表3 农药锐劲特在水稻中的残留量数据

时间/d

1 3 6 10 15 25 植株中残留量1

/mg kg -?

8.26

6.89

4.92

1.84

0.197

0.066

从表3中提取出时间和植株中残留量这两组数据,将其所对应的点标在坐标系中,用一条曲线将各个点连接起来,对其进行分析拟合.

f (t )代表植株中农药锐劲特的残留量;t 代表时间。

3:模型解析:

观察其图像可知,图像近似符合f(t)=alogb t (b<1)或f(t)=a

0t2+a

1

t+a

2

图像中的点可与t轴相交所以排除f(t)=alogb t ,且经过分析可知图像经二次函

数拟合的偏差最小,设拟合函数为f(X)=a

0t2+a

1

t+a

2

,同样运用最小二乘法求解:

故有方程如下:

(m+1)a

0+∑t

i

*a

1

+∑t

i

2 *a

2

=∑f(t

i

) (i=0,1,……,5),

∑t

i *a

+∑t

i

2* a

1

+∑t

i

3* a

2

=∑f(t

i

)*t

i

(i=0,1,……,5),

∑t

i 2* a

+∑t

i

3* a

1

+∑t

i

4* a

2

=∑f(t

i

)*t

i

2 (i=0,1,……,5),

利用Matlab软件处理数据或用C语言编程序“高斯消元法”解上面方程组输入数据可解得:

a 0=-0.009707,a

1

=-0.102141,a

2

=6.328272

从而得到最小二乘法拟合曲线为:

f(t)=-0.009707t2-0.102141t+6.328272

题目中的假设条件:假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长周期为5哥月;水稻出售价格为2.28元/公斤。

由问题一可得

仅有中华稲蝗虫时水稻每亩产量为:

Y=800-800* e^(1.392889+0.538692x);

仅有稻纵卷叶螟时水稻每亩产量为:

Y=800-800* e^(-4.790855869+0.1064614676x);

农药锐劲特的使用量为10mg/kg-1水稻可得每次农药使用量:

w=10-f(t)=10- (-0.009707t2-0.102141t+6.328272);

由于水稻生长期时五个月所以农药锐劲特需求量为:

W=∫1t wdw=∫1t(10+0.009707t2+0.102141t-6.328272)dt

每亩的水稻利润为:Q=2.28*Y-105*W-100-2*5.6;

问题三:

1.基本假设

1. 在实验中, 除施肥量、害虫,其它影响环境条件均处于同等水平。

2 假设真菌对臭氧敏感程度相同不随时间变化、不产生抗体。

3 假设臭氧从喷嘴出来后立即布满温室,即室内臭氧浓度和喷嘴口的浓度相同。

4 本实验中忽略产量受品种、植株密度、气候条件以及害虫对杀虫剂的抵抗等

各种因素的作用因素的影响,仅考虑杀虫剂的用量的多少对生长作物的影响。

5.假定植物各阶段的生长对杀虫剂的各种需求量保持不变,不会产生抗体。

6.忽略病虫的繁殖周期以及各阶段的生长情况,将它以为是不变的生长速率。

2:模型建立与求解:

表4 臭氧分解实验速率常数与温度关系

温度T(o C)20304050607080

臭氧分解速

度(mg/min-1)

0.00810.01110.01450.02220.02950.04140.0603

方法同问题一、问题二,选取温度和臭氧分解速度的数据,将其所对应的点标在坐标系中,用一条曲线将各个点连接起来,对其进行分析拟合。

通过图像可只符合y=a*e bt 对此公式进行处理lny=lna +bt,若令A=lna,则得lny=A+bt, Φ={1,t}.为了确定A,b,我们要做的是将表中减产率的数据进行处

理,并以此运用最小二乘法处理即可。数据(t

i ,y

i

)如下:

(20,-4.8158912173),(30,-4.50081017066),(40,-4.2336066295),(50,-3.8076 62901),(60,-3.5233650156),(70,-3.184********),(80,-2.8084231752),

根据最小二乘法,取Φ

0(t)=3.75,Φ

1

(t)=t,W(t)=1,得

0 ,Φ

)=7,

0 ,Φ

1

)=∑ t

i

=350 (i=0,1,……,6),

1 ,Φ

1

)=∑ t

i

2=20300 (i=0,1,……,6),

0 ,lny)=∑ lny

i

=-26.874234 (i=0,1,……,6),

1 ,lny)=∑ X

i

*lny

i

=-1250.058710 (i=0,1,……,6),

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

2009年数学建模优秀论文[1]

眼科病床的合理安排 摘要 医院病床的合理安排是病人和医院共同关注的问题。本文对医院病床的分配进行分析,使用层次分析法找出模型的判定因素,通过对医院已制定的模型的判断,找出了原模型的优劣,并使用线性规划制定出合理的模型,通过模型的结果推断出第三问的答案,若该住院部周六、周日不安排手术,则改变模型的约束条件,使其判断之后的手术时间是否要做出相应的调整。考虑到便于医院进行管理,提出运用排队论的方法求解出病床比例分配模型。 关键词:层次分析法线性规划排队论 一、问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务。 我们考虑某医院眼科病床的合理安排的数学建模问题。 该医院眼科门诊每天开放,住院部共有病床79张。该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。 白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。做两只眼的病人比做一只眼的要多一些,大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。 外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。 其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。 该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急

全国大学生数学建模竞赛论文--范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全 名):参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

眼科病床的合理安排 摘要 病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。 本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。 针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。 针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率和潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数和优先级函数,使得模型更加合理。通过Matlab 对该模型求解,得出了次日病床安排方案(结果见表4)。 综合评价模型时,以该医院目前的病床安排方案和我国医院通用的病床安排方法为比较对象,借助上述三种评价方法和模型,进行了综合评价比较,从综合评价结果来看,本文的模型相对较优(评价结果见表9)。 针对问题三,本文既充分考虑了如何缩短病人平均等待时间和提高病床利用率,又兼顾了公平原则,根据病症的不同和就诊病人到院的顺序制订了优先服务策略,给出了每个病人相应的入住时间区间(见P18)。 针对问题四,由于住院部周六和周日不安排手术,对某些类型病人的病床安排产生了一定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。 为了判断手术安排时间是否改变,本文根据问题一的评价方法和模型对修改后的模型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。 针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短,本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo 软件对其进行求解,得出的结论是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10.13%、20.25%、15.19%、26.58%、27.85%。 最后,本文对所建模型的优点和缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。 关键词:病人平均等待时间;实际病床利用率;RSR 法;满意度量化函数;动态规划模型;非线性规划 1.问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,

完整版数学建模论文

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞 赛参赛规则》(以下简称为“竞赛章程和参赛规则” ,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述 方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从 A/B/C/D 中选择一项填写): A 我们 的参赛报名号为(如果赛区设置报名号的话):所属学校(请填 写完整的全名):大连工业大学 参赛队员(打印并签名 ) : 1.王佳锴 2.梁嘉祯 3.杨挺 指导教师或指导教师组负责人(打印并签名 ): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2013年9月16日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

数学建模论文示例精选版

数学建模论文示例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

“空瓶换汽水”问题探讨 摘要:“空瓶换汽水”问题是一个比较经典的趣味数学问题,曾以“空瓶换啤酒”“废电池换新电池”“费电珠换新电珠”等形式出现在前苏联、德国和中国各种数学竞赛题目中。这个问题的探讨与解决,对于我们在日常生活中如何使开支与效益达到最优化等问题,具有一定的指导意义。 关键词:瓶数空瓶不含瓶单价推论 日常生活中,我们经常遇到过空瓶换汽水问题。喝完了凉爽的汽水还能用空瓶换汽水继续喝,那简直是炎炎夏日里的一种享受。如果没有经历过,那么以下这几道数学题你应该似曾相识。 【问题一】 某品牌汽水可以用3个空瓶再换回1瓶汽水,某人买回10瓶汽水,则他最多可以喝到多少瓶汽水 【解析一】 “用3个空瓶再换回1瓶汽水”,假设汽水一瓶3元,则空瓶相应的1元,而真正的汽水就只值2元,“某人买回10瓶汽水”意味着花去人民币 3*10=30元, 故而“最多可以喝到?30/2=15瓶。 【问题二】 5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶? 【解析二】 同理“5个空瓶可以换1瓶汽水”由题意,假设1瓶汽水5元,空瓶则1元,真正的汽水只值4元,“某班同学喝了161瓶汽水”则一共真正汽水的钱是:161*4元; 而买整个汽水(真正的汽水加空瓶)需要5元,所以“他们至少要买汽水多少瓶”则等于( 161*4)/5=(161/5)*4=(32*4)...余1,此时就可算出32*4+1=129瓶。 笔者对类似的题目的思考与研究,得到以下推论: 1,汽水的瓶数=总共的钱/汽水(不含瓶)的钱; 2,至少要买汽水多少瓶=总花去的钱/汽水的单价+余数。 这些推论是否正确呢是否可以解决此类问题呢我们不妨拿类似的问题验证一下。 【问题三】 超市规定每3个空汽水瓶可以换一瓶汽水,小李有12个空汽水瓶,最多可以换几瓶汽水A.4瓶B.5瓶C.6瓶D.7瓶 【解答三】 由题意可知,空汽水瓶的价钱是1元,汽水加瓶是3元,所以“小李有12个空汽水瓶”等于小李有12元钱,问题是“最多可以换几瓶汽水”,就是小李

全国数学建模优秀论文

上海世博会影响力的定量评估 摘要 本文主要针对世博会对上海市的发展产生的影响力进行定量评估。 在模型一中,首先我们从上海的城市基础设施建设这一侧面定量评估世博会对上海市的发展产生的影响,而层次分析法是对社会经济系统进行系统分析的有力工具。所以 我们运用层次分析法,构造成对比矩阵a ,找到最大特征值λ,运用1 n CI n λ-=-进行一致 性检验,这样对成对比矩阵a 进行逐步修正,最终可以确定权向量。再运用模糊数学的综合评价法,通过组合权向量就可以得出召开世博会比没有召开世博会对上海城市基本设施建设的影响要高出40%。 在模型二中,上海世博会的影响力直接体现在GDP 上,我们直接以GDP 这个硬性直接指标来衡量上海世博会对上海的影响。因此我们运用线性回归的模型预测出在有无上海世博会这两者情况下的GDP 的值,并将运用线性回归得到的数据与上海统计年鉴中的相关数据进行比较运算,算出误差在1.2%左右,这说明我们用线性回归得到的模型能准确地反映出世博会对上海GDP 的影响。运用公式21 1 100%Q Q Q η-=?可以计算出世博对上海GDP 的影响力的大小为1983417833 100%11.2%17833 η-= ?=。 关键词:层次分析法 模糊数学 线性回归 城市基础建设 GDP

1 问题重述 2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。 2 问题分析 对于模型一,为了定量评估2010年上海世博会的影响力,我们首先选取城市基础设施建设的投入这一个侧面,因为通过查找相关数据,我们发现,城市基础设施建设的投入在上海整个GDP的增长中占有很大的比重,对GDP的贡献占主体地位。而层次分析法是对社会经济系统进行系统分析的有力工具。为此,我们通过研究上海统计局的相关数据,使用层次分析法来评估世博会的召开对基础设施建设的投入的影响,目标层为世博会的召开对基础设施建设的投入的影响,准则层依次为电力建设、交通运输、邮电通信、公用事业、市政建设,方案层依次为没有召开世博时的影响、召开世博时的影响。首先我们通过层次分析法算出电力建设、交通运输、邮电通信、公用事业、市政建设的相对权重,然后应用模糊数学中的综合评价法对上海世博会对城市基础设施建设的影响作出综合的评价,应用综合评价法计算出没有召开世博和召开世博两种情况下的权重,从而得出上海世博会的召开对城市基础设施建设的影响。 对于模型二,直接以GDP这个硬性直接指标来衡量上海世博会对上海的影响。先根据上海没有申办世博会的GDP总额的相关数据,建立线性回归模型,由此预测不举办世博会情况下2010年上海市的GDP总额;再由2002年至2009年的GDP值用线性回归预测出举办世博会情况下2010年上海市的GDP总额,并将两种情况进行对比得出世博会对上海GDP的影响。 3 模型假设 3.1假设非典和奥运等重大事件对世博前的城市基础建设的投入影响很小,可以忽略。 3.2 假设不同时期国家的经济实力不同,对城市基础建设的投入影响很小,可以忽略。 3.3 假设我们查到的数据真实可靠。 4符号说明 CI为一致性指标; RI为随机一致性指标; CR为一致性比率; λ为成对比较矩阵的最大特征值; () 1,2,3,4,5 y i=分别为电力建设、交通运输、邮电建设、共用设施、市政建设2010 i 年各项投入金额的理论预测值;

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

全国大学生数学建模竞赛论文模板

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填 写): 我们的参赛报名号为(如果赛区设置报名号的 话): 所属学校(请填写完整的全 名): 参赛队员 (打印并签名) : 1. 2.

3. 指导教师或指导教师组负责人 (打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号): 2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用):

全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号): 论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。

摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。 一、问题的重述 数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。 此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。 这部分的内容是将原问题进行整理,将已知和问题明确化即可。 注意: 在写这部分的内容时,绝对不可照抄原题!

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取 消评奖资格。) 日期:2014 年9 月 15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模论文范文[1]

利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

初中数学建模论文范文

初中数学建模论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 二、数学应用题如何建模 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力

做过的数学建模论文

一、问题的提出 某区域道路网络如图所示,每条道路等级完全相同,某时间段内,有N 辆车要从节点1出发,目的地是节点0(假设该时间段内,路网中没有其它车辆)。在该时间段内,道路截面经过的车辆数越多,车辆在该路段行驶的速度就越慢。 (1)确定有效的行驶路径及其算法; (2)确定每条路径上的通过的车辆数,使N 辆车从节点1到节点0的总行驶时间最小; (3)N=10000,请给出具体的计算结果。 注:横向路段长度是纵向路段长度的2倍。 1 65993 2 80 7 4 二、问题的分析 问题一:确定有效的行驶路径及算法 题目中要求的有效地行驶路径就是可达路径,从节点1出发经过一系列节点最终到达节点0,在11个节点中我们可以任意选择若干个相邻的节点使车辆从节点1出发,到达节点0。其中要求不可以走已经走过的路径,也不可以走闭合回路。 在计算有效路径时,我们可以利用可达矩阵和Lingo 程序来实现。 问题二:确定每条路径上的通过的车辆数,使N 辆车从节点1到节点0的总行驶时间最小 引入各条路径车辆数比例变量M i ,可以得到各路段内动态变化的车流量,假设一个速度与车流量关系的函数,再利用速度与路程的关系可以求出时间矩阵。运用Lingo 程序求解出最小的总行驶时间。 问题三:N=10000,请给出具体的计算结果。 根据引入的各条路经车辆数比例变量以及最小的总行驶时间,带入N=10000算出最小的总行驶时间。

三、问题的假设 1.所有车辆同时出发,不考虑出发时的先后顺序; 2.所有道路无红绿灯,在结点处车辆不存在等待现象; 3.无交通事故; 4.不走回头路,也不走闭合回路; 5.各路段内的车辆都匀速行驶。 四、定义符号说明 N:表示车辆总数; W:可达矩阵,W ij表示车辆可以从i节点到达j节点; X:有效路径矩阵; M i:各条有效路径内截面车辆数的比例变量; B :第i条有效路径上车辆数的比例; i :表示所有有效路径上从i节点到达j节点车辆和的比例C ij 表示从i节点到j节点车辆的速度 V ij: K:表示V与M 的比例系数,是常数; i : 表示从i节点到j节点路段的权值; S ij : 表示从i节点到j节点车辆的行驶时间; T ij minT:表示N辆车从节点1到节点n(节点0)的最小总行驶时间 五.模型的建立和求解 问题一:设n=11 ,节点n就是目的地节点0,以下约束针对任一有效路径。 1,节点i与节点j连通 x ij= 0,节点i与节点j不连通 目标函数为有效路径,即从节点1出发到达节点11所经过的路段和最多为10条,故目标函数为

全国数学建模获奖论文

承诺书 我们仔细阅读了数学建模竞赛选拔的规则. 我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。 我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。 我们选择的题号是(从A/B/C中选择一项填写): 队员签名:1. 2. 3. 日期:年月日

2012年河南科技大学数学建模竞赛选拔 编号专用页 评阅编号(评阅前进行编号): 评阅记录(评阅时使用): 评 阅 人 评 分 备 注

C题数学建模竞赛成绩评价与预测 一、摘要 近20 年来,CUMCM 的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。本文对数学建模竞赛成绩的评价与预测问题进行了建模、求解和相关分析。 对于问题一,首先对广东赛区各院校2008-2011年建模奖励数据进行统计分析,将决策问题分为三个层次,建立多层次模糊综合评判模型。在该模型中,将因素集{国家一等奖,国家二等奖,省一等奖,省二等奖,省三等奖}看作准则层,将2008-2011各年建模情况看作方案层,结合实际情况,给出改进综合评判模型,解得广东金融学院、华南农业大学的总体综合评定成绩分别2.9474、2.7141,排名第一、第二。 对于问题二,首先建立单年的综合评定模型,得出广州赛区各院校2008-2011年的综合评定成绩。鉴于仅有4组数据,分别采用GM(1,1)法、回归曲线最小二乘法、移动平均法进行建模,最后结合实际情况并根据结果对比以上三种模型,确定了移动平均法方案最优,最终得出广东金融学院、华南农业大学的综合评定成绩分别为0.7369、0.6785,依旧排名第一、第二,较好地解决了问题二。 对于问题三,鉴于附件2所给数据冗杂庞大,故从中抽取2008-2011年的建模数据作为样本,分别统计出本科组和专科组在这四年中每年获得国家一等奖和国家二等奖的人数;将问题一中国家一等奖、二等奖的权重进行归一化处理,建立类似问题一的特殊综合评判模型,得出本科组哈尔滨工业大学、解放军信息工程大学的综合评定成绩分别为5.5117、4.6609;专科组海军航空工程学院、太原理工轻纺与美术学院的综合评定成绩分别为1.3931、1.3095,名列各组第一、第二,问题三得到了较好解决。 对于问题四,除全国竞赛成绩、赛区成绩外,讨论了学生的能力、参赛队数、师资力量、学校的综合实力、硬件设施等因素对建模成绩评估的影响,考虑首先对因素集进行模糊聚类分析,然后用层次分析法来进行评价,用BP神经网络结合Matlab软件来进行预测,理论上问题四能够得到较好地得到解决。 关键词: 模糊综合评判模型GM(1,1)模型移动平均法综合评定成绩

全国大学生数学建模竞赛论文模板

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性为主要标准。 所以论文中应努力反映出这些特点。

一、 问题的重述 数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。 此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。 这部分的内容是将原问题进行整理,将已知和问题明确化即可。 注意: 在写这部分的内容时,绝对不可照抄原题! 应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。 二、 模型假设 作假设时需要注意的问题: ①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设! ②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述! ③与题目无关的假设,就不必在此写出了。 三、 变量说明 为了使读者能更充分的理解你所做的工作, 对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意: ①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。 ②要与数学中的习惯相符,不要使用程序中变量的写法 比如: 一般表示圆周率;c b a ,, 一般表示常量、已知量;z y x ,, 一般表示变量、未知量 再比如:变量21,a a 等,就不要写成:a[0],a[1]或a(1),a(2) 四、模型的建立与求解 这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有: ①一定要有分析,而且分析应在所建立模型的前面; ②一定要有明确的模型,不要让别人在你的文章中去找你的模型; ③关系式一定要明确;思路要清晰,易读易懂。

2016五一数学建模b题论文完整版

承诺书 我们仔细阅读了五一数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们授权五一数学建模联赛赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号为(从A/B/C中选择一项填写): 我们的报名参赛队号为: 参赛组别(研究生或本科或专科): 所属学校(请填写完整的全名) 参赛队员(打印并签名) :1. 2. 3. 日期:年月日 获奖证书邮寄地址:邮政编码: 收件人姓名:联系电话:

编号专用页 竞赛评阅编号(由竞赛评委会评阅前进行编号): 裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号): 参赛队伍的参赛号码:(请各参赛队提前填写好):

题目城市工业企业评价及能源分配优化设计 摘要 本文旨在研究能源总量控制下的城市工业企业的评价及能源分配的优化设计。量化分析产业结构及能源消费特征,就此进行工业企业发展水平进行综合评价;基于不同的要求,能源总量控制下对合理能源分配的方案设计与优化。 在问题一中,从题目中所给的附件中工业企业能源消耗、产值、利税、员工人数的数据中挖掘与发现,从中分析出量化产业结构及能源消费特征的指标参数。产业结构的量化指标:产业人员分配结构向量、产业生产结构向量、产业最终产品结构向量及产业消耗结构向量;能源消费的量化指标:产业消耗结构向量、产业人均能耗结构向量,并进行量化,从而两者结合充分量化能源消耗的量化趋势,在向低消耗的可持续协调化经济模式趋近,且其特征值大于1,综合指数为75.35,综合水平较高,可持续发展性高。 针对问题二,建立单目标加权模型,当目标为工业企业产值受到的影响最小时,产值:利税:从业人员≈5:3:2;当目标为工业企业利税受到的影响最小时,产值:利税:从业人员≈5:3:2;当目标为工业企业从业人员受到的影响最小时,产值:利税:从业人员≈3.5:2.5:4;权重确定代入各工业企业能源分配方案的计算表达式,从而确定各工业企业能源分配。 针对问题三,建立模糊多目标加权模型,当目标为工业企业产值、利税、从业人员受到的影响同时最小时,工业企业产值、利税、从业人员的权值进行优化比较,得出最优解为产值:利税:从业人员≈3:1:6;权重确定后代入各工业企业能源分配方案的计算表达式,从而确定各工业企业能源分配。 针对问题四,建立灰色预测模型进行各工业企业能源分配的预测,得到预测计算表达式,从而实现能源的分配。最优方案的利税定量评估,得出结论利税逐年递增,且增幅大于5%。 针对问题五,在能源总量控制的前提下,对城市工业企业进行合理的能源分配,以提高能源利用效率和质量,并阐述合理的政策建议。 关键词:能源分配优化综合评价单目标加权模型模糊多目标加权模型灰色预测模型

相关文档