文档库 最新最全的文档下载
当前位置:文档库 › MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总
MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总

一:MOS管参数解释

MOS管介绍

在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。

MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。

这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。

在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。

MOS管导通特性

导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

MOS开关管损失

不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率M OS管导通电阻一般在几毫欧,几十毫欧左右

MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

MOS管驱动

MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC 大(4V或10V其他电压,看手册)。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

Mosfet参数含义说明

Features:

Vds: DS击穿电压.当Vgs=0V时,MOS的DS所能承受的最大电压

Rds(on):DS的导通电阻.当Vgs=10V时,MOS的DS之间的电阻

Id:最大DS电流.会随温度的升高而降低

Vgs: 最大GS电压.一般为:-20V~+20V

Idm: 最大脉冲DS电流.会随温度的升高而降低,体现一个抗冲击能力,跟脉冲时间也有关系

Pd: 最大耗散功率

Tj: 最大工作结温,通常为150度和175度

Tstg: 最大存储温度

Iar: 雪崩电流

Ear: 重复雪崩击穿能量

Eas: 单次脉冲雪崩击穿能量

BVdss: DS击穿电压

Idss: 饱和DS电流,uA级的电流

Igss: GS驱动电流,nA级的电流.

gfs: 跨导

Qg: G总充电电量

Qgs: GS充电电量

Qgd: GD充电电量

Td(on): 导通延迟时间,从有输入电压上升到10%开始到Vds下降到其幅值90%的时间

Tr: 上升时间,输出电压 VDS 从 90% 下降到其幅值 10% 的时间

Td(off): 关断延迟时间,输入电压下降到 90% 开始到 VDS 上升到其关断电压时 10% 的时间

Tf: 下降时间,输出电压 VDS 从 10% 上升到其幅值 90% 的时间 ( 参考图 4) 。

Ciss: 输入电容,Ciss=Cgd + Cgs.

Coss: 输出电容,Coss=Cds +Cgd.

Crss: 反向传输电容,Crss=Cgc.

二:N沟道MOS管的结构及工作原理

N沟道金属-氧化物-半导体场效应管(MOS管)的结构及工作原理

结型场效应管的输入电阻虽然可达106~109W,但在要求输入电阻

更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的

反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015W。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。

MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽

型两种,二者的区别是增强型MOS管在栅-源电压vGS=0时,漏-源极之间没有导电沟道存在,即使加上电压vDS(在一定的数值范围内),也没有漏极电流产生(iD=0)。而耗尽型MOS管在vGS=0时,漏-源极间

就有导电沟道存在。

一、N沟道增强型场效应管结构

a) N沟道增强型MOS管结构示意图

(b) N沟道增强型MOS管代表符号 (c) P沟道增强型MOS管代

表符号

在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个

高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。

然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极

间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个

电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电

极间是绝缘的。图 1(a)、(b)分别是它的结构示意图和代表符号。代表

符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的

箭头方向与上述相反,如图 1(c)所示。

MOS/CMOS集成电路

MOS集成电路特点:

制造工艺比较简单、成品率较高、功耗低、组成的逻辑电路比较简单,集成度高、抗干扰能力强,特别适合于大规模集成电路。

MOS集成电路包括:

NMOS管组成的NMOS电路、PMOS管组成的PMOS电路及由NMOS和PMOS两种管子组成的互补MOS电路,即CMOS电路。

PMOS门电路与NMOS电路的原理完全相同,只是电源极性相反而已。

数字电路中MOS集成电路所使用的MOS管均为增强型管子,负载常用MOS管作为有源负载,这样不仅节省了硅片面积,而且简化了工艺利于大规模集成。常用的

符号如图1所示。

N沟MOS晶体管

金属-氧化物-半导体(Metal-Oxide-SemIConductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS集成电路。

由p型衬底和两个高浓度n扩散区构成的MOS管叫作n沟道MOS管,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS 管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。

NMOS集成电路是N沟道MOS电路,NMOS集成电路的输入阻抗很高,基本上不需要吸收电流,因此,CMOS与NMOS集成电路连接时不必考虑电流的负载问题。NMOS 集成电路大多采用单组正电源供电,并且以5V为多。CMOS集成电路只要选用与NMOS集成电路相同的电源,就可与NMOS集成电路直接连接。不过,从NMOS到CMOS直接连接时,由于NMOS输出的高电平低于CMOS集成电路的输入高电平,因而需要使用一个(电位)上拉电阻R,R的取值一般选用2~100KΩ。

N沟道增强型MOS管的结构

在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。

然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。

在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。

它的栅极与其它电极间是绝缘的。

图(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由

P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。

N沟道增强型MOS管的工作原理

(1)vGS对iD及沟道的控制作用

① vGS=0 的情况

从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。

② vGS>0 的情况

若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。

排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表

面。

(2)导电沟道的形成:

当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个

N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。

开始形成沟道时的栅——源极电压称为开启电压,用VT表示。

上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。

vDS对iD的影响

如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。

漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS

随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-

vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。

N沟道增强型MOS管的特性曲线、电流方程及参数(1)特性曲线和电流方程

1)输出特性曲线

N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。

2)转移特性曲线

转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线.

3)iD与vGS的近似关系

与结型场效应管相类似。在饱和区内,iD与vGS的近似关系式为

式中IDO是vGS=2VT时的漏极电流iD。

(2)参数

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP ,而用开启电压VT表征管子的特性。

N沟道耗尽型MOS管的基本结构

(1)结构:

N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。

(2)区别:

耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT时才出现导电沟道。

(3)原因:

制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏——源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。

如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。而后者在vGS=0,vGS>0,VP

(4)电流方程:

在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同,即:各种场效应管特性比较

P沟MOS晶体管

金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类, P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间

不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P

型反型层,成为连接源极和漏极的沟道。改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。

P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。

PMOS集成电路是一种适合在低速、低频领域内应用的器件。PMOS集成电路采用-24V电压供电。如图5所示的CMOS-PMOS接口电路采用两种电源供电。采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。

MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。

各种场效应管特性比较

三:SO-8(贴片8脚)封装MOS管IRF7805Z的引脚图。

上图中有小圆点的为1脚

注:下表按电流降序排列(如有未列出的,可回帖,我尽量补充)

封装形式极性型号电流(A) 耐压(V) 导通电阻(mΩ)

SO-8 N型SI4336 22 30 4.2 SO-8 N型IRF7831 21 30 3.6 SO-8 N型IRF7832 20 30 4 SO-8 N型IRF7822 18 30

SO-8 N型IRF7836 17 30 5.7 SO-8 N型IRF8113 17 30 5.6

SO-8 N型SI4404

17 30 8

SO-8 N型FDS6688

16 30 6

SO-8 N型IRF7805Z

16 30 6.8

SO-8 N型IRF7477 14 30 8.5 SO-8 N型IRF8721 14 30 8.5 SO-8 N型IRF7805 13 30

SO-8 N型IRF7805Q 13 30 11 SO-8 N型IRF7413 12 30 18

SO-8 N型TPC8003

12 30 6

SO-8 N型IRF7477 11 30 20

SO-8 N型IRF7811

11 30 12

SO-8 N型IRF7466 10 30 15

SO-8 N型SI4410

10 30 14

SO-8 N型SI4420

10 30 10

SO-8 N型A2700 9 30 7.3 SO-8 N型IRF7807 8.3 30

SO-8 N型SI4812 7.3 30 28 SO-8 N型SI9410 6.9 30 50

SO-8 N型IRF7313

6 30 29

SO-8 P型SI4405 17 30 7.5 SO-8 P型STM4439A 14 30 18 SO-8 P型FDS6679 13 30 9 SO-8 P型SI4411 13 30 8 SO-8 P型SI4463 12.3 20 16 SO-8 P型SI4407 12 30

SO-8 P型IRF7424 11 30 13.5 SO-8 P型IRF7416 10 30 20 SO-8 P型IRF7416Q 10 30 20

SO-8 P型SI4425 9 30 19

SO-8 P型IRF7424 8.8 30 22 SO-8 P型SI4435 8 30 20 SO-8 P型SI4435DY 8 30 20 SO-8 P型A2716 7 30 11.3 SO-8 P型IRF7406 5.8 30 45 SO-8 P型SI9435 5.3 30 50 SO-8 P型IRF7205 4.6 30 70 TO-252 N型FDD6688 84 30 5

TO-3 N型IRF150 40 100 55 TO-220 N型IRF3703 210 30 2.8 TO-220 N型IRL3803 140 30 6

TO-220 N型IRF1405 131 55 5.3

TO-220 N型IRF3205

110 55 8

TO-220 N型BUZ111S 80 55 8 TO-220 N型05N05 75 50 9.5 TO-220 N型IRF2804 75 40 2

TO-220 N型60N06

60 60 14

TO-220 N型50N03L 28 25 21

TO-220 N型BTS120

19 100 100

TO-220 N型BTS110

10 100 200

TO-220 N型06N60 5.5 600 750

MOS管的结构和工作原理

在P 型衬底上,制作两个高掺杂浓度的N 型区,形成源极(Source )和漏极(Drian ),另外一个是栅极(Gate ).当Vi=VgsVgs 并且在Vds 较高的情况下,MOS 管工作在恒流区,随着Vi 的升高Id 增大,而Vo 随这下降。 常用逻辑电平:TTL 、CMOS 、LVTTL 、LVCMOS 、ECL (Emitter Coupled Logic )、PECL (Pseudo/Positive Emitter Coupled Logic )、LVDS (Low Voltage Differential Signaling )、GTL (Gunning Transceiver Logic )、BTL (Backplane Transceiver Logic )、ETL (enhanced transceiver logic )、GTLP (Gunning Transceiver Logic Plus );RS232、RS422、RS485(12V ,5V , 3.3V );TTL 和CMOS 不可以直接互连,由于TTL 是在0.3-3.6V 之间,而CMOS 则是有在12V 的有在5V 的。CMOS 输出接到TTL 是可以直接互连。TTL 接到CMOS 需要在输出端口加一上拉电阻接到5V 或者12V 。 cmos 的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl 的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos 可直接驱动ttl;加上拉电阻后,ttl 可驱动cmos. 1、当TTL 电路驱动COMS 电路时,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V ),这时就需要在TTL 的输出

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总 一:MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。 MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。 这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率M OS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。

MOS管工作原理及其驱动电路

功率场效应晶体管MOSFET 技术分类:电源技术模拟设计 | 2007-06-07 来源:全网电子 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

MOS管工作原理及其驱动电路

MOS管工作原理及其驱动电路 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导 体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的 栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。 结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单, 需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流 容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值 可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对 于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的 载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同, 但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂 直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件 的耐压和耐电流能力。

详细讲解MOS管工作原理

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

MOS管工作原理动画示意图也有N沟道和P沟道两类

MOS管工作原理动画示意图也有N沟道和P沟道两类 绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。 与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。 根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S 间形成电流。 当栅极加有电压时,若0VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID

mos管的结构和工作原理

在P型衬底上,制作两个高掺杂浓度的N型区,形成源极(Source)和漏极(Drian),另外一个是栅极(Gate).当 Vi=VgsVgs并且在Vds较高的情况下,MOS管工作在 恒流区,随着Vi的升高Id增大,而Vo随这下降。 常用逻辑电平:TTL、CMOS、LVTTL、LVCMOS、ECL(Emitter Coupled Logic)、PECL(Pseudo/Positive Emitter Coupled Logic)、LVDS(Low Voltage Differential Signaling)、GTL(Gunning Transceiver Logic)、BTL(Backplane Transceiver Logic)、ETL(enhanced transceiver logic)、GTLP(Gunning Transceiver Logic Plus);RS232、RS422、RS485(12V,5V,3.3V);TTL和CMOS不可以直接互连,由于TTL是在0.3-3.6V之间,而CMOS则是有在12V的有在5V的。CMOS输出接到TTL是可以直接互连。TTL接到CMOS需要在输出端口加一上拉电阻接到5V或者12V。 cmos的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos可直接驱动ttl;加上拉电阻后,ttl可驱动cmos. 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的搞电平值。

N沟道和P沟道MOS管

MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管 在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种。 我们常用的是NMOS,因为其导通电阻小,且容易制造。在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低

端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 2.MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 3.MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极

mos管工作原理及详解

万联芯城致力于打造一个方便快捷的电子物料采购平台。采购MOS管等电子元器件,就到万联芯城,万联芯城MOS场效应管主打 IR,AOS,VISHAY等知名国际品牌,均为原装进口货源,当天可发货。点击进入万联芯城 点击进入万联芯城

MOS管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管工作原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 MOS管工作原理图电源开关电路详解 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。

它一般有耗尽型和增强型两种。本文使用的为增强型MOS MOS管,其内部结构见mos管工作原理图。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

N沟道增强型MOS管的工作原理

N沟道增强型MOS管的工作原理 发布时间:2010.04.28 | 查看次数:484 N沟道增强型MOS管的工作原理 (1)vGS对iD及沟道的控制作用 ① vGS=0 的情况 增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。 ② vGS>0 的情况 若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。 排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。 (2)导电沟道的形成: 当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。 开始形成沟道时的栅——源极电压称为开启电压,用VT表示。 上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS ≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS 管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。 vDS对iD的影响 当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。 漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断。再继续增大vDS,夹断点将向源极方向移动。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。 N沟道耗尽型MOS管的基本结构 (1)结构: N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。 (2)区别: 耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT 时才出现导电沟道。 (3)原因:

MOS管的工作原理

概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类: 1.场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类. 见下图 : 3.场效应管的主要参数 : Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.

Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM 4.结型场效应管的管脚识别: 判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道. 判定源极S、漏极D:

讲解MOS管工作原理及分析

管驱动电路 讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个

MOS管工作原理及其驱动电路

功率场效应晶体管 MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

MOS管电路工作原理详解

MOS管电路工作原理详解,MOS管工作原理文章-KIA MOS管 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N 沟道共4种类型,但实际应用的只有增强型的N沟道MOS管型号和增强型的P沟道MOS管型号,所以通常提到NMOS,或者PMOS指的就是这两种。至于为什么不使用耗尽型的 MOS管,不建议刨根问底。对于这两种增强型MOS管,比较常用的是NMOS。原因是导通 电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由 于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但 没有办法避免,后边再详细介绍。在MOS管原理图上可以看到,漏极和源极之间有一个寄 生二极管。这个叫体二极管,在驱动感性负载,这个二极管很重要。顺便说一句,体二极管 只在单个的MOS管中存在,在集成内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。NMOS的特性,Vgs大于一定的值就会导通,适 合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。PMOS的 特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽 然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在 高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的会减小导通损耗。现在的小功率MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬 间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多, 而且开关频率越快,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。 缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

p沟道mos管工作原理

P通道为空穴流,N通道为电子流,所以场效应三极管也称为单极性三极管。FET 乃是利用输入电压(Vgs)来控制输出电流(Id)的大小。所以场效应三极管是属于电压控制元件。它有两种类型,一是结型(接面型场效应管)(JFET),一是金氧半场效应三极管,简称MOSFET,MOSFET又可分为增强型与耗尽型两种。 N沟道,P沟道结型场效应管的D、S是由N(或P)中间是栅极夹持的通道,这个通道大小是受电压控制的,当然就有电流随栅极电压变化而变。可以看成栅极是控制电流阀门。 增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。栅极电压高低决定电场的变化,进而影响载流子的多少,引起通过S、D电流变化。 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。 主板上的PWM(Plus Width Modulator,脉冲宽度调制器)芯片产生一个宽度可调的脉冲波形,这样可以使两只MOS管轮流导通。当负载两端的电压(如CPU需要的电压)要降低时,这时MOS管的开关作用开始生效,外部电源对电感进行充电并达到所需的额定电压。当负载两端的电压升高时,通过MOS管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了“电源”,当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道。 MOS管 MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。因此,MOS管有时被称为场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。而在主板上的电源稳压电路中,MOSFET扮演的角色主要是判断电位,它在主板上常用“Q”加数字表示。 一、MOS管的作用是什么? 目前主板或显卡上所采用的MOS管并不是太多,一般有10个左右,主要原因是大部分MOS管被整合到IC芯片中去了。由于MOS管主要是为配件提供稳定的电压,所以它一般使用在CPU、AGP插槽和内存插槽附近。其中在CPU与AGP插槽附近各安排一组MOS管,而内存插槽则共用了一组MOS管,MOS管一般是以两个组成一组的形式出现主板上的。 二、MOS管的性能参数有哪些? 优质的MOS管能够承受的电流峰值更高。一般情况下我们要判断主板上MOS 管的质量高低,可以看它能承受的最大电流值。影响MOS管质量高低的参数非常多,像极端电流、极端电压等。但在MOS管上无法标注这么多参数,所以在MOS 管表面一般只标注了产品的型号,我们可以根据该型号上网查找具体的性能参数。 还要说明的是,温度也是MOS管一个非常重要的性能参数。主要包括环境温度、管壳温度、贮成温度等。由于CPU频率的提高,MOS管需要承受的电流也随

N沟道MOS管的结构及工作原理

N沟道MOS管的结构及工作原理 N沟道金属-氧化物-半导体场效应管(MOS管)的结构及工作原理 结型场效应管的输入电阻虽然可达106~109W,但在要求输入电阻更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015W。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。 MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽型两种,二者的区别是增强型MOS管在栅-源电压vGS=0时,漏-源极之间没有导电沟道存在,即使加上电压vDS(在一定的数值范围内),也没有漏极电流产生(iD=0)。而耗尽型MOS管在vGS=0时,漏-源极间就有导电沟道存在。 一、N沟道增强型场效应管结构 a) N沟道增强型MOS管结构示意图

(b) N沟道增强型MOS管代表符号 (c) P沟道增强型MOS管代 表符号 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图 1(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图 1(c)所示。 二、N沟道增强型场效应管工作原理 1.vGS对iD及沟道的控制作用 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流iD≈0。 若在栅-源极间加上正向电压,即vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个

MOS管概述

基本电子电路系列——MOS管 MOS管学名是场效应管,是金属-氧化物-半导体型场效应管,英文:MOSFET(Metal Oxide Semiconductor Field Effect Transistor),属于绝缘栅型。本文就结构构造、特点、实用电路等几个方面用工程师的话简单描述。 其结构示意图: 解释1:沟道 上面图中,下边的p型中间一个窄长条就是沟道,使得左右两块P型极连在一起,因此mos管导通后是电阻特性,因此它的一个重要参数就是导通电阻,选用mos管必须清楚这个参数是否符合需求。 解释2:n型 上图表示的是p型mos管,读者可以依据此图理解n型的,都是反过来即可。因此,不难理解,n型的如图在栅极加正压会导致导通,而p型的相反。 解释3:增强型 相对于耗尽型,增强型是通过“加厚”导电沟道的厚度来导通,如图。栅极电压越低,则p型源、漏极的正离子就越靠近中间,n衬底的负离子就越远离栅极,栅极电压达到一个值,叫阀值或坎压时,由p型游离出来的正离子连在一起,形成通道,就是图示效果。因此,容易理解,栅极电压必须低到一定程度才能导通,电压越低,通道越厚,导通电阻越小。由于电场的强度与距离平方成正比,因此,电场强到一定程度之后,电压下降引起的沟道加厚就不明显了,也是因为n型负离子的“退让”是越来越难的。耗尽型的是事先做出一个导通层,用栅极来加厚或者减薄来控制源漏的导通。但这种管子一般不生产,在市面基本见不到。所以,大家平时说mos管,就默认是增强型的。 解释4:左右对称 图示左右是对称的,难免会有人问怎么区分源极和漏极呢?其实原理上,源极和漏极确实是对称的,是不区分的。但在实

mos管工作原理

在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的 N+区,并用金属铝引出两个电极,分别作漏极D和源极S。然后在半导体表面复 盖一层很薄的二氧化硅(SiO 2 )绝缘层,在漏源极间的绝缘层上再装上一个铝电极;作为栅极。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图5.2.1(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P 沟道增强型MOS管的箭头方向与上述相反,如图XX_01所示。 (a) N沟道增强型MOS管结构示意图 (b) N沟道增强型MOS 管代表符号(c) P沟道增强型MOS 管代表符号 图XX_01 1.v GS 对i D 及沟道的控制作用

MOS 管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图XX_01(a )可以看出,增强型MOS 管的漏极d 和源极s 之间有两个背靠背的PN 结。当栅源电压v GS =0时,即使另上漏源电压v DS ,而且不论v DS 的极性如何,总有一个PN 结处于反偏状态,漏源极间没有导电沟道,所以这时漏极电流i D ≈0。 若在栅源极间加上正向电压,即v GS >0,则在栅极和衬底之间的SiO 2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P 型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P 衬底中的少子电子被吸引到衬底表面。当v GS 数值较小,吸引电子的能力不强时,漏源极之间仍无导电沟道出现,如图XX_01(b)所示。v GS 增加时,吸引到P 衬底表面层的电子就增多,当v GS 达到某一数值时,这些电子在栅极附近的P 衬底表面便形成一个N 型薄层,且与两个N +区相连通,在漏源极间形成N 型导电沟道,其导电类型与P 衬底相反,故又称为反型层如图XX_01(c)所示。v GS 越大,作用于半导体表面的电场就越强,吸引到P 衬底表面的 (a) (b) (c) 图XX_01

n沟道mos管的结构和工作原理

N沟道MOS管的结构及工作原理 2010-11-09 19:53:04| 分类:晶体管|字号订阅 N沟道金属-氧化物-半导体场效应管(MOS管)的结构及工作原理 结型场效应管的输入电阻虽然可达106~109W,但在要求输入电阻 更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的 反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015W。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。 MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽 型两种,二者的区别是增强型MOS管在栅-源电压vGS=0时,漏-源极之间没有导电沟道存在,即使加上电压vDS(在一定的数值范围内),也没有漏极电流产生(iD=0)。而耗尽型MOS管在vGS=0时,漏-源极间 就有导电沟道存在。 一、N沟道增强型场效应管结构 a) N沟道增强型MOS管结构示意图

(b) N沟道增强型MOS管代表符号 (c) P沟道增强型MOS管代表符号 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图 1(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图 1(c)所示。 二、N沟道增强型场效应管工作原理 1.vGS对iD及沟道的控制作用 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流iD≈0。 若在栅-源极间加上正向电压,即vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个

相关文档
相关文档 最新文档