文档库 最新最全的文档下载
当前位置:文档库 › 构件截面承载力

构件截面承载力

构件截面承载力
构件截面承载力

第三章 构件截面承载力--强度

钢结构承载能力分3个层次

截面承载力:材料强度、应力性质及其在截面上分布属强度问题。

构件承载力:构件最大截面未到强度极限之前因丧失稳定而失稳,取决于构

件整体刚度,指稳定承载力。

结构承载力:与失稳有关。

3.1 轴心受力构件的强度及截面选择

3.1.1 轴心受力构件的应用及截面形式

主要用于承重钢结构,如平面、空间桁架和网架等。

轴心受力截面形式:1)热轧型钢截面2)冷弯薄壁型钢截面3)型钢和钢板

连接而成的组合截面(实腹式、格构式)(P48页)

对截面形式要求:1)提供强度所需截面积2)制作简单3)与相邻构件便于

连接4)截面开展而壁厚较薄,满足刚度要求(截面积决定了稳定承载力,面积大整体刚度大,构件稳定性好)。

3.1.2 轴心受拉构件强度

由εσ-关系可得:承载极限是截面平均应力达到抗拉强度u f ,但缺少安

全储备,且y f 后变形过大,不符合继续承载能力,因此以平均应力y f ≤为准则,以孔洞为例。

规范:轴心受力构件强度计算:规定净截面平均应力不应超过钢材强度设计值

f A N n ≤=/σ

N :轴心拉力设计值; An :构件净截面面积;R y f f γ/=: 钢材抗拉强度设计值 R γ:构件抗力分项系数Q235钢078.1=R γ,Q345,Q390,Q420111.1=R γ

49页孔洞理解见书

例题P49

3.1.3 轴心受压构件强度

原则上与受拉构件没有区别,但一般情况下,轴心受压构件的承载力由稳定

性决定,具体见4章。

3.1.4 索的受力性能和强度计算

钢索广泛用于悬索结构,张拉结构,桅杆和预应力结构,一般为高强钢丝组

成的平行钢丝束,钢绞线,钢丝绳等。

索是一种柔性构件,内力不仅与荷载有关,而且与变形有关,具有很强几何非线性,但我们通常采用下面的假设:1)理想柔性,不能受压,也不能抗弯。2)材料符合虎克定理。在此假设下内力与位移按弹性阶段进行计算。加载初期(0-1)存在少量松弛变形,主要部分(1-2)线性关系,接近强度极限(2-3)明显曲线性质(图见下)

实际工程对钢索预拉张,形成虚线应力—应变关系,很大范围是线性的

高强度钢丝组成钢索初次拉伸时应力—应变曲线

钢索强度计算采用容许应力法:k f A N k k //max

k N :钢索最大拉力标准值 A :钢索有效截面积

k f :材料强度标准值 k :安全系数2.5-3.0

3.2 梁的类型和强度

3.2.1 梁类型

按制作方法:

型钢梁:热轧型钢梁(工字梁、槽钢、H 型钢)。

冷弯薄壁型钢梁(卷边槽钢、Z 型钢)

特点:加工方便成本低,设计中优先采用,一般用于跨度不大,荷

载小的结构。

组合梁:焊接组合梁(常用腹板+2翼缘,焊接工字形截面;双腹板箱形

梁、异种钢组合梁、蜂窝梁、契形梁);

铆接组合梁:费料,费工以淘汰;

钢与混凝土组合梁:充分利用钢抗拉,混凝土抗压性能好的特

点,加工组合。

承载能力极限状态计算:截面强度,构件整体稳定性,局部稳定。重复荷载n>105时需要进行疲劳验算。

3.2.2 梁弯曲,剪切强度

1. 梁的正应力:

纯弯曲情况下弯矩与挠度关系 强度计算中钢材б—ε简化为理想弹塑性体 e M :截面最外纤维应力达到屈服强度时的弯矩

p M :截面全部屈服时弯矩。硬化阶段,最终弯矩超过p M 。

以工字型梁介绍梁在外载作用下呈现的4个阶段

1)弹性工作阶段:(a)弯矩较小,在截面上应力小于屈服点,对需要计算疲劳的梁及冷弯型钢常以及y f =max σ为承载力极限状态;

2)弹塑性阶段:(b)载荷增加,翼缘屈服,腹板也部分屈服,一般受弯构件,以截面进入塑性作为承载力极限。

3)塑性工作阶段:?荷载再增加,截面出现塑性铰,对于只有一个截面弯矩最大的,原则上可以将塑性铰弯矩为承载能力极限状态。

4)应变硬化阶段:E-Est,应力增加,应变增加,强度计算一般不利用这一阶段。

弯矩值:

A 弹性阶段最大弯矩:y n e f W M =

y f :钢屈服强度 n W :梁净截面模量(材力中弯曲截面系数,抗弯截面系数)

max /y I W x nx =,max /x I W y ny =, I :惯性矩?=A

x dA y I 2

B在塑性阶段,产生塑性铰时的最大弯矩为:y pn p f W M =

pn W :梁塑性净截面模量,n n pn S S W 21+=,n S 1、n S 2(中和轴以上、下对中和轴面积矩)(中和轴是和弯曲主轴平行的截面面积平分线)

形状系数F :n p W W /称为截面的形状系数,对于矩形截面, F=1.5;圆形截面,F=1.7;圆管截面的F= 1.27

梁正应力计算:

A对不需要计算疲劳的受弯构件,允许截面有一定程度的塑性发展: 梁的正应力计算公式

单向弯曲:f W M nx x x ≤=)/(γσ,

双向弯曲:f W M W M ny y y nx x x ≤+=)/()/(γγσ

Mx ,My :梁绕X 轴,Y 轴弯矩设计值,Wnx ,Wny :对X ,Y 轴净截面模量 f :抗弯强度设计值,y x γγ,:截面塑性发展系数,按表3-4取用,对计算疲劳梁,不考虑截面塑性发展,如梁受压翼缘自由外伸宽度与厚度比大于y f /23513,1,=y x γγ以免翼缘因全塑性,出现局部屈曲

B当固端梁和连续梁采用塑性设计时,塑性铰截面的弯矩应满足下式

f W M pnx x ≤

Wpnx :对x 轴的塑性净截面模量;f :钢材的抗弯强度设计值

C冷弯型钢梁正应力强度:f W M enx ≤=/max σ

enx W :对X 轴较小有效净截面模量,截面全部有效即为净截面模量

2. 梁的剪应力:

对于工字型和槽形等薄壁开口截面,有弯曲剪力流理论:即截面上切应力方向就象水管中主管与支管中水流方向一样,最大剪应力在腹板上中和轴处。

剪应力满足:v w f It VS I ≤=/

V :计算截面的剪力设计值; I :梁的毛截面惯性矩; S:计算剪应力处以上(或以左/右)毛截面对中和轴的面积矩; tw :计算点处截面的宽度或板件的厚度; Fv :钢材抗剪强度设计值

3.2.3 梁扭转

按照荷载和支承条件的不同:分自由扭转和约束扭转

1.自由扭转(圣维南扭转)

概念:截面不受任何约束,可自由产生翘曲变形的扭转。

矩形截面:当t b ≥,弹性力学理论: 扭矩θt s GI M = ;最大剪应力t s I t M /max =τ

Ms :截面上的扭矩; G :材料的剪切模量 ; t :截面厚度;

θ:杆件单位长度的扭转角,常称为扭转率;

It :扭转常数或扭转惯性矩,具体见材料力学弹性力学

矩形:3)3/1(bt I t ≈

对于薄板组合开口截面,可以看做由几个狭长矩形截面所组成

∑==n

i i i t t b I 13

3/1 热轧型钢截面,板件交接处的圆角使厚度局部增大∑==n

i i i t t b k I 13

3/1 k :依截面形状而定的常数,可参照表3-1

薄板组成的闭合截面箱形梁,截面内部形成闭合形剪力流。

)/(/42?=t d A I s t A 为闭合截面板件中线所围成的面积,即A=bh ;?t d s /:沿壁板中线一周的积分()//(221t h t b +)

2.约束扭转

概念:杆件在扭转荷载作用下由于支承条件或荷载条件的不同,截面不能完全自由地产生翘曲变形,即翘曲变形受到约束的扭转。

约束扭转下梁会产生剪应力(自由扭转剪应力s τ翼缘弯曲而产生的剪应力

w τ(弯曲扭转剪应力)

),而且同时产生正应力,称其为弯曲扭转正应力。 自由扭转剪应力产生的扭矩:θt s GI M =

总扭矩=自由扭转剪应力s τ产生扭矩S M +弯曲扭转剪应力w τ产生扭矩w M 开口薄壁杆件约束扭转公式:W S T M M M +=??ω'''-'=EI GI t

? :扭转角;t GI :抗扭刚度;ωEI :翘曲刚度。

工字型截面4/2/22h I h I I y f ==ω翘曲常数或扇性惯性矩

一个公式(3-21)

3.约束扭转正应力:由翼缘侧向弯矩产生

工字形截面梁:2//?σ''-==Ehx I x M f f w f I :梁翼缘绕y 轴惯性矩 冷弯槽钢,Z 型钢等非双轴对称截面 ωσW B w /= B :双弯矩(双力矩),

工字形钢截面()

4/2/2h I I EI h hEI h M B y f f =''-=?''-==ωω?? ωW :梁截面扇性模量

对于工字形截面梁 ωωωω/)2//(I hx I W ==

2/hx =ω:称为(x ,h/2)点扇性坐标

3.3 梁的局部压应力和组合应力

3.3.1 局部压应力

首先见书图3-25:

梁在承受固定集中荷载处压力F 分布范围:

无加劲肋:R y z h h a l 25++= ; 移动荷载 :y z h a l 5.2+=

a: 集中荷载沿梁跨度方向的支承长度,对钢轨上的轮压可取为5Omm

y h :自梁顶面(或底面)至腹板计算高度边缘的距离,焊接梁为翼缘厚 度,对轧制型钢梁包括翼缘厚度和圆弧部分;R h :轨道的高度,对无轨道的梁为0

在腹板计算高度边缘处的局部压应力验算公式为f l t F z w c ≤=/ψσ

F:集中荷载,对动力荷载应考虑动力系数; f :钢材抗压强度设计值

ψ:集中荷载增大系数,对重级工作制吊车梁取ψ=1.35,其他梁ψ =1.0 若验算不满足,对于固定集中荷载可设置支承加劲肋,对于移动集中荷载则需要重选腹板厚度

3.3.2 多种应力的组合效应

1. 梁在受弯的同时受剪:验算公式:f 1.1322≤+τσ;

2.弯矩+剪力+局压力,验算公式:f c c 122

23βτσσσσ≤+?-+ c σσ与同号,1.11=β;c σσ与异号,2.11=β

3.弯,剪,扭 σ弯+约束扭转正应力w σ

τ剪+自由扭转剪应力s τ+约束扭转剪应力w τ

正应力验算公式:f W B W M enx ≤+=ωσ//

3.4 按强度条件选择梁截面

梁不会整体失稳时,常按强度条件确定梁的截面,包括初选截面和截面验算。

3.4.1 初选截面

按强度条件选择梁截面,主要是满足抗弯条件下选出经济合理的截面

抗弯能力的指标是截面模量 )/(f M W x x nx γ=

x γ:塑性发展系数,对工字钢和H 型钢都取1.05

1. 截面小:根据nx W 可以直接由型钢规格表中选出适用的截面工字钢和H 型钢

2. 截面较大:选用由两块翼缘板和一块腹板组成的焊接工字钢截面。

确定焊接截面的尺寸

a.首先要定出梁的高度

从下列三个方面加以考虑:

(1)容许最大高度max h : 建筑设计或工艺设备需要的净空所允许的限值

(2)容许最小高度min h :依刚度条件,使梁的挠度满足正常使用极限状态的要求。(以均布荷载作用下的简支梁为例)

其最大挠度计算公式:

()Eh

l h EW Ml M EI l ql EI l EI ql 48/10)2/48/(5)48/(5)8/()48/5(384/5222224?==?=?==συ 注意:正常使用极限状态按荷载标准值考虑,当梁的强度充分利用时s f γσ/= ,

f:抗拉强度设计值;s γ荷载分项系数近似取为1.3

[]υυ≤?=)3.148/(102Eh fl (梁的允许挠度)

;或[]V l E f l l /)3.148/(10/min ??≥ 均布荷载下简支梁Q235钢梁最小高度与允许扰度关系见表3.2其它荷载可参考

(3)经济高度:经验公式()cm W h x e 3073-=

Wx :梁所需要的截面抵抗矩(截面模量)

根据上述三个条件,实际所取用的梁高h : max min h h h ≤≤ he h ≈

b.腹板高度w h 可取为比h 略小的数值,最好为50mm 的倍数。

腹板厚度(1)抗剪能力 :)/(v w w f h v t ?=α

α:梁端翼缘截面无削弱1.2,梁端翼缘截面有削弱1.5

(2) 局部稳定: 经验公式估算:11/w w h t =符合钢板现有规格,

并不小于6mm

c.翼缘尺寸

梁的截面模量h h bt h h t h I y I W x w w x x //)6/1(/2/213max ?+?===

初选截面时可取:w h h h ≈≈1,w w w x bth h t W +=2或6//w w w x h t h W bt -=

算得bt 当利用部分塑性05.1=x γ 悬伸宽厚比应y f /23513≤

当不利用部分塑性0.1=x γ 悬伸宽厚比应y f /23515≤

通常可按b=25t 选择b 和t 一般6/5.2/h b h >>

3.4.2 梁截面验算

初选时用了近似,未包括自重,重新验算要加上自重。

验算:弯曲正应力,剪应力,局压应力,折算应力,此外有刚度,局部稳压 例题见书。

3.4.3 梁截面沿长度变化

目前,截面形状由弯矩决定,如能随弯矩变化,仅依弯矩产生正应力考虑,梁最优形状是将净截面抵抗矩按抛物形图形变化,但这样比较费工,实际上梁截面长度改变有两种方法。

1是变化梁的高度 梁的下翼缘做成折线外形, 翼缘板的截面积不变,可使梁的支座处高度显著减小,降低建筑物的高度和简化连接构造。

2 是变化翼缘板面积来改变梁的截面,单层翼缘板的焊接梁, 不致产生严重的应力集中,且使梁具有平的外表面,对于承受均布荷载或多个集中荷载作用的简支梁,约在距两端支座l/6处改变截面比较经济。(下面推导)

设在距支座al 处截面改变,上、下翼缘板宽度由b 改为1b ,翼缘板的截面积由f A 变为1f A 。改变翼缘截面后节约的钢材体积为()al A A Vs f f 14-= 梁跨中截面所需抵抗矩为 )8/()/(2max f ql f M W x x x γγ==

截面改变处的弯矩 ()2/)2/(2/2221a a ql q x qlx M -=-=

截面抵抗矩为 ())2/()/(2211f a a ql f M W x x x γγ-==

由近似公式(3-42)求翼缘截面bt

跨中6/)8/(6//2w w w x w w w x f h t fh ql h t h W A bt -=-==γ

改变处()6/)2/(221w w w x f h t fh a a ql A --=γ

故钢体积改变()

32344)2/(a a a fh ql V w x s +-=γ

截面改变最优位置0/=da dV s 得 012812=+-a a 求得6/1=a

为防止应力集中,应将宽板由截面改变位置以4:1≤斜角向弯矩较小处过渡。 对于多层翼缘板的梁,可以采用切断外层翼缘板的方法来改变梁的截面, 为了保证在理论切断点处外层翼缘板能够部分参加工作,实际切断点位置应向弯矩较小一侧延长长度1l ,并应具有足够的焊缝。

当被切断翼缘板的端部有正面焊缝

若t h f 75.0≥ b l ≥1 t h f 75.0< b l 5.11≥

b 和t 分别为外层翼缘板的宽度和厚度, f h 为侧面角焊缝和正面角焊缝的焊脚尺寸

当无正面焊缝 b l 21≥ 适合不考虑整体失稳梁,

考虑整体失稳梁不易改变截面。

3.5 梁的内力重分和塑性设计

按理论弹塑性应力应变关系(简支梁):跨中出塑性铰,发生强度破坏。

超静定梁:

1步:C B A M M M >=所以A ,B 形成塑性铰,p B A M M M == 2/12l M q p =

可继续承载

2步:跨中p c M M =形成塑性铰达承载能力极限。2/16l M q p =

内力重分布(概念):超静定结构,出现一塑性铰,内力会重新分布,使其它截面出现塑性铰,形成机构,这种由于塑性铰的形成,而使梁中内力发生改变的现象。

塑性设计要求钢材应能保证梁端截面有较大的塑性应变而不致断裂,只用于不直接承受动力荷载的固端梁和连续梁。梁的弯曲强度应符合下式要求:

f W M pnx x ≤

Mx:弯矩设计值; f:钢材抗拉强度设计值;Wpnx:对x 轴的塑性净截面模量。 塑性设计: 以结构形成机构作为极限状态,还有两个条件:1局部屈曲要求:板件的宽厚比应符合表3-3的规定。2构件弯扭屈曲:在出现塑性铰的截面处,必须设置侧向支承。(见75页)

3.6拉弯、压弯构件的应用和强度计算

3.6.1拉弯、压弯构件的应用

拉弯构件:

1)形式:(见图)

2)构件截面形式:承受的弯矩小,轴拉力大,它的截面形式和一般轴心拉杆一样。

弯矩大时,采用在弯矩作用平面内有较大抗弯刚度的截面。

3)破坏形式:a.实腹式截面出现塑性铰是拉弯构件承载能力的极限;b 对于格

构式拉弯构件、冷弯薄壁型钢拉弯构件,截面边缘的纤维开始屈服达到承载能力的极限。c.对于力很小而弯矩大的拉弯构件, 弯扭失稳的破坏。受压部

分的板件也存在局部屈曲的可能性。(该项可能性不大)

压弯构件

1)形式:(见书)

2)截面形式:a 承受弯矩很小而轴压力很大,一般轴心受压构件相同。b 弯矩相

对很大,采用截面高度较大的双轴对称截面,还采用单轴对称截面有实腹式和格构式两种,都是在受压较大一侧分布着更多的材料。

3)破坏形式: a 端弯矩很大、或截面局部削弱而发生强度破坏;b 一个对称轴

的平面内作用有弯矩而非弯矩作用的方向有足够支承,能阻止侧向位移和扭转,弯矩作用的平面内发生弯曲失稳破坏;c 侧向缺乏足够支承,也有可能发生弯扭失稳破坏。(双向受弯总发生空间弯扭破坏);d 局部屈曲。

3.6.2 拉弯和压弯构件的强度计算

承受静力荷载作用的实腹式拉弯和压弯构件, 受力最不利的截面出现塑性铰时即达到构件的强度极限状态。

以矩形截面压弯构件的受力状态来分析塑性铰形成过程:

1.y f <压σ:截面处于弹性状态 ;

2.y f <拉σ受压区进塑性状态;

3.受压、拉区部分屈服

4.受拉、受压区完全屈服形成塑性铰 分析出现塑性铰时,压力N 与弯矩M 关系:

h

bhf y f by dA N y y A /2200?=?==?σ

()()()

4//412

/2/4/2/4/2/220200000h y f bh y y b f y h y y h b f h h b f ydA M y y A

y y -?=??--+?-??+???==?σ只有轴线压力,截面所能承受的最大压力Np= Afy=bhfy

只有弯矩,截面所能承受的最大弯矩4/2y y p f bh f W Mp ?==

分别代人上面两式后消去0y 可以得到N 和M 的相关关系式

()()1//2

=+p

p M M N N (矩形,工字型公式推导类似无,见下图)

计算压弯(拉弯)构件的强度准则:

(1)边缘纤维屈服准则: 受力最大截面边缘处的最大应力,达到屈服时,即认为构件达到了强度极限。计算疲劳的构件和部分格构式构件

(2)全截面屈服准则: 构件最大受力截面形成塑性铰为强度极限。

(3)部分发展塑性准则: 构件最大受力截面的部分受压区和受拉区进入塑性为强度极限, 一般构件以这一准则作为强度极限。

单向压弯(拉弯)构件的强度计算公式为:f W M A N nx x x n ≤±)/(/γ 双向压弯(拉弯)构件的强度计算公式为:

f W M W M A N ny y y nx x x n ≤±±)/()/(/γγ

An,Wn :为构件净截面面积和净截面抵抗矩;

y x γγ,:截面塑性发展系数,对动力荷载影响构件取1。其余参见表3-4。

第五章-受弯构件斜截面承载力计算

第五章受弯构件斜截面承载力计算 本章的意义和内容:通过本章的学习了解梁弯剪区出现斜裂缝的种类和原因,斜截面破坏的主要形态;了解影响受弯构件斜截面受剪承载力的主要因素及如何通过设计、计算防止斜截面破坏的发生。本章的主要内容有:斜截面破坏的主要形态,影响斜截面破坏的主要原因,影响受弯构件斜截面受剪承载力的主要因素,斜截面承载能力计算的方法和公式,防止斜截面破坏发生的设计方法。 本章习题内容主要涉及:受弯构件斜截面剪切破坏的主要形态,影响受弯构件斜截面受剪承载力的主要因素,防止受弯构件斜截面剪切破坏的方法及计算公式。 一、概念题 (一)填空题 1. 影响受弯构件斜截面受剪承载力的主要因素为:、、 、以及。 2. 无腹筋梁的抗剪承载力随剪跨比的增大而,随混凝土强度等级的提高而。 3. 防止板产生冲切破坏的措施包括:、、 、。 4. 梁的受剪性能与剪跨比有关,实质上是与和的相对比值有关。 5. 钢筋混凝土无腹筋梁发生斜拉破坏时,受剪承载力取决于;发生斜压破坏时,受剪承载力取决于;发生剪压破坏时,受剪承载力取决于 。 6. 受弯构件斜截面破坏的主要形态有、和。

7.区分受弯构件斜截面破坏形态为斜拉破坏、剪压破坏和斜压破坏的主要因素为和。 8. 梁中箍筋的配筋率ρsv的计算公式为:。 9. 有腹筋梁沿斜截面剪切破坏可能出现三种主要破坏形态。其中,斜压破坏是 而发生的;斜拉破坏是由于而引起的。 10. 规范规定,梁内应配置一定数量的箍筋,箍筋的间距不能超过规定的箍筋最大间距,是保证。 11. 在纵筋有弯起或截断的钢筋混凝土受弯梁中,梁的斜截面承载能力除应考虑斜截面抗剪承载力外,还应考虑。 12. 钢筋混凝土梁中,纵筋的弯起应满足的要求、 和的要求。 13. 为保证梁斜截面受弯承载力,梁弯起钢筋在受拉区的弯点应设在该钢筋的充分利用点以外,该弯点至充分利用点的距离。 14. 在配有箍筋和弯起钢筋梁(剪压破坏)的斜截面受剪承载力计算中,弯起钢筋只有在时才能屈服。同时,与临界相交的箍筋也能达到其抗拉屈服强度。 15. 对于相同截面及配筋的梁,承受集中荷载作用时的斜截面受剪承载力比承受均布荷载时的斜截面受剪承载力。 (二)选择题 1. 在梁的斜截面受剪承载力计算时,必须对梁的截面尺寸加以限制(不能过小),其目的是为了防止发生[ ]。 (a)斜拉破坏; (b)剪压破坏; (c)斜压破坏; (d)斜截面弯曲破坏。 2. 受弯构件斜截面破坏的主要形态中,就抗剪承载能力而言[ ]。 (a)斜拉破坏>剪压破坏>斜压破坏; (b)剪压破坏>斜拉破坏>斜压破坏; (c)斜压破坏>剪压破坏>斜拉破坏;

第7章受拉构件的截面承载力习题答案

第7章 受拉构件的截面承载力 7.1选择题 1.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。 A. 截面破坏时,受拉钢筋是否屈服; B. 截面破坏时,受压钢筋是否屈服; C. 受压一侧混凝土是否压碎; D. 纵向拉力N 的作用点的位置; 2.对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。 A. 如果b ξξ>,说明是小偏心受拉破坏; B. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担; C. 大偏心构件存在混凝土受压区; D. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置; 7.2判断题 1. 如果b ξξ>,说明是小偏心受拉破坏。( × ) 2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。( ∨ ) 3. 大偏心构件存在混凝土受压区。( ∨ ) 4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。( ∨ ) 7.3问答题 1.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同? 答:(1)当N 作用在纵向钢筋s A 合力点和' s A 合力点范围以外时,为大偏心受拉;当N 作用在纵向钢筋s A 合力点和' s A 合力点范围之间时,为小偏心受拉; (2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。 2.大偏心受拉构件的正截面承载力计算中,b x 为什么取与受弯构件相同? 答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以b x 取与受弯构件相同。 3.大偏心受拉构件为非对称配筋,如果计算中出现' 2s a x <或出现负值,怎么处理? 答:取' 2s a x =,对混凝土受压区合力点(即受压钢筋合力点)取矩, ) (' 0' s y s a h f Ne A -= ,bh A s ' min 'ρ=

构件截面承载力

第三章 构件截面承载力--强度 钢结构承载能力分3个层次 截面承载力:材料强度、应力性质及其在截面上分布属强度问题。 构件承载力:构件最大截面未到强度极限之前因丧失稳定而失稳,取决于构 件整体刚度,指稳定承载力。 结构承载力:与失稳有关。 3.1 轴心受力构件的强度及截面选择 3.1.1 轴心受力构件的应用及截面形式 主要用于承重钢结构,如平面、空间桁架和网架等。 轴心受力截面形式:1)热轧型钢截面2)冷弯薄壁型钢截面3)型钢和钢板 连接而成的组合截面(实腹式、格构式)(P48页) 对截面形式要求:1)提供强度所需截面积2)制作简单3)与相邻构件便于 连接4)截面开展而壁厚较薄,满足刚度要求(截面积决定了稳定承载力,面积大整体刚度大,构件稳定性好)。 3.1.2 轴心受拉构件强度 由εσ-关系可得:承载极限是截面平均应力达到抗拉强度u f ,但缺少安 全储备,且y f 后变形过大,不符合继续承载能力,因此以平均应力y f ≤为准则,以孔洞为例。 规范:轴心受力构件强度计算:规定净截面平均应力不应超过钢材强度设计值 f A N n ≤=/σ N :轴心拉力设计值; An :构件净截面面积;R y f f γ/=: 钢材抗拉强度设计值 R γ:构件抗力分项系数Q235钢078.1=R γ,Q345,Q390,Q420111.1=R γ 49页孔洞理解见书 例题P49 3.1.3 轴心受压构件强度 原则上与受拉构件没有区别,但一般情况下,轴心受压构件的承载力由稳定 性决定,具体见4章。 3.1.4 索的受力性能和强度计算 钢索广泛用于悬索结构,张拉结构,桅杆和预应力结构,一般为高强钢丝组 成的平行钢丝束,钢绞线,钢丝绳等。

第04章 受弯构件斜截面承载力

第四章 受弯构件斜截面承载力 一、填空题 1、受弯构件的破坏形式有正截面受弯破坏、 斜截面受剪破坏 。 2、受弯构件的正截面破坏发生在梁的最大弯矩值处的截面,受弯构件的斜截面破坏发生在梁的支座附近(该处剪力较大),受弯构件内配置足够的受力纵筋是为了防止梁发生正截面破坏,配置足够的腹筋是为了防止梁发生斜截面破坏。 3、梁内配置了足够的抗弯受力纵筋和足够的抗剪箍筋、弯起筋后,该梁并不意味着安全,因为还有可能发生斜截面受弯破坏;支座锚固不足;支座负纵筋的截断位置不合理;这些都需要通过绘制材料图,满足一定的构造要求来加以解决。 4、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 复合主拉应力 超过了混凝土的极限抗拉强度而开裂的。 5、斜截面破坏的主要形态有 斜压 、 剪压 、 斜拉 ,其中属于材料未充分利用的是 斜拉 、 斜压 。 6、梁的斜截面承载力随着剪跨比的增大而 降低 。 7、梁的斜截面破坏主要形态有3种,其中,以 剪压 破坏的受力特征为依据建立斜截面承载力的计算公式。 8、随着混凝土强度等级的提高,其斜截面承载力 提高 。 9、随着纵向配筋率的提高,其斜截面承载力 提高 。 10、当梁上作用的剪力满足:V ≤ 001.750.7; 1.0t t f bh f bh λ????+?? 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力满足:V ≤ 001.75[;(0.24)]1.0 t t f bh f bh λ++ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪力满足: V ≥0[t f bh 01.75( 0.24)]1.0t f b h λ++ 时,则必须计算抗剪腹筋用量。 11、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 斜拉 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 斜压 。 12、对于T 形、工字形、倒T 形截面梁,当梁上作用着集中荷载时,需要考虑剪跨比影响的截面梁是 倒T 形截面梁 。 13、纵筋配筋率对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

受弯构件正截面承载力问题详解

第五章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态. 2、受弯构件梁的最小配筋率应取 %2.0min =ρ 和 y t f f /45min =ρ 较大者. 3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 . 4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_. 5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______. 6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算. 7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据. 8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 ' s A 都未知,计算时引入的补充条件为 b ξξ=. 二、判断题: 1、界限相对受压区高度b ξ由钢筋的强度等级决定.( ∨ ) 2、混凝土保护层的厚度是从受力纵筋外侧算起的.( ∨ ) 3、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大.( ∨ ) 4、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大.( ∨ ) 5.梁中有计算受压筋时,应设封闭箍筋(√ ) 6.f h x '≤的T 形截面梁,因为其正截面抗弯强度相当于宽度为f b '的矩形截面,所以配筋率ρ也用f b '来表示,即0/h b A f s '=ρ( ? )0/bh A s =ρ 7.在适筋围的钢筋混凝土受弯构件中,提高混凝土标号对于提高正截面抗弯强度的作用不是很明显的( √ ) 三、选择题: 1、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( A ). A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 2、钢筋混凝土受弯构件纵向受拉钢筋屈服与受压混凝土边缘达到极限压应变同时发生的破坏属于( C ). A 适筋破坏 B 超筋破坏 C 界限破坏 D 少筋破坏 3、正截面承载力计算中,不考虑受拉混凝土作用是因为( B ). A 中和轴以下混凝土全部开裂 B 混凝土抗拉强度低 C 中和轴附近部分受拉混凝土围小且产生的力矩很小 D 混凝土退出工作

第4章受弯构件斜截面承载力的计算

第4章 受弯构件斜截面承载力的计算 1.无腹筋简支梁斜截面裂缝出现前后的受力状态及应力变化如何? 答:无腹筋简支梁斜截面裂缝出现前后的受力状态及应力变化情况主要表现为:裂缝出现前,混凝土 可近似视为弹性体,裂缝出现后就不再是完好的匀质弹性梁了,材料力学的分析方法也不再适用。从应力变化看,斜裂缝出现前,剪力由全截面承担,斜裂缝出现后剪力由裂缝处的剪压面承担,因此,剪压区的剪应力会显著增大。第二是纵向受力钢筋的应力,在裂缝出现前,数值较小,裂缝出现后,其应力会显著增大。 2.有腹筋简支梁斜裂缝出现后的受力状态如何? 答:对于有腹筋梁,在开裂前,腹筋的作用并不明显,在荷载较小时,腹筋中的应力很小。但斜裂缝 出现后,与斜裂缝相交的腹筋中的应力会突然增大,腹筋的存在,使梁的斜截面受剪承载力大大高于无腹筋梁。 3.有腹筋简支梁斜裂缝出现后,腹筋的作用主要表现在哪几方面? 答:在斜裂缝出现后,腹筋的作用主要表现为以下几点:(1)腹筋将齿块(被斜裂缝分开的混凝土块)向上拉住,可避免纵筋周围混凝土撕裂裂缝的发生,从而使纵筋的销栓作用得以继续发挥。这样,便可更有效的发挥拱体传递主压应力的作用。(2)把齿块的斜向内力传递到拱体上,从而减轻了拱体拱顶处这一薄弱环节的受力,增加了整体抗剪承载力。(3)腹筋可有效地减小裂缝开展宽度,从而提高了裂缝处混凝土的骨料咬合力。 4.有腹筋梁与无腹筋梁的受力机制有何区别? 答:有腹筋梁与无腹筋梁的受力机制区别在于:①箍筋和弯起钢筋的作用明显;②斜裂缝间的混凝土 参加了抗剪。 5.什么是剪跨比、“广义剪跨比”与“狭义剪跨比”?它有何意义? 答:所谓剪跨比就是指某一截面上弯矩与该截面上剪力与截面有效高度乘积的比值。一般用m 来表 示。用公式表示即为0 Qh M m =。一般把m 的该表达式称为“广义剪跨比”。对于集中荷载作用下的简支梁,由于000h a Qh Qa Qh M m ===,其中a 为集中荷载作用点至梁最近支座之间的距离,称为“剪跨”。把0 h a m =,称为“狭义剪跨比”。 剪跨比是一个无量纲常数,它反映了截面所受弯矩和剪力的相对大小。 6.梁斜截面破坏有哪三种形态,其发生的条件如何,各有何破坏特征 答:梁斜截面破坏的三种形态为斜拉破坏、剪压破坏和斜压破坏。 斜拉破坏:当剪跨比较大(m >3)时,或箍筋配置过少时,常发生这种破坏。 剪压破坏:当剪跨比约为1~3,且腹筋配置适中时,常发生这种破坏。 斜压破坏:当剪跨比m 较小(m <1)时,或剪跨比适中(1

受弯构件正截面承载力计算练习题

第四章受弯构件正截面承载力计算 一、一、选择题(多项和单项选择) 1、钢筋混凝土受弯构件梁内纵向受力钢筋直径为( B ),板内纵向受力钢筋直径为( A )。 A、6—12mm B、12—25mm C、8—30mm D、12—32mm 2、混凝土板中受力钢筋的间距一般在( B )之间。 A、70—100mm B、100---200mm C、200---300mm 3、梁的有效高度是指( C )算起。 A、受力钢筋的外至受压区混凝土边缘的距离 B、箍筋的外至受压区混凝土边缘的距离 C、受力钢筋的重心至受压区混凝土边缘的距离 D、箍筋的重心至受压区混凝土边缘的距离 4、混凝土保护层应从( A )算起。 A、受力钢筋的外边缘算起 B、箍筋的外边缘算起 C、受力钢筋的重心算起 D、箍筋的重心算起 5、梁中纵筋的作用( A )。 A、受拉 B、受压 C、受剪 D、受扭 6、单向板在( A )个方向配置受力钢筋。 A、1 B、2 C、3 D、4 7、结构中内力主要有弯矩和剪力的构件为( A )。 A、梁 B、柱 C、墙 D、板 8、单向板的钢筋有( B )受力钢筋和构造钢筋三种。 A、架力筋 B、分布钢筋 C、箍筋 9、钢筋混凝土受弯构件正截面的三种破坏形态为( A B C ) A、适筋破坏 B 、超筋破坏 C、少筋破坏 D、界线破坏 10、钢筋混凝土受弯构件梁适筋梁满足的条件是为( A )。

A、p min≤p≤p max B、p min>p C、p≤p max 11、双筋矩形截面梁,当截面校核时,2αsˊ/h0≤ξ≤ξb,则此时该截面所能承担的弯矩是( C )。 A、M u=f cm bh02ξb(1-0.5ξb); B、M u=f cm bh0ˊ2ξ(1-0.5ξ); C、M u= f cm bh02ξ(1-0.5ξ)+A sˊf yˊ(h0-αsˊ); D、Mu=f cm bh02ξb(1-0.5ξb)+A sˊf yˊ(h0-αsˊ) 12、第一类T形截面梁,验算配筋率时,有效截面面积为( A )。 A、bh ; B、bh0; C、b fˊh fˊ; D、b fˊh0。 13、单筋矩形截面,为防止超筋破坏的发生,应满足适用条件ξ≤ξb。与该条件等同的条件是( A )。 A、x≤x b; B、ρ≤ρmax=ξb f Y/f cm; C、x≥2αS; D、ρ≥ρmin。 14、双筋矩形截面梁设计时,若A S和A Sˊ均未知,则引入条件ξ=ξb,其实质是( A )。 A、先充分发挥压区混凝土的作用,不足部分用A Sˊ补充,这样求得的A S+A Sˊ较小; B、通过求极值确定出当ξ=ξb时,(A Sˊ+A S)最小; C、ξ=ξb是为了满足公式的适用条件; D、ξ=ξb是保证梁发生界限破坏。 15、两类T形截面之间的界限抵抗弯矩值为( B )。 A、M f=f cm bh02ξb(1-0.5ξb); B、M f=f cm b fˊh fˊ(h0-h fˊ/2) ; C、M=f cm(b fˊ-b)h fˊ(h0-h fˊ/2); D、M f=f cm(b fˊ-b)h fˊ(h0-h fˊ/2)+A Sˊf Yˊ(h0-h fˊ/2)。 16、一矩形截面受弯构件,采用C20混凝土(f C=9.6Ν/mm2)Ⅱ级钢筋(f y=300N/mm2,ξb=0.554),该截面的最大配筋率是ρmax( D )。 A、2.53% ; B、18% ; C、1.93% ; D、1.77% 。 17、当一单筋矩形截面梁的截面尺寸、材料强度及弯矩设计值M确定后,计算时发现超筋,那么采取( D )措施提高其正截面承载力最有效。 A、A、增加纵向受拉钢筋的数量; B、提高混凝土强度等级; C、加大截截面尺寸; D、加大截面高度。 二、判断题 1、当截面尺寸和材料强度确定后,钢筋混凝土梁的正截面承载力随其配筋率ρ的提高而提高。(错) 2、矩形截面梁,当配置受压钢筋协助混凝土抗压时,可以改变梁截面的相对界限受压区高度。(对) 3、在受弯构件正截面承载力计算中,只要满足ρ≤ρmax的条件,梁就在适筋范围内。(错) 4、以热轧钢筋配筋的钢筋混凝土适筋梁,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入了强化阶段。(错) 5、整浇楼盖中的梁,由于板对梁的加强作用,梁各控制截面的承载力均可以按T形截面计算。(错)

第5章受弯构件的斜截面承载力习题答案

第5章 受弯构件的斜截面承载力 5.1选择题 1.对于无腹筋梁,当31<<λ时,常发生什么破坏( B )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 2.对于无腹筋梁,当1<λ时,常发生什么破坏( A )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 3.对于无腹筋梁,当3>λ时,常发生什么破坏( C )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 4.受弯构件斜截面承载力计算公式的建立是依据( B )破坏形态建立的。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 5.为了避免斜压破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( C )。 A . 规定最小配筋率; B . 规定最大配筋率; C . 规定最小截面尺寸限制; D . 规定最小配箍率; 6.为了避免斜拉破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( D )。 A . 规定最小配筋率; B . 规定最大配筋率; C . 规定最小截面尺寸限制; D . 规定最小配箍率; 7.R M 图必须包住M 图,才能保证梁的( A )。 A . 正截面抗弯承载力; B . 斜截面抗弯承载力; C . 斜截面抗剪承载力; 8.《混凝土结构设计规范》规定,纵向钢筋弯起点的位置与按计算充分利用该钢筋截面之间的距离,不应小于( C )。 A .0.30h

h B.0.4 h C.0.5 h D.0.6 9.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于梁、板类构件,不宜大于( A )。 A.25%; B.50%; C.75%; D.100%; 10.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于柱类构件,不宜大于( B )。 A.25%; B.50%; C.75%; D.100%; 5.2判断题 1.梁侧边缘的纵向受拉钢筋是不可以弯起的。(∨) 2.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。(×)3.截面尺寸对于无腹筋梁和有腹筋梁的影响都很大。(×) 4.在集中荷载作用下,连续梁的抗剪承载力略高于相同条件下简支梁的抗剪承载力。 (×) 5.钢筋混凝土梁中纵筋的截断位置,在钢筋的理论不需要点处截断。(×)5.3问答题 1.斜截面破坏形态有几类?分别采用什么方法加以控制? 答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏 (2)斜压破坏通过限制最小截面尺寸来控制; 剪压破坏通过抗剪承载力计算来控制; 斜拉破坏通过限制最小配箍率来控制; 2.分析斜截面的受力和受力特点? 答:(1)斜截面的受力分析: 斜截面的外部剪力基本上由混凝土剪压区承担的剪力、纵向钢筋的销栓力、骨料咬合力以及腹筋抵抗的剪力来组成。 (2)受力特点: 斜裂缝出现后,引起了截面的应力重分布。 3.简述无腹筋梁和有腹筋梁斜截面的破坏形态。

受弯构件的正截面承载力计算

第4章受弯构件的正截面承载力计算 1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点? 答:第Ⅰ阶段:混凝土开裂前的未裂阶段 当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。 随着荷载的增加,截面上的应力和应变逐渐增大。受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。 第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段 受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。 在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。 还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。这与平截面假定发生了矛盾。但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。因此,各受力阶段的截面应变均假定呈三角形分布。 第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段 随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。 在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。 2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系? 答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。 3.何谓配筋率?配筋率对梁破坏形态有什么的影响? 答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即

4受弯构件斜截面承载力计算(精)

4 受弯构件斜截面承载力计算 1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式: 0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1) 式中 V ——构件斜截面上的最大剪力设计值; V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值; A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1; n ——在同一截面内箍筋肢数; A sv1——单肢箍筋的截面面积; s ——沿构件长度方向的箍筋间距; f t ——混凝土轴心抗拉强度设计值; f yv ——箍筋抗拉强度设计值。 b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。 2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算: 00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2) 式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。 3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算: V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3) 式中 V ——在配置弯起钢筋处的剪力设计值; V cs ——构件斜截面上混凝土和箍筋的受剪承 载力设计值; f y ——弯起钢筋的抗拉强度设计值; A sb ——同一弯起平面内弯起钢筋的截面面积; αs ——弯起钢筋与构件纵轴线之间的夹角 一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。 4 上限值——最小截面尺寸 (1) 对矩形、T 形和I 形截面的一般受弯构件,应满足下列条件: 当 4/≤b h w 时 025.0bh f V c c β≤ (4-4a ) 4(2) 当 6/≥b h w 时 02.0bh f V c c β≤ (4-4b ) 式中:V ——构件斜截面上的最大剪力设计值 c β——为高强混凝土的强度折减系数,当混凝土强度等级不大于C50级时,取 1=c β;当混凝土强度等级为C80时,8.0=c β,其间按线性内插法取值; h w ——截面腹板高度。 b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。

受弯构件正截面承载力计算测试

钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行 、 验算。 2、简支梁中的钢筋主要有 、 、 、 四种。 3、钢筋混凝土保护层的厚度与 、 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 、=cu ε 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时 、两排钢筋时 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 、两排钢筋时 。 7、单筋梁是指 的梁。 8、双筋梁是指 的梁。 9、梁中下部钢筋的净距为 ,上部钢筋的净距为 。 10、受弯构件min ρρ≥是为了防止 ,x a m .ρρ≤是为了防止 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 和 。 12、受弯构件正截面破坏形态有 、 、 三种。 13、板中分布筋的作用是 、 、 。 14、双筋矩形截面的适用条件是 、 。 15、单筋矩形截面的适用条件是 、 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 、 、 。 18、受弯构件梁的最小配筋率应取 和 较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 。 二、判断题:

1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s =ρ。( ) 三、选择题: 1、受弯构件是指( )。 A 截面上有弯矩作用的构件 B 截面上有剪力作用的构件 C 截面上有弯矩和剪力作用的构件 D 截面上有弯矩、剪力、扭矩作用的构件 2、梁中受力纵筋的保护层厚度主要由( )决定。 A 纵筋级别 B 纵筋的直径大小 C 周围环境和混凝土的强度等级 D 箍筋的直径大小 3、保护层的厚度是指( )。 A 从受力纵筋的外边缘到混凝土边缘的距离 B 箍筋外皮到混凝土边缘的距离 C 纵向受力筋合力点到混凝土外边缘的距离 D 分布筋外边缘到混凝土边缘的距离 4、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( )。 A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 5、界限相对受压区高度,当( )。 A 混凝土强度等级越高,b ξ越大 B 混凝土强度等级越高,b ξ越小 C 钢筋等级越

受弯构件的正截面承载力习题复习资料

第4章 受弯构件的正截面承载力 4.1选择题 1.( C )作为受弯构件正截面承载力计算的依据。 A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 2.( A )作为受弯构件抗裂计算的依据。 A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 3.( D )作为受弯构件变形和裂缝验算的依据。 A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 4.受弯构件正截面承载力计算基本公式的建立是依据哪种破坏形态建立的( B )。 A. 少筋破坏; B. 适筋破坏; C. 超筋破坏; D. 界限破坏; 5.下列那个条件不能用来判断适筋破坏与超筋破坏的界限( C )。 A .b ξξ≤; B .0h x b ξ≤; C .' 2s a x ≤; D .max ρρ≤ 6.受弯构件正截面承载力计算中,截面抵抗矩系数s α取值为:( A )。 A .)5.01(ξξ-; B .)5.01(ξξ+; C .ξ5.01-; D .ξ5.01+;

7.受弯构件正截面承载力中,对于双筋截面,下面哪个条件可以满足受压钢筋的屈服( C )。 A .0h x b ξ≤; B .0h x b ξ>; C .'2s a x ≥; D .'2s a x <; 8.受弯构件正截面承载力中,T 形截面划分为两类截面的依据是( D )。 A. 计算公式建立的基本原理不同; B. 受拉区与受压区截面形状不同; C. 破坏形态不同; D. 混凝土受压区的形状不同; 9.提高受弯构件正截面受弯能力最有效的方法是( C )。 A. 提高混凝土强度等级; B. 增加保护层厚度; C. 增加截面高度; D. 增加截面宽度; 10.在T 形截面梁的正截面承载力计算中,假定在受压区翼缘计算宽度范围内混凝土的压应力分布是( A )。 A. 均匀分布; B. 按抛物线形分布; C. 按三角形分布; D. 部分均匀,部分不均匀分布; 11.混凝土保护层厚度是指( B )。 A. 纵向钢筋内表面到混凝土表面的距离; B. 纵向钢筋外表面到混凝土表面的距离; C. 箍筋外表面到混凝土表面的距离; D. 纵向钢筋重心到混凝土表面的距离; 12.在进行钢筋混凝土矩形截面双筋梁正截面承载力计算中,若'2s a x ≤,则说明 ( A )。 A. 受压钢筋配置过多; B. 受压钢筋配置过少; C. 梁发生破坏时受压钢筋早已屈服; D. 截面尺寸过大; 4.2判断题 1. 混凝土保护层厚度越大越好。( × ) 2. 对于'f h x ≤的T 形截面梁,因为其正截面受弯承载力相当于宽度为' f b 的矩形截面

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

第六章 受构件斜截面承载力答案

第六章 钢筋混凝土受弯构件斜截面承载力计算 一、填空题: 1、梁的斜截面承载力随着剪跨比的增大而 。 降低 2、梁的斜截面破坏形态主要 、 、 ,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。 斜拉破坏 斜压破坏 剪压破坏 剪压破坏 3、随着混凝土强度的提高,其斜截面承载力 。 提高 4、影响梁斜截面抗剪强度的主要因素是混凝土强度、配箍率、 剪跨比 和纵筋配筋率以及截面形式。 5、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 斜拉破坏 斜压破坏 6、设置弯起筋的目的是 、 。 承担剪力 承担支座负弯矩 7、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。 025.0bh f V c c β≤ min ρρ≥,max s s ≤, min d d ≥ 二、判断题: 1. 钢筋混凝土梁纵筋弯起后要求弯起点到充分利用点之间距离大于0.5h 0,其主要原因是为了保证纵筋弯起后弯起点处斜截面的受剪承载力要求。( × ) 2.剪跨比0/h a 愈大,无腹筋梁的抗剪强度低,但当3/0>h a 后,梁的极限抗剪强度变化不大。 (√ ) 3.对有腹筋梁,虽剪跨比大于1,只要超配筋,同样会斜压破坏( √ ) 4、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。( )× 5、梁内设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )× 6、箍筋不仅可以提高斜截面抗剪承载力,还可以约束混凝土,提高混凝土的抗压强度和延性,对抗震设计尤其重要。( )√ 7、为了节约钢筋,跨中和支座负纵筋均可在不需要位置处截断。( )× 8、斜拉、斜压、剪压破坏均属于脆性破坏,但剪压破坏时,材料能得到充分利用,所以斜截面承载力计算公式是依据剪压破坏的受力特征建立起来的。( )√ 三、选择题: 1、梁内纵向钢筋弯起时,可以通过( C )保证斜截面的受弯承载力。 A .从支座边缘到第1排弯起钢筋上弯起点的距离,以及前一排弯起钢筋的下弯点到次一排弯起钢筋的上弯点距离s ≤s max B .使材料的抵抗弯矩图包在设计弯矩图的外面 C .弯起点的位置在钢筋充分利用点以外大于0.5h 0 D .斜截面受弯承载力和正截面受弯承载力相同,必须通过理论计算才能得到保证 2、设计受弯构件时,如果出现025.0bh f V c c βφ的情况,应采取的最有效的措施是( )。A A 加大截面尺寸 B 增加受力纵筋 C 提高混凝土强度等级 D 增设弯起筋 3、受弯构件中配置一定量的箍筋,其箍筋的作用( )是不正确的。 D A 提高斜截面抗剪承载力 B 形成稳定的钢筋骨架 C 固定纵筋的位置 D 防止发生斜截面抗弯不足。

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

相关文档
相关文档 最新文档