文档库 最新最全的文档下载
当前位置:文档库 › 实验三_抽样定理和PAM调制解调实验

实验三_抽样定理和PAM调制解调实验

实验三_抽样定理和PAM调制解调实验
实验三_抽样定理和PAM调制解调实验

实验三 抽样定理和PAM 调制解调实验

一、实验目的

1、 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2、 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺

点。

二、实验内容

1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意

观察它们之间的相互关系及特点。

2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。

三、实验器材

1、 信号源模块 一块

2、 ①号模块 一块

3、 60M 双踪示波器 一台

4、 连接线 若干

四、实验原理 (一)基本原理 1、抽样定理

抽样定理表明:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H

f 21

秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

假定将信号()m t 和周期为T 的冲激函数)t (T 相乘,如图3-1所示。乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。若用()m t s 表示此抽样函数,则有:

()()()s T m t m t t δ=

图3-1 抽样与恢复

假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。按照频率卷积定理,()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:

[]1

()()()2s T M M ωωδωπ

=

* 因为 2()T T

s n n T

π

δδ

ωω∞

=-∞

=

-∑

T

s πω2=

所以 1

()()()s T s n M M n T

ωωδωω∞

=-∞??=

*-?

???

∑ 由卷积关系,上式可写成

1()()

s s n M M n T ωωω∞

=-∞

=-∑ 该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。这就意味着()M s ω中包含()M ω的全部信息。

需要注意,若抽样间隔T 变得大于

H

f 21

,则()M ω和()T δω的卷积在相邻的周期内存在重叠(亦称混叠),因此不能由()M s ω恢复()M ω。可见,H

f T 21

=是抽样的最大间隔,它被称为奈奎斯特间隔。

上面讨论了低通型连续信号的抽样。如果连续信号的频带不是限于0与H f 之间,而是限制在L f (信号的最低频率)与H f (信号的最高频率)之间(带通型连续信号),那么,其抽样频率s f 并不要求达到H f 2,而是达到2B 即可,即要求抽样频率为带通信号带宽的两倍。

图3-2画出抽样频率s f ≥2B (无混叠)和s f <2B (有混叠)时两种情况下冲激抽样信号的频谱。

(a) 连续信号的频谱

(b ) 高抽样频率时的抽样信号及频谱(无混叠)

(c ) 低抽样频率时的抽样信号及频谱(混叠) 图3-2 采用不同抽样频率时抽样信号的频谱

2、脉冲振幅调制(PAM )

所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。

但是实际上真正的冲激脉冲串并不能付之实现,而通常只能采用窄脉冲串来实现。因而,

0 s T

t

()

s f t m ω-

m ω

s

ωs ω- ω

()

s F ω1

S

T 1 0

m

ω-m ω

ω

()F ω

t

()

f t 1

t

S

T 1 m ω- m ω

s

ωs ω- ω

()

s F ω0 s T

()

s f t

研究窄脉冲作为脉冲载波的PAM 方式,将具有实际意义。

自然抽样

平顶抽样

)

(t m )

(t T

图3-3 自然抽样及平顶抽样波形

PAM 方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,已抽样信号m s (t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM 信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。

五.实验步骤

1、将信号源模块、模块1固定在主机箱上。双踪示波器,设置CH1通道为同步源。

2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块1的电源开关拨下,观

察指示灯是否点亮,红灯为+5V 电源指示灯,绿灯为-12V 电源指示灯,黄色为+12V 电源指示灯。(注意,此处只是验证通电是否成功,在实验中均是先连线,再打开电源做实验,不要带电连线)。

3、观测PAM 自然抽样波形。

1) 用示波器观测信号源“2K 同步正弦波”输出,调节W1改变输出信号幅度,使输

出信号峰-峰值在3V 左右。

2)将信号源上S4设为“1010”,使“CLK1”输出32K 时钟。 3)将模块1上K1选到“自然”。 4)关闭电源,按如下方式连线

源端口

目标端口 连线说明 信号源:“2K 同步正弦波”

模块1:“PAM-SIN ” 提供被抽样信号 信号源:“CLK1”

模块1:“PAMCLK ”

提供抽样时钟

* 检查连线是否正确,检查无误后打开电源

5) 用示波器在“自然抽样输出”处观察PAM 自然抽样波形。 4、观测PAM 平顶抽样波形

a) 用示波器观测信号源“2K 同步正弦波”输出,调节W1改变输出信号幅度,使输

出信号峰-峰值在3V 左右。

b) 将信号源上S1、S2、S3依次设为“10000000”、“10000000”、“10000000”,将S5

拨为“1000”,使“NRZ ”输出速率为128K ,抽样频率为:NRZ 频率/8(实验中的电路,NRZ 为“1”时抽样,为“0”时保持。在平顶抽样中,抽样脉冲为窄脉冲)。 c) 将K1设为“平顶”。关闭电源,按下列方式进行连线。

源端口目标端口连线说明

信号源:“2K同步正弦波模块1:“PAM-SIN”提供被抽样信号信号源:“NRZ”模块1:“PAMCLK”提供抽样脉冲

d)打开电源,用双踪示波器,同时观察模拟信号”PAM-SIN”及”平顶抽样输出”波形.

5、改变抽样时钟频率”clk1”,分别取2K与4K,观测自然抽样信号,用双踪示波器同时

观察模拟信号”PAM-SIN”及”自然抽样输出”波形.验证抽样定理。

6、观测解码后PAM波形与原信号的区别

1)步骤3的前3步不变,按如下方式连线

源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟模块1:“自然抽样输出”模块1:“IN”将PAM信号进行译码

2)将K1设为“自然”,用“PAM-SIN”信号做示波器的触发源,用双踪示波器对比观

测“PAM-SIN”和“OUT”波形。

7、将信号源产生的音乐信号输入到模块1的“PAM-SIN”,“自然抽样输出”和“IN”相

连,PAM解调信号输出到信号源上的“音频信号输入”,通过扬声器听语音,感性判断该系统对话音信号的传输质量。

六、思考练习解答

1、简述平顶抽样和自然抽样的原理及实现方法。

自然抽样原理图

自然采样时域和频域波形

用理想低通滤

波器恢复原始

信号。

采用平顶抽样的PAM调制信号的框图及信号的波形

平顶抽样信号的恢复

2、在抽样之后,调制波形中包不包含直流分量,为什么?

在抽样之后已调的波形并不带有直流分量,这是由于在离散点取值,使得直流分量被滤除。

3、为什么采用低通滤波器就可以完成PAM 解调?

低通滤波器采用的是均匀滤波,它的抽样频率fs不小于2fh,这样就不会发生混叠现象了。通过低通滤波器就可截取出这一段的波形,这样就已经可以还原波形完成PAM调制了。

七、实验感悟

通过脉冲幅度调制实验,我对脉冲幅度调制的原理有了更深层次的理解,在这次实验中,抽样定理起着指导性的作用,这也是对之前学过的知识进行巩固和验证通过对电路组成、波形和所测数据的分析,加深我对这种调制方式优缺点的理解。

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

戴维南定理实验报告

戴维南定理 学号:19 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计算等效电压:电桥平衡。 ∴=,331131R R R R Θ Uoc=3 11 R R R +=。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R = (2)测量如下表中所列各电阻的实际值,并填入表格:

然后根据理论分析结果和表中世纪测量阻值计算出等效电源 电压和等效电阻,如下所示: Uc= R=Ω (3)multisim 仿真: a 、按照下图所示在multisim 软件中创建电路 b 、用万用表测量端口的开路电压和短路电流,并计算等效电阻,结果如下:Us= I= R=Ω c 、用万用表的欧姆档测量等效电阻,与b 中结果比较,将测量结果填入下表中:

戴维南定理实验报告

戴维南定理实验报告 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握和测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multmeter,Voltmeter,Ammeter等仪表的使用以及DC Operating Point,Parameter等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。 6.初步掌握Origin绘图软件的使用。 二、实验原理 三、一个含独立源,线性电阻和受控源的 一端口网络,对外电路来说,可以用一个 电压源和电阻的串联组合等效置换、其等 效电压源的电压等于该一端口网络的开路 电压,其等效电阻等于将该一端口网络中 所有独立源都置为零后的的输入电阻,这 一定理称为戴维南定理。如图实验方法 1.比较测量法 2.戴维南定理是一个等效定理,因此想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 3.整个实验过程首先测量原电路的外特性,再测量等效电路的外特性。最后进行比较两者是否一致。等效电路中等效参数的获取,可通过测量得到,并同根据 电路结构所推导计算出的结果想比较。 实验中期间的参数应使用实际测量值,实际值和器件的标称值是有差别的。 所有的理论计算应基于器件的实际值。 4.等效参数的获取 5.等效电压Uoc:直接测量被测电路的 开路电压,该电压就是等效电压。 6.等效电阻Ro:将电路中所有电压源 短路,所有电流源开路,使用万用 表电阻档测量。本实验采用下图的 实验电路。 7.电路的外特性测量方法8.在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 9.测量点个数以及间距的选取 10.测试过程中测量点个数以及间距的选取,与测量特性和形状有关。对于直线特性,应使测量点间隔尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目 的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测 量点个数及间距的选取。 四、实验注意事项 1.电流表的使用。由于电流表内阻很小,放置电流过大毁坏电流表,先使用大量程(A) 粗侧,再使用常规量程(mA)。

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv 略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中 K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图 4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

实验三戴维南定理

戴维南定理(有源二端网络等效参数的测定) 一、 实验目的 1、验证戴维南定理的正确性。 2、掌握测量有源二端网络等效参数的一般办法。 二、 原理说明 1、 任何一个线性含源网络,如果仅研究其中的一条支路的电压和电流,则可以将电路的其余部分看作是一个有源二端网络(或者称为含源——端口网络)。 戴维南定理指出,任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势s E 等于这个有源二端网络的开路电压oc U ,其等效内阻0R 等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电路。 oc U 和0R 称为有源二端网络的等效参数。 2、 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测量其输出端的开路电压oc U ,然 后再将其输出端短路,用电流表测其短路电流sc I ,则内阻为:sc oc I U R =0 (2) 伏安法 用电压表、电流表测出有源二端网络的外特性如图3-1所示,根据外特性曲线求出斜率 ?tan 则内阻: sc oc I U I U R =??= =?tan 0 用伏安法,主要是测量开路电压及电流为额定值N I 时的输出端电压N U ,则内阻为: N N oc I U U R -= 若二端网络的内阻值很低时,则不宜测其短路电流。

(3)半电压法 如图3-2所示,当负载电压为被测网 络开路电压的一半时,负载电阻(由 电阻箱的读数确定)即为被测有源二 端网络的等效内阻值。 (4)零示法 在测量具有高内阻有源二端网络的 开路电压时,用电压表直接测量会造 成较大的误差,为了消除电压表内阻 的影响,往往采用零示测量法,如图 3-3所示。 零示法测量原理是用一低内阻的稳 压电源与被测有源二端网络进行比 较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后电路断开,测量此时稳压电源的输出电压,即为有源二端网络的开路电压。 三、实验设备

实验八--戴维南定理和诺顿定理

实验八戴维南定理和诺顿定理 一、实验目的 1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。 2.掌握含源二端网络等效参数的一般测量方法。 3.验证最大功率传递定理。 二、原理说明 戴维南定理与诺顿定理在电路分析中是一对“对偶”定理,用于复杂电路的化简,特别是当“外电路”是一个变化的负载的情况。 在电子技术中,常需在负载上获得电源传递的最大功率。选择合适的负载,可以获得最大的功率输出。 1.戴维南定理 任何一个线性有源网络,总可以用一个含有内阻的等效电压源来代替,此电压源的电动势Es等于该网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 2.诺顿定理 任何一个线性含源单口网络,总可以用一个含有内阻的等效电流源来代替,此电流源的电流Is等于该网络的短路电流Isc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。 Uoc、Isc和Ro称为有源二端网络的等效参数。 3.最大功率传递定理 在线性含源单口网络中,当把负载RL以外的电路用等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最大功率: P MAX=I sc2.R L/4=Uoc2/4RL (1) 4.有源二端网络等效参数的测量方法 ⑴开路电压Uoc的测量方法 ①直接测量法 直接测量法是在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,如图8-1(a)所示。它适用于等效内阻Ro较小,且电压表的内阻Rv>>Ro的情况下。 ②零示法 在测量具有高内阻(Ro>>Rv)含源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图8-1(b)所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压Es与有源二端网络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 ⑵短路电流Isc的测量方法 ①直接测量法:是将有源二端网络的输出端短路,用电流表直接测其短路电流Isc。此方法适用于内阻值 Ro较大的情况。若 二端网络的内阻值 很低时,会使Isc 很大,则不宜直接测 其短路电流。

验证戴维南定理实验报告

实验1 戴维南定理 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multimeter、V oltmeter、等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析法。 5.掌握电路板的焊接技术及直流电源、万用表等仪器仪表的使用。 6.掌握origin绘图软件的使用。 二、实验原理 戴维南定理:任何线性有源(独立源、受控源)一端口网络对外电路来说,都可以用一个电压源Us与电阻R0 串联的等效电路替换。其中电压源US大小就是有源二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电源的等效电阻RO 。 三、实验器材与仪器 计算机一台;通用电路板一块;万用表两只;直流稳压电源两只;电阻若干 四、实验方法 1.比较测量法 首先测量原电路的外特性,再测量等效电路的外特性。最后比较两者是否一致。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压。 等效电阻Ro:将电路中所有独立电压源短路,所有电流源开路,用万用表电阻档测量。 3.测量点个数及间距的选取 (测量点个数及间距的选取,与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性的特性应在变化陡峭处多测一些。且一般选取10个点以上) 本实验均匀选取。且应该先选取最大最小值然后均匀选取。 4.电路的外特性测量方法 在输出端口上改变R7的大小,测量端口电压和电流。 实验电路图 五、实验内容与数据记录 1.测量电阻的实际值。填入下表。

实验三 基尔霍夫定律、戴维南定理的的验证

实验三 基尔霍夫定律、戴维南定理的的验证 一、实验目的 1. 加深对基尔霍夫定律、戴维南定理的理解。 2. 加深对参考方向、等效电路概念的理解。 3. 进一步熟悉直流稳压电源、万用表的使用。 二、实验仪器及设备 电工实验箱、直流稳压电源、万用表 三、实验原理 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL )和电压定律(KVL )。即对电路中的任一个节点而言,应有ΣI =0;对任何一个闭合回路而言,应有ΣU =0。 戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 四、实验内容及步骤 1. 基尔霍夫定律的验证 ⑴验证KCL 定律,在图3-1所示电路中,任选一个节点,测量流入流出节点的各支路电流数值和方向,记入表3-1. ⑵验证KVL 定律,在图3-1所示电路中,任选一回路,测量回路内所有支路的元件电压值和电压方向,对应记入表3-1。 图3-1 2. 验证戴维南定理 ⑴在图3-2所示电路中,测量有源二端网络的开路 电压U oc (1-1′)。 ⑵在图3-2所示电路中,测量有源二端网络的等效电阻R 0。 ⑶验证戴维南定理, 理解等效概念 1〉戴维南等效电路外接负载。首先组建戴维南等效电路,即用外电源Us2(其值调到U oc 值)与戴维南等效电阻R 0相串后,外接R L =100Ω的负载,然后测电阻R L 两端电压U RL 和流过R L 的电流值I RL ,记入表3-2。 2〉原有源二端网络1-1′外接负载。同样接R L =100Ω的负载,测电压U RL 与电流I RL ,结果记入表3-2,与1〉测试结果进行比较,验证戴维南定理。 五、数据记录与分析 表3-1基尔霍夫定律的验证 图3-2 120Ω 360Ω 240Ω 180Ω

戴维南定理实验报告

戴维南定理及其应用实验报告书 戴维南定理及其应用 一、实验目的 1、掌握戴维南定理及其应用方法。 2、验证戴维南定理。 二、实验器材 直流电压源 1个 电压表 1个 电流表 1个 电阻 4个 三、实验原理 在电路理论中等效电路定理具有非常重要的意义,它包括戴维南定理和诺顿定理。戴维南定理可描述为:任何一个线性单端口电路N (如图2-5-1(a )所示),它对外电路的作用,都可以用一个电压源和电阻的串联组合来等效,这个等效电路称为戴维南等效电路(也称为等效电压源),见图2-5-1(b )所示。其中,该等效电压源的电压值等于单端口电路N 在端口处的开路电压U OC ;电阻R O 等于单端口电路N 内所有独立源为零的条件下,从端口处看进去的等效电阻。电阻R O 也称为戴维南等效电阻。 (a) (b) 图2-5-1 戴维南等效电路原理

(a)(b) (c)(d)R U OC 图2-5-2 戴维南等效电路 图2-5-2(a)给出了一个线性单端口电路,其中,R L为负载。首先求该电路的戴维南等效电阻R O。将该电路的电压源短路,见图2-5-2(b),可求得 R O=R1//R2+R3=25Ω+50Ω=75Ω 其次,求端口ao处的开路电压U OC=6V(见图2-5-2(c))。所以该电路的等效电路见图2-5-2(d)所示。 四、实验步骤 1. 单端口电路测试 按图2-5-3连线,电源电压设置为12V。按表2-5-1中给出的数据改变R L之值,测量负载电阻R L的电压U L和流过电阻R L的电流I L,并填写表2-5-1。 图2-5-3 单端口电路 表2-5-1单端口电路的测量数据 2. 等效电路测试 按图2-5-4连线,电源电压设置为6V。按表2-5-2中给出的数据改变R L之值,测量负载电阻R L的电压U L和流过电阻R L的电流I L,并填写表2-5-2。

3实验三 戴维南定理验证

电工与电子实验指导书 信息科学与工程学院 2009.2

目录 实验一电路元件伏安特性的测绘 (1) 实验二叠加原理的验证 (5) 实验三戴维南定理验证 (9) 实验四电源的等效变换 (13) 实验五单级放大器 (17) 实验六放大器的动态参数测量 (27) 实验七编码器设计 (32) 实验八译码器设计 (37) 实验九加法器设计 (45) 附录Ⅰ用万用电表对常用电子元器件检测 (45) 附录Ⅱ电阻器的标称值及精度色环标志法 (77)

实验三戴维南定理验证 一、实验目的 1. 验证戴维南定理的正确性。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势Es等于这个有源二端网络的开路电压U OC,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 2.等效电源定理 任何一个线性有源二端网络,总可以用一个理想电压源和一个等效电阻相串联来代替,其理想电压源的电压等于该网络的开路电压U oc,等效内阻等于该网络中所有独立源为零时的等效电阻R0。 (1) 开路电压的测试方法 ①一般情况下,把外电路断开,选万用表电压档测其两端电压值,即为开路电压。若电压表内阻远大于被测网络的等效电阻,其测量结果相当精确。若电压表内阻较小,则误差很大,必须采用补偿法。 ②补偿法:如图2.1所示,外加U s和R构成补偿电路,调节R的值,使检测计G指示为零,此时电压表指示的电压值即为开路电压U oc。 (2)等效电阻R0 (内阻)的测试方法 ①用欧姆表测:若电源能与其内阻分开,则可将电源除去后用欧姆表测出电阻值。若电源与其内阻分不开(如干电池)就不能用此法。 ②测量网络两端的开路电压U oc及短路电流I s。按R0=U oc/I s计算出等效电阻。此法适用于网络两端可以被短路的情况。(建议该实验用此方法测R0)。 ③外加电压U0,测其端电流I,按R0 = U0/I计算,用这种方法时,应先将有源二端

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果 ⒈计算等效电压和电阻

计算等效电压:电桥平衡。∴=,33 11 31R R R R Uoc=311R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω RL 4.7kΩ Key=A 50% 2 4 J1Key = A XMM1 XMM2 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 等效电压Uoc=2.609V 等效电阻Ro=250.355Ω

原电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 等效电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

实验三 戴维南定理

实验三 戴维南定理 一.实验目的 1.验证戴维宁定理的正确性,加深对该定理的理解; 2.掌握测量有源二端网络等效参数的一般方法。 二.实验原理 1.戴维宁定理 戴维宁定理指出:任何一个有源二端网络,总可以用一个电压源U S 和一个电阻R S 串联组成的实际电压源来代替,其中:电压源U S 等于这个有源二端网络的开路电压U OC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O 。 U S 、R S 和I S 、R S 称为有源二端网络的等效参数。 2.有源二端网络等效参数的测量方法 (1)开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测其输 出端的开路电压U OC , 然后再将其输出端短路,测其短路 电流I S C,且内阻为: SC OC S I U R = 。 若有源二端网络的内阻值很低时,则不宜测其短路电流。 (2)伏安法 一种方法是用电压表、电流表测出有源二端网络的 外特性曲线,如图2-1所示。开路电压为U OC ,根据 外特性曲线求出斜率tg φ,则内阻为: I U R ??==φtg S 。 另一种方法是测量有源二端网络的开路电压U OC ,以及额定电流I N 和对应的输出端额定电压 U N ,如图2-1所示,则内阻为:N N OC S I U U R -= 。 (3)半电压法 如图2-2所示,当负载电压为被测网络开路电压U OC 一半时,负载电阻R L 的大小 (由电阻箱的读数确定)即为被测有源二端网络的等效内阻R S 数值。 (4)零示法 在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误

电路分析实验三戴维南定理

HUNAN UNIVERSITY 电路分析实验 学生姓名甘昆禄 学生学号201608010520 专业班级智能1601 指导老师陈华李涛 完成日期2018.11.12

实验九戴维南和诺顿定理的验证 一、实验题目 戴维南和诺顿定理的验证。 二、实验目的 1.学习线性有源二端网络等效电路参数的测量方法,用实验方法测定有源二端网络N的开路电压和输入端等效电阻 2.加深对戴维南诺顿定理的理解,用实验方法验证戴维南诺顿定理 三、实验原理 1.戴维南定理: 任何一个线性含源端口网络,对外电路来说,总可以用一个电压源和电阻的串联组合来等效置换;此电压源的电压等于外电路断开时端口处的开路电压u oc,而电阻等于端口的输入电阻(或等效电阻R eq)。 2.诺顿定理 任何一个含源线性端口电路,对外电路来说,可以用一个电流源和电导(电阻)的并联组合来等效置换;电流源的电流等于该端口的短路电流,而电导(电阻)等于把该端口的全部独立电源置零后的输入电导(电阻)。

四、实验内容 验证戴维南定理: 自己设计一个有源二端网络,通过仪表测量其开路电路和短路电流,将其用戴维南或诺顿等效电路代替,并与理论计算值相比较。 原电路: 开路电压 由图的开路电压Uoc为11.99V; 短路电流:

短路电流为Ioc:11.99mA; 计算的Ro = Uoc/Ioc = 1K欧 则戴维南等效电路为: 由上可知,计算结果与测量结果相符,误差为(5.994 –5.992)/ 5.994 = 0.03%,误差内等效电路在负载上引起的响应与原电路相同,验证了戴维南定理。 验证诺顿定理: 证明方法与戴维南定理相似 原电路:

戴维南定理的实验验证报告

戴维南定理 学号:姓名:成绩: 一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a 等效后的电路图如下b所示 测它们等效前后的外特性,然后验证等效前后对电路的影响。 实验内容及结果 1?计算等效电压和电阻 计算等效电压:畀豊,电桥平衡。Uoc = RI R1R3 =2.6087V。 J1 R1 R2 I V1 20 V T 1.8k Q R11 2 ―*| 2.2k Q 220 Q R22 AA/V 270 Q Key = A L_ <4.7k Q W Key=A 50% R33 330 Q R3 270 Q XMM2 XMM1 R4 几50% Key=A

2.用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如 下图所示 Ro=250.335 测量等效电压是将滑动变阻器短路如下图 Uo=2.609V 3.用 Multisim 仿 真数据 等效电压 Uoc=2.609V 等效电阻Ro=250.355欧姆 原电路数据 V1 20 V R1 1.8k Q R2 AA/V 220 Q J1 Q ------ O ------ Key = A XMM2 R11 -WV- 2.2k Q R33 330 Q 0 R22 ■AAAr 270 Q XMM1 50% 计算等效电阻: R= f r 1 R2 + 1 R22 + 1 1 1 1 + + < R1 R3 丿 < R11 R33 =250.355 仿真验证戴维南定理 1 1 s

实验5 戴维南定理的验证

实验5 戴维南定理的验证 一、实训目的 1. 验证戴维南定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何具有两个出线端的部分电路称为二端网络。若网络中含有电源称为有源二端网络,否则称为无源二端网络。 戴维南定理:任何一个线性有源二端网络,对外电路来说,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿南理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维南定理。 Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R 0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为 Uoc R 0= ── Isc 如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。 (2) 伏安法测R 0 图5-1有源二端网络外特性曲线 用电压表、电流表测出有源二端网 络的外特性曲线,如图5-1所示。 根据 外特性曲线求出斜率tg φ,则内阻 △U U oc R 0=tg φ= ──=── △I Isc 也可以先测量开路电压Uoc , 图5-2半电压法测R 0电路 再测量电流为额定值I N 时的输出 U oc -U N 端电压值U N ,则内阻为 R 0=──── I N (3) 半电压法测R 0 如图5-2所示,当负载电压为被测网络开 U I A B I U O ΔU ΔI φ sc oc c /2

《电路与电子技术》实验报告 戴维南定理的验证

湖北科技学院计算机科学与技术学院 《电路与电子技术》实验报告 学号 姓名 实验日期: 实验题目:戴维南定理的验证 【实验目的】 1. 验证戴维南定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 【实验器材】 数字万用表,实验电路箱,导线若干 【实验原理】 戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc ,其等效内阻R0等于该网络中所有独立源均置零,理想电压源视为短接,理想电流源视为开路时的等效电阻。 【实验内容与记录】 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R0 在有源二端网络输出端开路时 用电压表直接测其输出端的开路电压Uoc 然后再将其输出端短路 用电流表测其短路电流Isc 则等效内阻为R0= Isc Uoc , 如果二端网络的内阻很小 若将其输出端口短路 则易损坏其内部元件 因此不宜用此法。 (2) 伏安法测R0 用电压表、电流表测出有源二端网络的外特性曲线 ,根据 外特性曲线求出斜率tan α, 则内阻 Ro= tan α= Isc Uoc 也可以先测量开路电压Uoc, 再测量电流为额定值IN 时的输出 端电压值UN,则内阻为 R0=In Un Uoc 。 (3) 半电压法测R0 当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。 4) 零示法测UOC 在测量具有高内阻有源二端网络的开路电压时 用电压表直接测量会造成较大的误差。为了消除电压表内 阻的影响,往往采用零示测量法,零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比 较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压 ,即为被测有源二端网络的开路电压。

戴维南定理实验报告21454

实验一:戴维南定理 学号:1528406027 姓名:李昕怡成绩: 一、实验目的 1.深刻理解和掌握戴维南定理. 2.掌握测量等效电路参数的方法. 3.初步掌握用Multisim软件绘制电路原理图的方法. 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分 析方法. 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法. 二、实验原理及思路 实验基本原理:一个含独立源、线性电阻和受控源的一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效置换,其等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于将该一端口网络中所有独立源都置为零后的输入电阻。这一定理称为戴维南定理。 实验原理图如下:

测试等效电压方法:直接用万用表电压档测量被测电路的开路电压。 测试等效电阻的方法:将电路中所有电压源短路,所有电流源开路,用万用表电阻档测量。 验证思路及方法:首先测量原电路的等效电压和等效电阻,加上负载后改变负载的值测量负载电流和负载电压。然后,以等效电压为电压源,等效电阻为电路电阻,加上相同的负载,改变负载的值测量负载电流和负载电压。比较两电路负载电流和负载电压的值,若相同,则戴维南定理得证。 三、实验内容及结果 1.计算等效电压和等效电阻 u oc=2.6V,R o=250 Ω 2.用Multisim绘制原理图 3.测量方法 等效电压:点击开始仿真,将XMM1调至电压档读出数据; 等效电流:点击开始仿真,将XMM1调至电流档读出数据; 等效电阻:将电压源短路,点击开始仿真,将XMM1调至电阻档读出数据。 4.测量结果 等效电压测量值:

戴维南定理的实验验证报告

戴维南定理 学号: 姓名: 成绩: 一 实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a 50% 等效后的电路图如下b 所示 50% 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二 实验内容及结果 ⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 113 1R R R R Uoc= 3 11R R R +=2.6087V 。

计算等效电阻:R= ????? ? ? ?++ + ????? ? ? ?++ 3311111 221 31111 21 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示 Ro=250.335 测量等效电压是将滑动变阻器短路如下图 50% Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 原电路数据

-1012 345 678电流/m A 电压/V

通过OriginPro 软件进行绘图,两条线基本一致。 2 4 6 8 电流/m A 电压/V 由上面的数据及图线得知等效前后不影响电路的外特性,即验证了戴维南定理。 三 结论及分析 本实验,验证了戴维南定理即等效前后的电路的外特性不改变。 进行板上实验时,存在一定的误差,而使电路线性图不是非常吻合。可能是仪器的误差,数据不能调的太准确,也可能是内接和外接都有误差。 本实验最大的收获是学会用一些仿真软件,去准确的评估实际操作中的误差。 改进的地方是进行测量时取值不能范围太窄,要多次反复测量以防实验发生错误。

电工实验三 戴维南定理和有源二端网络的研究

实验三 戴维南定理验证和有源二端网络的研究 一. 实验目的 1. 用实验方法验证戴维南定理 2. 掌握有源二端网络的开路电压和入端等效电阻的测定方法,了解各种测量方法的 特点 3. 证实有源二端网络输出最大功率的条件 二. 实验原理 1. 戴维南定理 一个含独立电源,受控源和线性电阻的二端网络,其对外作用可以用一个电压源串联电阻的等效电源代替,其等效源电压等于此二端网络的开路电压,其等效内阻是二端网络内部各独立电源置零后所对应的不含独立源的二端网络的输入电阻(或称等效电阻)如图3-1所示。 图6-1 戴维南等效电路 OC 图3-2 有源二端网络的开路电压OC U 和入端等效电阻i R U OC b 图3-3 直接测量OC U

2. 开路电压的测定方法 (1) 直接测量法 当有源二端网络的入端等效电阻i R 与万用表电压档的内阻V R 相比可以忽略不计时,可以用电压表直接测量该网络的开路电压OC U 。如图3-3所示。 (2) 补偿法 当有源二端网络的入端电阻i R 较大时,用电压表直接测量开路电压的误差较大,这时采用补偿法测量开路电压则较为准确。 图3-4中虚线框内为补偿电路,' S U 为另一个直流电压源,可变电阻器P R 接成分压 器使用,G 为检流计。当需要测量网络A 、B 两端的开路电压时,将补偿电路'A 、'B 端分别与A 、B 两端短接,调节分压器的输出电压,使检流计的指示为零,被测网络即相当于开路,此时电压表所测得的电压就是该网络的开路电压OC U 。由于这时被测网络不输出电流,网络内部无电压降测得的开路电压数值较前一种方法准确。 图3-4 补偿法测量开路电压 3. 入端等效电阻i R 的测定方法 (1) 外加电源法 将有源二端网络内部的独立电压源Us 处短接,独立电流源Is 处开路,被测网络成 为无独立源的二端网络,然后在端口上加一给定的电源电压" S U ,测量流入网络的电流I , 如图3-5所示。入端等效电阻: I U R S i " 若被测网络内部去掉独立源后,仅由电阻元件组成,可直接用万用表的电阻档去测出入端效等电阻i R 。 实际上网络内部的独立电源都具有一定的内阻,它并能与电源本身分开。在去掉独立电源的同时,其内阻也被去掉,这将影响测量的准确性,因此这种测量方法仅适用于独立电压源内阻很小和独立电流源内阻很大的情况。

相关文档
相关文档 最新文档