文档库 最新最全的文档下载
当前位置:文档库 › 2014年高考数学理科汇编——排列、组合、概率

2014年高考数学理科汇编——排列、组合、概率

2014年高考数学理科汇编——排列、组合、概率
2014年高考数学理科汇编——排列、组合、概率

数 学

J 单元 计数原理

J1 基本计数原理 10.、[2014·福建卷] 用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )

A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5

B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5

C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)

D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)

10.A [解析] 从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a +a 2+a 3+a 4+a 5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b 5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个

球,共6种情况,则其所有取法为1+C 15c +C 25c 2+C 35c 3+C 45c 4+C 55c 5=(1+c )5

,根据分步乘法计数原理得,适合要求的所有取法是(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.

J2 排列、组合 13.[2014·北京卷] 把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.

13.36 [解析] A 33A 22A 1

3=6×2×3=36. 8.、[2014·广东卷] 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )

A .60

B .90

C .120

D .130

8.D [解析] 本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设集合M ={0},N ={-1,1}.

当x 1,x 2,x 3,x 4,x 5中有2个取值为0时,另外3个从N 中取,共有C 25×23

种方法;

当x 1,x 2,x 3,x 4,x 5中有3个取值为0时,另外2个从N 中取,共有C 35×22

种方法;

当x 1,x 2,x 3,x 4,x 5中有4个取值为0时,另外1个从N 中取,共有C 45×2种方法.

故总共有C 25×23+C 35×22+C 4

5×2=130种方法, 即满足题意的元素个数为130. 11.、[2014·广东卷] 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.

11.1

6 [解析] 本题主要考查古典概型概率的计算,注意中位数的求法.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C 710种方法,若七个数的中位数是6,则只需从

0,1,2,3,4,5中选三个,从7,8,9中选三个不同的数即可,有C 36C 3

3种方法.故这七

个数的中位数是6的概率P =C 36C 33C 710=1

6

.

6.[2014·辽宁卷] 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .24

6.D [解析] 这是一个元素不相邻问题,采用插空法,A 33C 3

4=24. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )

A .60种

B .70种

C .75种

D .150种

5.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小

组,不同的选法共有C 26C 1

5=75(种).

6.[2014·四川卷] 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )

A .192种

B .216种

C .240种

D .288种

6.B [解析] 当甲在最左端时,有A 55=120(种)排法;当甲不在最左端时,乙必须在最

左端,且甲也不在最右端,有A 11A 14A 4

4=4×24=96(种)排法,共计120+96=216(种)排法.故选B.

14.[2014·浙江卷] 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)

14.60 [解析] 分两种情况:一种是有一人获得两张奖券,一人获得一张奖券,有C 23A 2

4

=36种;另一种是三人各获得一张奖券,有A 3

4=24种.故共有60种获奖情况.

9.[2014·重庆卷] 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )

A .72

B .120

C .144

D .168

9.B [解析] 分两步进行:(1)先将3个歌舞进行全排,其排法有A 33种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有2A 33种.若两歌舞之间有两

个其他节目时插法有C 12A 22A 22种.所以由计数原理可得节目的排法共有A 33(2A 33+C 12A 22A 2

2)=120(种).

J3 二项式定理

13.[2014·安徽卷] 设a ≠0,n 是大于1的自然数,???

?1+x a n

的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图1-3所示,则a =________.

图1-3

13.3 [解析] 由图可知

a 0

=1,a 1

=3,a 2

=4,由组合原理知???C 1n ·1

a =a 1

=3,

C 2n

·1

a 2

=a 2

=4,

???

n

a

=3,n (n -1)a 2

=8,

解得 ?

????n =9,a =3.

10.、[2014·福建卷] 用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,

从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )

A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5

B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5

C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)

D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)

10.A [解析] 从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a +a 2+a 3+a 4+a 5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b 5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个

球,共6种情况,则其所有取法为1+C 15c +C 25c 2+C 35c 3+C 45c 4+C 55c 5=(1+c )5

,根据分步乘法计数原理得,适合要求的所有取法是(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.

2.[2014·湖北卷] 若二项式????2x +a x 7的展开式中1x 3的系数是84,则实数a =( )

A .2 B.5

4 C .1 D.24

2.C [解析] 展开式中含1x 3的项是T 6=C 57(2x )2????a x 5

=C 5722a 5x -3

,故含1x

3的项的系数是C 57

22a 5=84,解得a =1.故选C.

4.[2014·湖南卷] ????12x -2y 5

的展开式中x 2y 3的系数是( )

A .-20

B .-5

C .5

D .20

4.A [解析] 由题意可得通项公式T r +1=C r 5????12x 5-r (-2y )r =C r 5????125-r

(-2)r x 5-r y r ,令r

=3,则C r 5????125-r (-2)r =C 35×????122×(-2)3=-20.

13.[2014·全国卷] ???

?x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析] 易知二项展开式的通项

T r +1=C r 8

????x y 8-r ?

???-y x r

=(-1)r C r 8

x 8-3r 2y 3r 2-

4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2

,所以x 2y 2的系数为70.

13.[2014·新课标全国卷Ⅰ] (x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字

填写答案)

13.-20 [解析] (x +y )8的展开式中xy 7的系数为C 78=8,x 2y 6的系数为C 6

8=28,故(x -y )(x +y )8的展开式中x 2y 8的系数为8-28=-20.

13. [2014·新课标全国卷Ⅱ] (x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)

13.12

[解析] 展开式中x 7的系数为C 310a 3=15, 即a 3=18,解得a =1

2

.

14.,[2014·山东卷] 若????ax 2+b

x 6

的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.

14.2 [解析]

T r +1=C r 6(ax 2)

6-r

·???

?b x r

=C r

6

a 6-r ·

b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-

3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.

2.[2014·四川卷] 在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10

2.C [解析] x (1+x )6的展开式中x 3项的系数与(1+x )6的展开式中x 2项的系数相同,故其系数为C 26=15.

5.[2014·浙江卷] 在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )

A .45

B .60

C .120

D .210

5.C [解析] 含x m y n 项的系数为f (m ,n )=C m 6C n 4,故原式=C 36C 04+C 26C 14+C 16C 24+C 06C 3

4=120,故选C.

J4 单元综合

8.[2014·安徽卷] 从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )

A .24对

B .30对

C .48对

D .60对

8.C [解析] 方法一(直接法):在上底面中选B 1D 1,四个侧面中的面对角线都与它成60°,共8对,同样A 1C 1对应的对角线也有8对,同理下底面也有16对,共有32对.左右侧面与前后侧面中共有16对面对角线所成的角为60°,故所有符合条件的共有48对.

方法二(间接法):正方体的12条面对角线中,任意两条垂直、平行或所成的角为60°,所以所成角为60°的面对角线共有C 212-6-12=48.

数 学

K 单元 概率

K1 随事件的概率 20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多..有1年的年入流量超过120的概率. (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:

年入流量X 40

X >120 发电机最多

可运行台数

1 2 3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

20.解:(1)依题意,p 1=P (40

50

=0.2,

p 2=P (80≤X ≤120)=35

50=0.7,

p 3=P (X >120)=5

50

=0.1.

由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为

p =C 04(1-p 3)4+C 14(1-p 3)3p 3=0.94+4×0.93

×0.1=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.

由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000×1=5000.

②安装2台发电机的情形. 依题意,当40

Y 4200 10 000 P 0.2 0.8

所以,E (Y )=4200×0.2+10 000×0.8=8840. ③安装3台发电机的情形. 依题意,当40120时,三台发电机运行,此时Y =5000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.由此得Y 的分布列如下:

Y 3400 9200 15 000 P 0.2 0.7 0.1

所以,E (Y )=3400×0.2+9200×0.7+15 000×0.1=8620.

综上,欲使水电站年总利润的均值达到最大,应安装发电机2台. 17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200

分).设每次击鼓出现音乐的概率为1

2

,且各次击鼓出现音乐相互独立.

(1)设每盘游戏获得的分数为X ,求X 的分布列.

(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?

(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有

P (X =10)=C 13×????121×????1-122

=38,

P (X =20)=C 23×

????122

×????1-121

=38, P (X =100)=C 33×

????123

×????1-120

=18, P (X =-200)=C 03×

????120

×????1-123

=18

. 所以X 的分布列为:

X 10 20 100 -200 P

38

38

18

18

(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则 P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18

.

所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-????183

=1-1

512=511512

. 因此,玩三盘游戏至少有一盘出现音乐的概率是511

512

.

(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-5

4

.

这表明,获得分数X 的均值为负.

因此,多次游戏之后分数减少的可能性更大.

K2 古典概型 11.、[2014·广东卷] 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.

11.1

6 [解析] 本题主要考查古典概型概率的计算,注意中位数的求法.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C 710种方法,若七个数的中位数是6,则只需从

0,1,2,3,4,5中选三个,从7,8,9中选三个不同的数即可,有C 36C 3

3种方法.故这七

个数的中位数是6的概率P =C 36C 3

3C 710=1

6

.

18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.

(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;

(ii)顾客所获的奖励额的分布列及数学期望.

(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

18.解:(1)设顾客所获的奖励额为X .

(i)依题意,得P (X =60)=C 11C 13

C 24=12

.

即顾客所获的奖励额为60元的概率为1

2,

(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=1

2,

P (X =20)=C 23C 24=1

2,

即X 的分布列为

X 20 60 P

0.5

0.5

所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).

(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.

对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.

以下是对两个方案的分析:

对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为

X 1 20 60 100 P

16

23

16

X 1的期望为E (X 1)=20×16+60×23+100×1

6

=60,

X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1600

3

.

对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为

X 2

40

60

80

P

16 23 16

X 2的期望为E (X 2)=40×16+60×23+80×1

6

=60,

X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=400

3

.

由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以

应该选择方案2.

5.[2014·新课标全国卷Ⅰ] 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )

A.18

B.38

C.58

D.78

5.D [解析] 每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,故周六、周日都有同学参加公益活动的概率为1-216=78.

6.[2014·陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...

该正方形边长的概率为 ( ) A.15 B.25 C.35 D.4

5

6.C [解析] 利用古典概型的特点可知从5个点中选取2个点的全部情况有C 25=10(种),选取的2个点的距离不小于该正方形边长的情况有:选取的2个点的连线为正方形的4条边长和2条对角线长,共有6种.故所求概率P =610=3

5

.

16.、、[2014·天津卷] 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

(1)求选出的3名同学是来自互不相同学院的概率;

(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 16.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则

P (A )=C 13·C 27+C 03·C 3

7C 310

=4960,

所以选出的3名同学是来自互不相同学院的概率为49

60.

(2)随机变量X 的所有可能值为0,1,2,3.

P (X =k )=C k 4·C 3-

k

6

C 3

10

(k =0,1,2,3), 所以随机变量X 的分布列是 X 0 1 2 3 P 16

12

310

130

随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=6

5

.

9.、[2014·浙江卷] 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球

(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.

(a)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);

(b)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )

A .p 1>p 2,E (ξ1)

B .p 1

E (ξ2)

C .p 1>p 2,E (ξ1)>E (ξ2)

D .p 1

E (ξ1)

9.A [解析] 方法一:不妨取m =n =3,此时,p 1=36×22+36×12=34,p 2=C 23C 26×33+C 13C 1

3

C 2

6

×23+C 23C 26×13=23,则p 1>p 2;E (ξ1)=1×36+2×36=32,E (ξ2)=1×C 23C 26+2×C 13C 1

3C 26+3×C 23

C 26=2,则E (ξ1)

方法二:p 1=m m +n ×22+n m +n ×12=2m +n 2(m +n ),p 2=C 2m C 2m +n ×33+C 1m C 1

m C 2m +n ×23+C 2n

C 2m +n ×13

3m 2-3m +4mn +n 2-n

3(m +n )(m +n -1)

则p 1-p 2=mn +n (n -1)

6(m +n )(m +n -1)

>0;

E (ξ1)=1×n m +n +2×m

m +n =2m +n m +n

E (ξ2)=1×C 2n C 2m +n +2×C 1m C 1

n C 2m +n +3×C 2m

C 2m +n

3m 2-3m +4mn +n 2-n

(m +n )(m +n -1)

E (ξ1)-E (ξ2)=-m 2+m -mn

(m +n )(m +n -1)

<0,故选A.

18.,[2014·重庆卷] 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.

(1)求所取3张卡片上的数字完全相同的概率;

(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)

18.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 3

3

C 3

9=584

. (2)X 的所有可能值为1,2,3,且

P (X =1)=C 24C 15+C 34C 39=17

42,

P (X =2)=C 13C 14C 12+C 23C 1

6+C 33

C 3

9=4384, P (X =3)=C 22C 1

7C 39=1

12

故X 的分布列为

X 1 2 3

P 1742 4384 1

12

从而E (X )=1×1742+2×4384+3×112=47

28

.

K3 几何概型 14.、[2014·福建卷] 如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.

图1-4

14.2

e 2 [解析] 因为函数y =ln x 的图像与函数y =e x 的图像关于正方形的对角线所在直线y =x 对称,则图中的两块阴影部分的面积为

S =2??1

e

ln x d x =2(x ln x -x)|e

1=2[(eln e -e )-(ln 1-1)]=2,

故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率P =2

e

2.

7.[2014·湖北卷] 由不等式组?????x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组???

?

?x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )

A.18

B.14

C.34

D.78

7.D [解析] 作出Ω1,Ω2表示的平面区域如图所示,

S Ω1=S △AOB =12×2×2=2,S △BCE =12×1×12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=7

4

.

故由几何概型得,所求的概率P =S 四边形AOEC S Ω1

=7

42=7

8.故选D.

14.[2014·辽宁卷] 正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图1-3所示.若将—个质点随机投入正方形ABCD 中,

则质点落在图中阴影区域的概率是________.

图1-3

14.2

3 [解析] 正方形ABCD 的面积S =2×2=4,阴影部分的面积S 1=2??-1

1(1-x 2)d x =2????x -13x 31-1=8

3,故质点落在阴影区域的概率P =8

34=23.

K4 互斥事件有一个发生的概率 17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和3

5

.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率.

(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.

17.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知

P (E )=23,P (E )=13,P (F )=35,P (F )=25

且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.

(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=2

15

故所求的概率为P (H )=1-P (H )=1-215=13

15

.

(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15

P (X =120)=P (E F )=23×25=4

15,

P (X =220)=P (EF )=23×35=2

5

故所求的分布列为

X 0 100 120 220

P 215 15 415 2

5

数学期望为

E (X )=0×215+100×15+120×415+220×25=300+480+132015=2100

15

=140.

16.、、[2014·天津卷] 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

(1)求选出的3名同学是来自互不相同学院的概率;

(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 16.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则

P (A )=C 13·C 27+C 03·C 3

7C 310

=4960,

所以选出的3名同学是来自互不相同学院的概率为49

60.

(2)随机变量X 的所有可能值为0,1,2,3.

P (X =k )=C k 4·C 3-

k

6

C 3

10

(k =0,1,2,3), 所以随机变量X 的分布列是 X 0 1 2 3 P 16

12

310

130

随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=6

5

.

K5 相互对立事件同时发生的概率 17.、[2014·安徽卷] 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为2

3,乙获胜的

概率为1

3

,各局比赛结果相互独立.

(1)求甲在4局以内(含4局)赢得比赛的概率;

(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).

17.解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=1

3

,k =1,2,3,4,5.

(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=????232

+13×????

232

23×13×????232=56

81

. (2)X 的可能取值为2,3,4,5.

P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=5

9,

P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=2

9

P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081

, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=8

81.

故X 的分布列为

X 2 3 4 5 P

59

29

1081

881

EX =2×59+3×29+4×1081+5×881=224

81

.

16.、[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独

立):

场次 投篮次数 命中次数 场次 投篮次数 命中次数

主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5

24

20

客场5

25

12

(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;

(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小.(只需写出结论)

16.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.

所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.

(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.

则C =AB ∪AB ,A ,B 相互独立.

根据投篮统计数据,P (A )=35,P (B )=2

5.

故P (C )=P (AB )+P (AB ) =35×35+25×2

5 =1325

. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13

25

.

(3)EX =x -

.

17.、[2014·广东卷] 随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.

根据上述数据得到样本的频率分布表如下:

分组 频数 频率 [25,30]

3

0.12

(30,35] 5 0.20 (35,40] 8 0.32 (40,45] n 1 f 1 (45,50]

n 2

f 2

(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;

(2)根据上述频率分布表,画出样本频率分布直方图;

(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.

20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多..有1年的年入流量超过120的概率. (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:

年入流量X 40

X >120 发电机最多

可运行台数

1 2 3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

20.解:(1)依题意,p 1=P (40

50

=0.2,

p 2=P (80≤X ≤120)=35

50=0.7,

p 3=P (X >120)=5

50

=0.1.

由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为

p =C 04(1-p 3)4+C 14(1-p 3)3p 3=0.94+4×0.93

×0.1=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.

由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000×1=5000.

②安装2台发电机的情形. 依题意,当40

Y 4200 10 000 P 0.2 0.8

所以,E (Y )=4200×0.2+10 000×0.8=8840. ③安装3台发电机的情形. 依题意,当40120时,三台发电机运行,此时Y =5000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.由此得Y 的分布列如下:

Y 3400 9200 15 000 P 0.2 0.7 0.1

所以,E (Y )=3400×0.2+9200×0.7+15 000×0.1=8620.

综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.

21.、、[2014·江西卷] 随机将1,2,…,2n (n ∈N *,n ≥2)这2n 个连续正整数分成A ,B 两组,每组n 个数.A 组最小数为a 1,最大数为a 2;B 组最小数为b 1,最大数为b 2.记ξ=a 2-a 1,η=b 2-b 1.

(1)当n =3时,求ξ的分布列和数学期望;

(2)令C 表示事件“ξ与η的取值恰好相等”,求事件C 发生的概率P (C );

(3)对(2)中的事件C ,C -表示C 的对立事件,判断P (C )和P (C -

)的大小关系,并说明理由.

21.解:(1)当n =3时,ξ的所有可能取值为2,3,4,5.

将6个正整数平均分成A ,B 两组,不同的分组方法共有C 3

6=20(种),所以ξ的分布列为:

ξ 2 3 4 5 P

15

310

310

15

E ξ=2×15+3×310+4×310+5×15=7

2

.

(2)ξ和η恰好相等的所有可能取值为n -1,n ,n +1,…,2n -2.

又ξ和η恰好相等且等于n -1时,不同的分组方法有2种; ξ和η恰好相等且等于n 时,不同的分组方法有2种;

ξ和η恰好相等且等于n +k (k =1,2,…,n -2)(n ≥3)时,不同的分组方法有2C k 2k 种. 所以当n =2时,P (C )=46=23

当n ≥3时,P (C )=

2????2+∑n -2

k =1

C k 2k C n 2n

.

(3)由(2)得,当n =2时,P (C )=1

3,因此P (C )>P (C ).而当n ≥3时,P (C )

理由如下:

P (C )

n -2

k =1

C k 2k )

2n ,①

用数学归纳法来证明:

(i)当n =3时,①式左边=4(2+C 12)=4(2+2)=16,①式右边=C 3

6=20,所以①式成立. (ii)假设n =m (m ≥3)时①式成立,即

4????2+∑m -2

k =1

C k 2k

m +1-2k =1

C k 2k

=4????2+∑m -2

k =1C k 2k +4C m

-12(m -1)

+4·(2m -2)!(m -1)!(m -1)!=(m +1)2(2m )(2m -2)!(4m -1)

(m +1)!(m +1)!

<

(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +1

2(m +1)· 2(m +1)m (2m +1)(2m -1)

2(m +1)=右边, 即当n =m +1时,①式也成立.

综合(i)(ii)得,对于n ≥3的所有正整数,都有P (C )

图1-4

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).

18.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此

P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15,

P (B )=0.6×0.6×0.15×2=0.108.

(2)X 可能取的值为0,1,2,3,相应的概率分别为

P (X =0)=C 03·(1-0.6)3

=0.064,

P (X =1)=C 13·0.6(1-0.6)2

=0.288,

P (X =2)=C 23·0.62

(1-0.6)=0.432,

P (X =3)=C 33·0.63

=0.216. X 的分布列为

X 0 1 2 3 P 0.064 0.288 0.432 0.216

因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72. 20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.

(1)求同一工作日至少3人需使用设备的概率;

(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.

20.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.

D 表示事件:同一工作日至少3人需使用设备.

(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=

P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.

(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )

=(1-0.6)×0.52×(1-0.4) =0.06,

P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=

P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,

P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,

P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,

所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.

17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为1

2

,且各次击鼓出现音乐相互独立.

(1)设每盘游戏获得的分数为X ,求X 的分布列.

(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?

(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有

P (X =10)=C 13×????121×????1-122

=38,

P (X =20)=C 23×

????122

×????1-121

=38, P (X =100)=C 33×

????123

×????1-120

=18, P (X =-200)=C 03×

????120

×????1-123

=18

. 所以X 的分布列为:

X 10 20 100 -200 P

38

38

18

18

(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则 P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18

.

所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-????183

=1-1

512

511512

. 因此,玩三盘游戏至少有一盘出现音乐的概率是511

512

.

(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-5

4

.

这表明,获得分数X 的均值为负.

因此,多次游戏之后分数减少的可能性更大.

K6 离散型随机变量及其分布列 17.、[2014·安徽卷] 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为2

3,乙获胜的

概率为1

3

,各局比赛结果相互独立.

(1)求甲在4局以内(含4局)赢得比赛的概率;

(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).

17.解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=1

3

,k =1,2,3,4,5.

(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=????232

+13×????

232

23×13×????232=56

81

. (2)X 的可能取值为2,3,4,5.

P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=5

9,

P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=2

9

P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081

, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=8

81.

故X 的分布列为

X 2 3 4 5 P

59

29

1081

881

EX =2×59+3×29+4×1081+5×881=224

81

.

16.、[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独

立):

场次 投篮次数 命中次数 场次 投篮次数 命中次数

主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5

24

20

客场5

25

12

(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;

(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小.(只需写出结论)

16.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.

所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.

(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.

则C =AB ∪AB ,A ,B 相互独立.

根据投篮统计数据,P (A )=35,P (B )=2

5.

故P (C )=P (AB )+P (AB ) =35×35+25×2

5 =1325

. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13

25

.

(3)EX =x -

.

18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.

(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;

(ii)顾客所获的奖励额的分布列及数学期望.

(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

18.解:(1)设顾客所获的奖励额为X .

(i)依题意,得P (X =60)=C 11C 13

C 24=12

.

即顾客所获的奖励额为60元的概率为1

2,

(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=1

2,

P (X =20)=C 23C 24=1

2,

即X 的分布列为

X 20 60 P

0.5

0.5

所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).

(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.

对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.

以下是对两个方案的分析:

对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为

X 1 20 60 100 P

16

23

16

X 1的期望为E (X 1)=20×16+60×23+100×1

6

=60,

X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1600

3

.

对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为

X 2 40 60 80 P

16

23

16

X 2的期望为E (X 2)=40×16+60×23+80×1

6

=60,

X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=400

3

.

由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以

应该选择方案2.

20.、、、、[2014·湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

2014年高考新课标1理科数学真题及答案详解

2014年普通高等学校招生全国统一考试(新课标全国卷Ⅰ) 理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A A.]1,2[-- B.]1,1[- C.)2,1[- D.)2,1[ (2) =-+2 3 )1()1(i i A.1+i B.-1+i C.1-i D.-1-i (3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B.|)(|)(x g x f 是奇函数 C.)(|)(|x g x f 是奇函数 D.|)()(|x g x f 是奇函数 (4)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为 A.3 B.m 3 C.3 D.m 3 (5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 A.8 1 B.8 5 C.8 3 D.8 7

(6)如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为 (7)执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=

排列组合问题的解法第三计

每周一计第三计——排列组合问题的解法 解决排列组合问题要讲究策略,用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 (一).特殊元素、特殊位置的“优先安排法” 对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 : 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0:0在个位有 种,0在十位有 种; 第二类,不含0:有1 223A A 种。 故共有( 24A +1123A A )+1223A A =30种。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有 种;第二类,0不在个位,先从两个偶数中选一个 放个位,再选一个放百位,最后考虑十位,有 种。 故共有 练习:甲、乙、丙、丁、戊、己六位同学选四人组队参加4*100m 接力赛,其中甲、乙不跑最后一棒,共有多少种不同的安排方法?(此题可有元素优先和位置优先两个角度两种解法,但位置优先则更简单) (二).排除法 对于含有否定词语的问题,还可以从总体中把不符合要求的除去. 例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有543543 2A A A -+=78种. (三).相邻问题“捆绑法” 对于某些元素要求相邻.. 排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应 全排列。由乘法原理共有6365A A 种。 (四)。不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他可相邻元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的) 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有 种。 注意:①分清“谁插入谁”的问题。要先排可相邻的元素,再插入不相邻的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 例5: 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有3 5 C 种。 (五)。定序问题选位不排 对于某几个元素顺序一定的排列问题,可先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。 例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解:先在5个位置中选2个位置放定序元素(甲、乙)有 种,再排列其它3人有 ,由乘法原理得共有 =60种。 1345240A A =5354A A 25C 3 3 A 25C 3 3A 24 A 1123A A 111233 A A A 2111423330 A A A A +=24A

高考数学专题之排列组合小题汇总

温馨提示:(每题4分满分100分时间90分钟)姓名________________ 一、单选题 1.某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的 A B C D E F 这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F这两块实验田上,则不同的种植方法有 ( ) A. 360种 B. 432种 C. 456种 D. 480种 2.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有() A.种 B.种 C.种 D.种 3.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种 A. 19 B. 26 C. 7 D. 12 4.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为() A . B. C. D. 5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有() A. 300种 B. 150种 C. 120种 D. 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A. 105 B. 95 C. 85 D. 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有() A.种 B.种 C.种 D.种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有() A. 168种 B. 156种 C. 172种 D. 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种() A.14400 B.28800 C.38880 D.43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E、F必须排在一起,则这六项任务的不同安排方案共有() A. 240种 B. 188种 C. 156种 D. 120种 11.定义“有增有减”数列{}n a如下:* t N ?∈,满足 1 t t a a + <,且* s N ?∈,满足 1 S S a a + >.已知“有增有减”数列{}n a共4项,若{}() ,,1,2,3,4 i a x y z i ∈=,且x y z <<,则数列{}n a共有() 序号 1 2 3 4 5 6 7 8 9 10 11 12 选项 13 14 15 16 17 18 19 20 21 22 23 24 25

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

2014年高考数学理科全国1卷

2014年高考数学理科全国1卷

2014年普通高等学校招生全国统一考试 理科数学 本试题卷共9页,24题(含选考题)。全卷满分150分。考试用时120分钟。 ★祝考试顺利★ 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的 指定位置。用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。 2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域内均无效。 3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ?=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.3 2(1)(1) i i +-=( ) A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )

A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ) A .3 B .3 C .3m D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ) A .18 B .38 C .58 D .78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始 边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M , 将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的 图像大致为( ) 7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A .203 B .165 C .72 D .158 8.设(0,)2πα∈,(0,)2 πβ∈,且1sin tan cos βαβ+=,则( ) A .32π αβ-= B .22π αβ-= C .32π αβ+= D .22π αβ+= 9.不等式组124x y x y +≥??-≤? 的解集记为D .有下面四个命: 1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥,

【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)

★绝密 备战2014专题 主编:冷世平

排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 ◆处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。 ◆处理排列组合应用题的规律 ⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。 排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律: ⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 ⑵排列与组合定义相近,它们的区别在于是否与顺序有关。 ⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。 ⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。 ⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。 ⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 【策略1】特殊元素(位置)用优先考虑 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。 【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种; A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有2 5 A种方法,共计有480种。 个人作全排列有4 4 用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。30 【策略2】相邻问题用捆绑法 将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版

高考数学一轮复习: 概率与统计 高考大题专项(六) 概率与统计 考情分析 一、考查范围全面 概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法. 二、考查方向分散 从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查. 三、考查难度稳定 高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调. 典例剖析 题型一相关关系的判断及回归分析 【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图. x50100150200300400 t906545302020

2014年全国大纲卷高考理科数学试题真题含答案

2014年普通高等学校统一考试(大纲) 理科 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设103i z i =+,则z 的共轭复数为 ( ) A .13i -+ B .13i -- C .13i + D .13i - 【答案】D . 2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N = ( ) A .(0,4] B .[0,4) C .[1,0)- D .(1,0]- 【答案】B. 3.设sin33,cos55,tan35,a b c =?=?=?则 ( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 【答案】C . 4.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( ) A .2 B C .1 D . 2 【答案】B . 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种 【答案】C .

6.已知椭圆C :22 221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的 直线l 交C 于A 、B 两点,若1AF B ?的周长为C 的方程为 ( ) A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 【答案】A . 7.曲线1x y xe -=在点(1,1)处切线的斜率等于 ( ) A .2e B .e C .2 D .1 【答案】C . 8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814 π B .16π C .9π D .274π 【答案】A . 9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则 21cos AF F ∠=( ) A .14 B .13 C .4 D .3 【答案】A . 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( ) A .6 B .5 C .4 D .3 【答案】C . 11.已知二面角l αβ--为60?,AB α?,AB l ⊥,A 为垂足,CD β?,C l ∈,135ACD ∠=?,则异面直线AB 与CD 所成角的余弦值为 ( )

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

高中数学概率大题经典一

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

2014年高考数学全国卷1(理科)

绝密★启用前 2014 年普通高等学校招生全国统一考试 (新课标 I 卷 ) 数 学(理科 ) 一.选择题:共 12 小题,每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合 A={ x | x 2 2x 3 0 } , - ≤<=,则A B = B={ x | 2 x 2 A .[-2,-1] B .[-1,2 ) C .[-1,1] D .[1,2) (1 i )3 2. (1 i ) 2 = A .1 i B .1 i C . 1 i D . 1 i 3.设函数 f ( x) , g( x) 的定义域都为 R ,且 f ( x) 时奇函数, g (x) 是偶函数,则下列结论正确的 是 A . f (x) g( x) 是偶函数 B .| f ( x) | g ( x) 是奇函数 C .f (x) | g( x) 是奇函数 D .|f ( x) g ( x) 是奇函数 | | 4.已知 F 是双曲线 C : x 2 my 2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为 A . 3 B .3 C . 3m D . 3m 5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日 都有同学参加公益活动的概率 A . 1 B . 3 C . 5 D . 7 8 8 8 8 6.如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角 x 的始边 为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP 的距 离表示为 x 的函数 f ( x) ,则 y = f ( x) 在 [0, ]上的图像大致为

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

2014年全国高考理科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试 全国课标1理科数学 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准 考证号填写在答题卡上. 2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合 题目要求的一项。 1. 已知集合A={x |2 230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2. 32 (1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 已知F 是双曲线C :2 2 3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A B .3 C D .3m 5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动 的概率

A .18 B .38 C .58 D .78 6. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边 为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A . 203 B .165 C .72 D .158 8. 设(0, )2π α∈,(0,)2 π β∈,且1sin tan cos βαβ+= ,则 A .32 π αβ-= B .22 π αβ-= C .32 π αβ+= D .22 π αβ+= 9. 不等式组1 24x y x y +≥??-≤? 的解集记为D .有下面四个命题: 1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤,4p :(,),21x y D x y ?∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P 10. 已知抛物线C :2 8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦

排列组合解法大全

排列组合解法大全 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪, 4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进 行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法 种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

相关文档
相关文档 最新文档