文档库 最新最全的文档下载
当前位置:文档库 › 实验 氦氖激光器的调整及光斑的测量 学习体会

实验 氦氖激光器的调整及光斑的测量 学习体会

实验 氦氖激光器的调整及光斑的测量 学习体会

实验氦氖激光器的调整及光斑的测量学习体会

应用物理2班曹朝榴 2014114025 关于氦氖激光器谐振腔调节,使激光输出,非常重要的前提就是分辨谐振腔是外腔式,还是半外腔式,才能选择十字光靶法和激光准直法中更为适合的一种方法。

本次实验使用的是半外腔式,所以使用激光准直法,能更为容易的调出激光。

在调节过程中,需要将已经调好的氦氖激光器放在导轨的另外一端,利用调节板的小孔调整氦氖激光器的方向,直至激光器出光方向与导轨平行。紧接着按书上方法调整,直至出光为止。

因为激光是一条直线,且每个仪器透过的小孔都比较小,所以需要每个仪器都调整得高度精确。就需要足够的耐心,并且非常仔细。轻微的调节手扭,不断的透过小孔观察,因为耗时较长,且过程单一枯燥,所以极其容易失败,调节过程中应该克制住自己的急躁,静下心来,按照正确的方法调整激光。

光的偏振 实验报告.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=I0cos2。(是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2光路图: 实验5光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4波片至于已消光的起偏器与检偏器间,转动1/4波片观察已消光位置,确定1/4波片光轴方向,改变1/4波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。实验五:见“实验数据”中的表格

总结与讨论: 本次实验所用仪器精度较高,所得数据误差也较小。 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光,这就是实验五中透过1/4波片的线 偏光成为不同偏振光的原因。XX大学生实习报告总结 3000字 社会实践只是一种磨练的过程。对于结果,我们应该有这样的胸襟:不以成败论英雄,不一定非要用成功来作为自己的目标和要求。人生需要设计,但是这种设计不是凭空出来的,是需要成本的,失败就是一种成本,有了成本的投入,就预示着的人生的收获即将开始。 小草用绿色证明自己,鸟儿用歌声证明自己,我们要用行动证明自己。打一份工,为以后的成功奠基吧! 在现今社会,招聘会上的大字板都总写着“有经验者优先”,可是还在校园里面的我们这班学子社会经验又会拥有多少呢?为了拓展自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高自己的能力,以便在以后毕业后能真正的走向社会,并且能够在生活和工作中很好地处理各方面的问题记得老师曾说过学校是一个小社会,但我总觉得校园里总少不了那份纯真,那份真诚,尽管是大学高校,学生还终归保持着学生身份。而走进企业,接触各种各样的客户、同事、上司等等,关系复杂,但你得去面对你从没面对过的一切。记得在我校举行的招聘会上所反映出来的其中一个问题是,学生的实际操作能力与在校的理

专业实验 实验四 氦氖多谱线激光器实验讲义

多谱线氦氖激光器 实验 实验讲义 大恒新纪元科技股份有限公司 版权所有不得翻印 多谱线氦氖激光器

在增益管长为1m的外腔式He-Ne激光器中,用腔内插入色散棱镜选择谱线的方法,在可见光区分别使氖原子的九条谱线产生激光振荡。实验要求掌握He-Ne多谱线激光线器的工作原理及腔型结构的特点;学习外腔式激光器及腔内带棱镜激光器的调节方法;测量各条激光谱线的波长;找出各条谱线的最佳放电电流及测量最大输出功率。 一、实验原理 一台激光器除激励电流外主要由两部分组成,一是增益介质;二是谐振腔。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。稳定振荡时的增益叫阈值增益,初始的增益叫小信号增益。小信号增益与阈值增益之差越大,腔内的激光强度越强,对小信号增益很低的激光谱线是否能获得激光振荡,关键在于谐振腔的损耗能降低到什么程度。 1、在可见光区激光谱线的小信号增益系数 在氦氖混合气体的增益管中氖原子的3S2能级对2P i(2P i是2P1,2P2,…,2P8,2P10九个能级的简称,3S2-2P9的跃迁是违禁的)九个能级之间能够产生粒子数反转,使介质具有增益,九条谱线的小信号增益系数G0如表1所示。 测量时各谱线的放电电流值不相同;表中相对增益系数是用用光谱相对强度研究氦氖放电管的增益特性的装置测得的,各谱线的放电电流相同。 表1 He-Ne 3S2-2P i谱线的小信号增益系数

氦氖激光器的调腔实验

氦氖激光器的调腔实验 (北京师范大学物理系) 摘要:本实验分别通过准直法和十字叉丝法来调节谐振腔两端腔镜的位置,使得两个腔镜平行且和毛细管垂直,发射激光,并通过统调法获得最强激光。 理论: 激光器由激励电流、增益介质和谐振腔组成,如图1。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。 介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。 图1 激光器原理图 实验内容: 1.清洗镜头 在清洗镜头时候可以通过腔镜的具体情况选择合适的清洗方法,首先应用洗耳球吹去镜头上的灰尘等颗粒物,对于软膜我们采用拖曳的方法,首先将镜头放置在水平的桌面上,取一张镜头纸并将光滑一面放置在镜头上,并且在此之前确保不会用手去接触光滑面,在擦镜纸上接触镜头的部位滴一到两滴丙酮试剂,轻轻拖曳擦镜纸的一端直到整张擦镜纸擦过镜头。

图2 软膜清洗法 对于硬膜,洗耳球吹去镜头上的灰尘等颗粒物之后,将镜头着对折,如图,用止血钳夹住擦镜纸,露出一段,在露出一端上滴一到两滴丙酮,轻甩之后擦 拭镜头,擦拭的过程保证擦拭方向永远朝着一个方向,不来回擦拭。 图3 硬膜清洗法 2.准直法调腔 用具:He-Ne激光器、准直激光器、贴有白纸的立板。 步骤: (1)通过上述方法清洗完镜头和布儒斯特窗后,打开准直激光器; (2)首先调节准直激光器的上下高度和俯仰角度,使得准直激光器打出来的光与毛细管的中心在同一水平线上; (3)将准直激光器固定在谐振腔一端的前段,将激光穿透整个毛细管,此时可以调节准直激光器的横向位移和左右偏移动,直到穿透的光打在对面的白 纸上呈现同心圆环状; (4)装上阴极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光与出来的激光重合出现在准直激光器镜头上的正中心; (5)装上阳极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光出现规则的明暗变化;

实验报告——半导体激光器输出光谱测量

实验报告——半导体激光器输出光谱测量 实验时间:2017.03.04 一、实验目的 1、了解半导体激光器的基本原理及基本参数; 2、测量半导体激光器的输出特性和光谱特性; 3、了解外腔选模的机理,熟悉光栅外腔选模技术; 4、熟悉压窄谱线宽度的方法。 二、实验原理 1.半导体激光器 激光(LASER)的全称 light amplification by stimulated emission of radiation 意为通过受激发射实现光放大。 激光器的基本组成如下图: 必要组成部分无外乎:谐振腔、增益介质、泵浦源。 在此基础上,激光产生的条件有二: 1)粒子数反转 通过外界向工作物质输入能量,使粒子大部分处于高能态,而非基态。 2)跃迁选择定则 粒子能够从基态跃迁到高能态,需要两个能级之间满足跃迁选择定则,电子相差 的奇数倍角动量差。 世界上第一台激光器是1960年7月8日,美国科学家梅曼发明的红宝石激光器。 1962年世界上第一台半导体激光器发明问世。 2.半导体激光器的基本原理 半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。 没有杂质的纯净半导体,称为本征半导体。 如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n 型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 若在形成了p-n结的半导体材料上加上正向偏压,p区接正极,n区接负极。正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2 /121,)1)(1(arccos )(12' 'R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ? ?????????????--?=?=?=?+?2 /12111)1)(1(arccos 1' R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长 与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2总处于共焦状态。 当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示 编号为1和1’ 的两组透光强分别为: 1 222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即 λπβ/22?=ul

基础性实验:趣味光学实验汇总

光学基础性趣味实验 目录 实验1 光与彩虹(人造彩虹) (2) 实验2 人造彩虹2 (3) 实验3 光的折射实例 (5) 实验4 自制放大镜 (6) 实验5 红外线实验的设计 (7) 实验6 多功能小孔成像仪的制作 (8) 实验7 自制针孔眼镜——小孔成像的应用 (9) 实验8 镜子中有无数个镜子 (10) 实验9 日食和月食的演示 (11) 实验10 制作针孔照相机 (12) 实验11 用激光器演示光的直线传播 (13) 实验12 全反射现象观察......................................... 14错误!未定义

实验1 光与彩虹(人造彩虹) 思考:你用什么办法能制作出与空中彩虹颜色一样的彩虹? 实验准备:清水1盆、平面镜1个 实验操作: 1.取一小盆并加入2/3的水,再把镜子斜放于盆内; 2.使镜面对着阳光,在水盆对面的墙上就能看到美丽的彩虹。 实验中的科学:将镜子插入水中时,在对面的墙上就能看到美丽的彩虹。它是光的折射作用,实验表明:白光通过三棱镜后就会分解为红、橙、黄、绿、蓝、靛、紫等七种颜色的光,这就是光的色散。这里镜面左侧的水就好像一个三棱镜,因而光射出水面后就会发生色散,形成彩虹。 创新:想一想,还有什么办法,可以制造出美丽的彩虹?

实验2 人造彩虹2 准备材料:水、一个玻璃杯、一张白纸。 实验步骤: 1.在玻璃杯中装满水,把杯子拿到阳光可以照射到的窗台上;2.把纸放到阳光透过杯子投射进来的地方,这样在纸上就可以看到彩虹的色彩。 实验中的科学: 光线被水折射了,因而投射到纸上的颜色是阳光被分解之后的颜色,原理跟天空中彩虹的形成是一样的。当阳光以40到42度的角度照射空中的水珠时,阳光通过水珠时发生折射,投射到空中形成了彩虹。 知识问答:彩虹为什么总是弯曲的? 想象你看着东边的彩虹,太阳在从背后的西边落下。白色的阳光(彩虹中所有颜色的组合)穿越了大气,向东通过了你的头顶,碰到了从暴风雨落下的水滴。当一道光束碰到了水滴,会有两种可能:一是光可能直接穿透过去,或者更有趣的是,它可能碰到水滴的前缘,在进入时水滴内部产生弯曲,接着从水滴后端反射回来,再从水滴前端离开,往我们这里折射出来。这就是形成彩虹的光。 水滴对光的反射,折射加色散形成彩虹。色散后不同色光出射的方向不同,对一个水滴出射的光我们只有站在特定的观察点上才能看见特定的颜色光,而我们平时是站在固定的观察点上去看空中多个水滴,这样,不同水滴中出射的同一种色光能够到达眼睛,这些水滴

氦氖激光器系列实验

氦氖激光器实验 袁庆勇 081273018 信息工程 一、实验仪器 氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器、氦氖激光器及其电源。 氦氖激光器技术参数: 谐振腔曲率半径 1m ∞ 中心波长 632.8nm 共焦球面扫描干涉仪技术参数: 腔长20mm 凹面反射镜曲率半径20mm 凹面反射镜反射率99% 精细常数>100 自由光谱范围4GHz 二、实验目的 Ⅰ、氦氖激光束光斑大小和发散角 1、掌握测量激光束光斑大小和发散角的方法。 2、深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。 Ⅱ、共焦球面扫描干涉仪与氦氖激光束的模式分析 1、了解扫描干涉仪原理,掌握其使用方法。 2、学习观测激光束横模、纵模的实验方法。 三、实验原理 激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。 1、激光束的发散角θ θ为激光束的发散角,()()0=2/2/z z θλπωω=,z 很大 只要我们测得离束腰很远的z 处的光斑大小2 w(z),便可算出激光束发散角。 2、激光束横向光场分布 将光束半径w(z)定义为振幅下降到中心振幅1/e 的点离中心的距离,光束半径w(z)也可定义为光强下将为中心光强e -2倍的点离中心点的距离。 3、光束半径和发散角的测量 束腰处的光斑半径为 由这个值,也可从算出激光束的发散角θ 4、纵模频率差△ν=c/2n 2L ,L 为激光器腔长 5、不同横模之间的频率差 6、自由光谱范围△λ: 7、精细常数F :()F=1-R

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

He-Ne激光器模式分析实验

He-Ne 激光器模式分析 一、实验目的 1、了解激光器模式的形成及特点,加深对其物理概念的理解; 2、通过测试分析,掌握模式分析的基本方法; 3、了解实验使用的共焦球面扫描干涉仪的工作原理及性能,学会正确使用。 二、实验原理 1.激光模式的一般分析 稳定腔的输出频率特性: L C V mnq η2=[)1(1+++n m q π]cos -1[(1—1 R L )(1—2R L )]1/2 (1) 其中:L —谐振腔长度; R 1、R 2—两球面反射镜的曲率半径; q —纵横序数; m 、n —横模序数; η—腔内介质的折射率。 (1)式看出,对于同一纵模序数,不同横模之间的频差为: )(12'':n m L C n m mn ??πηυ?+=cos -1[(1-1R L )(1-2 R L )]1/2 (其中Δm=m -m ′;Δn=n -n ′) (2) 对于相同的横模,不同纵模间的频差为q L C q q ?ηυ?2':= (Δq=q -q ′) 相邻两纵模的频差为 F 2C ηυ=?q (3) 由(2)、(3)式看出,稳定球面腔有如图2—1的频谱。 (2)式除以(3)式得 cos )(1'':n m n m mn q ??πν??+=-1[(1-1R L )(1-2 R L )]1/2 (4) 设:q n m mn υ?υ??' ':= ; S=π 1cos -1[(1-)]1)(21R L R L -1/2 Δ表示不同的两横模(比如υ00与υ10) 之间的频差与相邻两纵模之间的频差之比,于是(4)式可简写作: S )(?=?+?n m (5) 2. 共焦球面扫描干涉仪的工作原理 (1)共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图2-2所示,反

半导体激光器P-I特性测试

实验一 半导体激光器P-I 特性测试实验 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高 能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为 P e =)(2th D I I q -ηω (1-1) 其中int int a a a mir mir D +=ηη,这里的量子效率η int ,表征注入电子通过受激辐射转化为光 子的比例。在高于阈值区域,大多数半导体激光器的ηint 接近于1。 1-1式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大, 当注入电流I>I th 时,输出功率与I 成线性关系。其增大的速率即P-I 曲线的斜率,称为斜率效率 D e q dI dP ηω2 = (1-2) P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小, I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大,而且不易产生光信号失真。并且要求P-I 曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所

氦氖激光器模式分析

模式分析 一.氦-氖(He-Ne)激光器简介 氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。内腔式激光器的腔镜封装在激光管两端。 二.氦-氖(He-Ne)激光器的工作原理 氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。 三.He-Ne激光器结构及谐振腔 He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。激光管由放电管、电极和光学谐振腔组成。放电管是氦一氖激光器的心脏,它是产生激光的地方。放电管通常由毛细管和贮气室构成。放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。放电管一般是用GG17玻璃制成。输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。 四.氦-氖(He-Ne)激光器的速率方程

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

相关文档
相关文档 最新文档