文档库 最新最全的文档下载
当前位置:文档库 › 冷轧钢管变形原理

冷轧钢管变形原理

冷轧钢管变形原理
冷轧钢管变形原理

冷轧钢管变形原理

关于冷轧管轧管过程、变形和应力状态、瞬时变形区、滑移和轴向力、轧制力等的基本理论。

二辊式冷轧管机的轧管过程二辊式冷轧管机工作时,其工作机架借助于曲柄连杆机构作往复移动。管子的轧制(图1)是在一根拧在芯棒杆7上的固定不动的锥形芯棒和两个轧槽块5之间进行的。在轧槽块的圆周开有半径由大到小变化的孔型。孔型开始处的半径相当于管料1的半径,而其末端的半径等于轧成管2的半径。

图1二辊式冷轧管机

1-管料;2-轧成管;3-工作机架;4-曲柄连杆机构;5-轧槽块

6-轧辊;7-芯棒杆;8-芯棒杆卡盘;9-管料卡盘;10-中间卡盘;11-前卡盘

在送进和回转时,孔型和管体是不接触的,为此,轧槽块5上在孔型工作部分的前面和后面,分别加工有一定长度的送进开口(半径比管料半径大)和回转开口(半径比轧成管的半径大)。在轧制过程中,管料和芯棒被卡盘8、9夹住,因此,无论在正行程轧制或返行程轧制时,管料都不能作轴向移动。

工作机架由后极限位置移动到前极限位置为正行程;工作机架由前极限位置移动到后极限位置为返行程。

轧制过程中,当工作机架移到后极限位置时,把管料送进一小段,称送进量。工作机架向前移动后,刚送进的管料以及原来处在工作机架两极限位置之间尚未加工完毕的管体,在由孔型和芯棒所构成的尺寸逐渐减小的环形间隙中进行减径和管壁压下。当工作机架移动到前极限位置时,管料与芯棒一起回转60。~90。。工作机架反向移动后,正行程中轧过的管体受孔型的继续轧制而获得均整并轧成一部分管材。轧成部分的管材在下一次管料送进时离开轧机。

图2多辊式冷轧管机

1-柱形芯棒;2-轧辊;3-轧辊架;4-支承板;5-厚壁套筒;6-大连杆;7-

摇杆;8-管子

多辊式冷轧管机的轧管过程多辊式冷轧管机轧制管材时见(图2),管子在圆柱形芯棒1和刻有等半径轧槽的3~4个轧辊2之间进行变形。轧辊装在轧辊架3中,其辊颈压靠在具有一定形状的支承板(滑道)4上,支承板装在厚壁套筒5中,而厚壁套筒本身就是轧机的机架,它安装在小车上。工作时,曲柄连杆和摇杆系统分别带动小车和装在工作机架内的轧辊架作往复移动。由于小车和轧辊架是通过大连杆6和小连杆分别与摇杆7相联结的,所以当摇杆摆动时,轧辊与支承板便产生相对运动。当辊径在具有一定形状的支承板表面上作往复滚动时,轧辊和圆柱形芯棒组成的环形孔型就由大变小,再由小变大地作周期性改变。当小车走到后板极限位置时,送进一定长度的管料并将管体回转一个角度。为了降低返行程轧制时的轴向力以防止两根相邻管料在端部相互切入,一般管料的送进和管体的回转,是当小车在后极限位置时同时进行的。当小车离开后极限位置向前移动时,孔型逐渐变小,进行轧制,在返行程轧制时获得均整。

冷轧管时金属的变形和应力状态以二辊式冷轧管机轧管为例,在轧管过程中金属的变形过程如图3所示。送料时工作锥向轧制方向移动一段距离m(送进量),相当于管料的Ⅰ-Ⅰ截面移动相同的距离到了Ⅰ1-Ⅰ1,位置,Ⅱ一Ⅱ的截面移动同一个距离m到了Ⅱ1一Ⅱ1位置(图3a)。由于在管料送进的时候,工作锥的内表面脱离了芯棒的表面,两者之间形成了一个间隙c,所以,当工作机架前移,工作锥变形时,在变形区中先是减径,然后是压下管壁(图3b),而且在变形和延伸的过程中,工作锥内表面与位于轧槽块前的芯棒之间的间隙不断增大。同时,工作锥的末端截面移动到Ⅱx一Ⅱx位置。

图3 冷轧管时金属变形

在返行程轧制时,由于轧制前管体回转了一个角度,原来处在孔型侧壁的金属转到了孔型顶部,因而工作锥受到了均整,使任何一个横截面形状更圆,壁厚更均匀。另外,由于变形时其中一部分金属向周向流动的结果,在孔型侧壁和工作锥的内表面管料脱离了芯棒,这样有利于下一次管料送进。

图4 冷轧管变形时的作用力

工作机架回到后极限位置Ⅰ时,一个轧制周期结束,轧成管的一段长度为△L T(图3c):

△L T=πS0 (D0-S0)m/πS T(D T-S T)=μεm

式中με为总延伸系数,等于管料截面积与轧成管截面积之比,m为送进量。总

延伸系数με和送进量m越大;则△L T越大,反之△L T越小。

冷轧管时,金属是在不断改变着位置和形状的瞬时变形区内变形的。金属在轧辊的正压力P、芯棒的正压力N,来自轧辊的摩擦阻力T以及来自芯棒的摩擦阻力T1的作用下进行变形(图4)。若在金属与轧辊接触的变形区中取一单元体,则其径向主应力ζ1、周向主应力ζ2和轴向主应力ζ3均为压应力,所以冷轧管时,金属变形基本应力的应力状态是三向压应力,但在辊缝处(φ角范围内)轴向承受单向拉应力,见图5。与冷拔管时的二向压一向拉的应力状态相比,这种应力状态更有利于金属塑性的发挥。

图5 冷轧管变形时应力状态沿轧槽分布图

a-正行程;b-反行程

瞬时变形区的结构无论正行程轧制或返行程轧制,瞬时变形区的出口截面都与工作机架的中心截面相重合。在二辊式冷轧管机上轧管时,由于进入变形区的管体要先减小直径再减小壁厚,因此,瞬时变形区包括由减径角θp和压下角

θt构成的两部分(图3b)。在工作机架的行程中θp、θt的大小是变化的。θp与

θt之和构成瞬时变形区总的接触角。在多辊式冷轧管机上轧管时,行程的开始

阶段瞬时变形区由单一的减径区构成,在行程的其他部分,由于这种轧机使用圆柱形芯棒,瞬时变形区可以认为由单一的减壁区构成。

瞬时变形区变形量的确定在一般纵轧过程中,变形区的几何尺寸是不变的。所以坯料上的任一个截面都可以一直从变形区的入口移动到出口。变形区进口截面和出口截面的高度差、就是坯料上任一截面连续通过变形区时的压下量,而且是稳定不变的。但在冷轧管时,进入变形区的和离开变形区的管体截面的尺寸是不断变化的,而且瞬时变形区进口截面和出口截面的高度差也不等于工作锥上进入瞬时变形区的截面在一个轧制行程中的压下量。因此,冷轧管时,工作锥上的任一截面在一个轧制行程中连续通过不断变化着的瞬时变形区时所达到的变形

量是不相同的,而且确定它的大小也是比较复杂的。在实际计算中,通常是根据各瞬时变形区出口截面的尺寸,确定该截面变形开始时在工作锥上的位置和尺寸,再计算其变形量。这个变形量称为瞬时变形区变形量。瞬时变形区变形量的计算一般以下述原则为基础:设某瞬时变形区的出口截面为Ⅰ-Ⅰ(图6),该截面在

通过瞬时变形区时所经受的压下量等于它与另一截面Ⅱ一Ⅱ的高度差,而这两个截面之间所包括的金属体积等于送进的金属体积。图中R x、r x和S x分别为瞬时

变形区出口截面的外半径、内半径和壁厚;RΔx、rΔx和SΔx分别为该截面变形前的外半径、内半径和壁厚。

图6 直角坐标中的一段工作锥

在冷轧管时,主要变形是在正行程轧制过程中完成的;但是,由于工作机架:轧辊等零部件的弹性恢复和轧制前管体的回转,有的轧机还有送进,因此在返行程轧制时工作锥也有一定的甚至较大的变形。

一般可用下列公式来计算正行程轧制和返行程轧制的壁厚压下量

式中ΔS n为正行程轧制时的壁厚压下量;ΔS o为返行程轧制时的壁厚压下量:V y=(R0+r0)/(R x+r x)mS x为送进体积率;R0、r0为管料的外半径和内半径;α为锥形芯棒的母线倾斜角;γ为工作锥母线的倾斜角;K t为计算返行程轧制时变形量的系数,一般可取K t=0.3~0.4。

一个轧制周期中的壁厚压下量为:

瞬时变形区的边界和咬入角为了计算变形时轧辊同轧件的接触面积,必须知道瞬时变形区的前后边界线。周期式轧制时,瞬时变形区的后边界线(出口一侧的边界线)应是一条空间曲线,但实际上和轧机中心面与工作锥的交线相差不大,故一般把后者作为瞬时变形区的后边界线。

瞬时变形区的前边界线(入口一侧的边界线)是空间曲线,它取决于沿孔型周边的变形区各纵截面上的接触角θ0。(图7)

图7 瞬时变形区的纵截面

θ可按下列简化公式计算:

式中ΔR x为瞬时变形区中的半径压下量;ρ0为轧辊的理想半径;C为孔型周边上不同点处孔型的高度,R x为瞬时变形区出口截面工作锥的半径。

在孔型的脊部,接触角为:

式中ρr为孔型脊部轧辊的半径。

若以瞬时变形区的壁厚压下量ΔS x取代上式中的ΔR x,则可得到确定瞬时变形区前边界线上各点接触角的计算公式。

瞬时变形区的接触面积图8为二辊式和多辊式冷轧管机轧制管子时的变形区及接触面积图示。

文献中有多种计算瞬时变形区接触面积的近似公式。一种常用的计算二辊式冷轧管机轧管时接触面积的方法如下。

图9为借助于计算接触角θ得到的正行程轧制时瞬时变形区接触表面积的垂直投影和水平投影。区域OPLMC为总接触表面积的垂直投影;OPRE=F y s为减壁区接触表面积的垂直投影;B1L1M1NM2L2B2=F d x用为总接触表面积的水平投影;

C1R1PR2C2=F x s减壁区接触表面积的水平投影。

图8 冷轧钢管时变形区及接触面积图示

a-二辊冷轧管机的变形区;b-多辊式冷轧管机变形区;c-正行程的接触面积;

d-返行程的接触面积

1-塑性和弹性变形区;2-弹性变形区;3-管子;4-芯棒;5-轧辊

图9 正行程轧制时瞬时变形区接触面积

a-垂直投影;b-水平投影

先来确定减壁区接触表面积的水平投影。由图9可知,减壁区接触表面积的水平投影可分成两部分:

F x s=2(F c1p1po +F p1R1P)

在孔型脊部C=R x,面积F c1p1po用下式计算具有足够的精确度:

式中C 为孔槽深,近似为孔槽宽之半。

面积F p1R1P =η1 1/2(P 1P)(R 1D),式中η1 为系数,等于0.85。R 1D=(ρ0-C min )sin(θtc -θtr ),C min 为孔型周边与工作锥最先接触处轧槽的高度;θtc 为孔型脊部减壁区的接触角;θtr 为孔型周边和工作锥最先接触处减壁区的接触角。

所以计算F x s 的公式可写成[取sin(θtc -θtr )≈θtc -θtr ]:

由于孔型侧壁的开口角通常为16。~22。,用于工程计算可取C min =R x 。/3,所以孔型周边与工作锥最先接触处的总接触角为:

而孔型脊部的总接触角为:

因此

取 θ

tc/

θ

tr

=θoc /θ

or

=η2

对不同轧机η2波动在1.60~1.70之间,轧机较大时其值较小。

以角θtr 表示角θtc ,并把所得的值代入F x s 式,可以把F x s 的计算公式写成更简单的形式:

式中η3为接触面积的形状系数,对于二辊冷轧管机,其值为1.20~1.25;对于三辊式冷轧管机可取为1.10。

相应地减壁区的总接触表面积可按下式确定:

上两式以ΔR x取代△S x,则可求得总接触表面积的水平投影及总接触表面积。

轧制过程中的滑移及轴向力在冷轧管过程中,金属与轧槽表面之间存在着相对滑动即滑移。变形区由前滑区和后滑区构成。轧制过程中,在前滑区作用在金属上的摩擦力(图10中T x2)的方向和机架移动的方向相反;在后滑区ABc作用在金属上的摩擦力(图10中的T x1)的方向和机架移动的方向相同。

在没有外加前后张力的一般简单的纵轧过程中,变形区中轧辊作用在金属上的正压力的轴向分量和作用在前后滑区的摩擦力的轴向分量始终是互相平衡的。在这种轧制过程中,轧件的出口速度能根据变形条件而自动变化,相对于一定的变形条件,必有一个相应的出口速度以形成适宜的前后滑区,使这时前后滑区所产生的摩擦力的轴向分量正好与轧辊正压力的轴向分量相平衡。

图10 前后滑区接触面积的水平投影及摩擦力的方向

在冷轧管时,由于轧制过程的强制性,(管料是被固定的而不能作轴向运动)不存在通过改变轧件出口速度调节前后滑区大小的可能。因此,在一般情况下,作用在变形区上各力的轴向分量不能相互平衡,其结果,在变形过程中管体受到来自变形工具的轴向力。有时轴向力还是比较大的。轴向力在工作机架行程长度上的分布是不均匀的,并且最大轴向力往往不与最大轧制力相对应。在正行程轧制时,轴向力可能是压力(方向和工作锥延伸的方向相反)或拉力(方向和工作锥延伸方向相同);在返行程轧制时,一般只出现轴向压力。轴向力过大会对轧制过程产生不良影响,如出现两根相邻管料的端部相互切入,芯棒杆纵向弯曲,轧制过程中工作锥窜动,送进管料时工作锥从芯棒上脱开时的阻力增加,以及送进

机构的磨损加剧等。因此轴向力的大小在一定程度上决定着轧机的生产力和能够达到的变形量。

轧制力在二辊式冷轧管机上,金属作用在轧辊上的平均轧制力可按下式计算:

式中Kδ为与轧制时金属加工硬化有关的系数,对钢它可取为1.42;δb50为变形程度为50%时金属的强度极限;D0为管料的直径;D T为轧成管的直径;R c为轧槽压下段轧辊的平均半径;l c为轧槽压下段的长度;S o为管料的壁厚;S T为轧成管的壁厚。在多辊式冷轧管机上,平均轧制力的计算公式为:

式中K为与多辊式冷轧管上变形特点有关的系数,一般可取为1.6~2.2;δbc为变形前后管材强度极限的平均值;R k为轧制半径;l pk为工作锥压下段的长度。

金属塑性成型原理

第一章 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。 2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序; 成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。 Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。 第二章 3.试分析多晶体塑性变形的特点。 1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。 2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;每个晶粒至少要求有5个独立的滑移系启动才能保证。 3)晶粒与晶粒之间和晶粒部与晶界附近区域之间的变形的不均匀性。 Add: 4)滑移的传递,必须激发相邻晶粒的位错源。 5)多晶体的变形抗力比单晶体大,变形更不均匀。 6)塑性变形时,导致一些物理,化学性能的变化。 7)时间性。hcp系的多晶体金属与单晶体比较,前者具有明显的晶界阻滞效应和极高的加工硬化率,而在立方晶系金属中,多晶和单晶试样的应力—应变曲线就没有那么大的差别。 4.试分析晶粒大小对金属塑性和变形抗力的影响。

金属塑性成型原理

第一章 1.什么是金属的塑性什么是塑性成形塑性成形有何特点 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。 2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

金属塑性变形与轧制原理(教案).x

备课本 课程名称金属塑性变形与轧制原理课时数64 适用班级金属材料081、082授课教师孙斌 使用时间2011学年第1学期 冶金工程学院

绪论 0.1金属塑性成形及其特点 金属压力加工:即金属塑性加工,对具有塑性的金属施加外力作用使其产生塑性变形,而不破坏其完整性,改变金属的形状、尺寸和性能而获得所要求的产品的一种加工方法。 金属成型方法分类: (1)减少质量的成型方法:车、刨、铣、磨、钻等切削加工;冲裁与剪切、气割与电切;蚀刻加工等。 (2)增加质量的成型方法:铸造、焊接、烧结等。 (3)质量保持不变的成型方法(金属塑性变形):利用金属的塑性,对金属施加一定的外力作用使金属产生塑性变形,改变其形状尺寸和性能而获得所要求的产品的一种加工方法。如轧制、锻造、冲压、拉拔、挤压等金属压力加工方法。 金属压力加工方法的优缺点: 优点:1)因无废屑,可节约大量金属; 2)改善金属内部组织及物理、机械性能; 3)产量高,能量消耗少,成本低,适于大量生产。 缺点:1)对要求形状复杂,尺寸精确,表面十分光洁的加工产品尚不及金属切削加工方法; 2)仅用于生产具有塑性的金属; 0.2 金属塑性成形方法的分类 0.2.1按温度特征分类 1.热加工在充分再结晶温度以上的温度范围内所完成的加工过程,T=0.75∽0.95T熔。 2.冷加工在不产生回复和再结晶温度以下进行的加工T=0.25T熔以下。 3.温加工介于冷热加工之间的温度进行的加工. 0.2.2按受力和变形方式分类 由压力的作用使金属产生变形的方式有锻造、轧制和挤压 1.锻造:用锻锤的往复冲击力或压力机的压力使金属进行塑性变形的过程。分类: 自由锻造:即无模锻造,指金属在锻造过程的流动不受工具限制(摩擦力除外)的一种加工方法。 模锻:锻造过程中的金属流动受模具内腔轮廓或模具内壁的严格控制的一种工艺方法。

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

(完整版)《金属塑性成形原理》习题答案

金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 5. 对应变张量,请写出其八面体线变与八面体切应变的表达式。 =

6.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果, 并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为 。 7. 金属塑性成形过程中影响摩擦系数的因素有很多, 归结起来主要有 金属的 种类和 化学成分 、 工具的表面状态 、 接触面上的单位压力 、 变形温度 、 变形速度 等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切 线方向即 为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是 平均应力 不同,而各点处 的 最大切应力 为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应 的速度 场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场, 称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷, 它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: 11、金属塑性成形有如下特点: 、 、 、 12、按照成形的特点,一般将塑性成形分为 和 两大类,按 照成形时工件的温度还可以分为 、 和 三类。 13、金属的超塑性分为 和 两大类。 14、晶内变形的主要方式和单晶体一样分为 和 。 其中 变形是主要的,而 变形是次要的,一般仅起调节作用。 ,则单元内任一点外的应变可表示为

2-2金属塑性变形的机理

金属塑性变形的机理 (3)塑性和变形抗力 1.单晶体塑性变形的主要方式是_______和_______。 2.查阅单晶体滑移变形相关资料,正确连接下图。 弹性变形 未变形

弹塑性变形 塑性变形 3.什么是纤维组织? __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 4.任取一个微元六面单元体,该单元体上的应力状态沿着六面体的三个空间坐标系可分解为_____个应力分量,其中包括_____个剪应力与3个_____。 5.简述什么是真实应力? __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 6.塑性变形的基本定律包括________、________、________。 洛氏硬度 7.把下列表格填写完整 金属板料力学性能 性能名称符号表示 σs 屈强比 延伸率 厚向异性系数 Δr

金属塑性成型原理考试题库

一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 =+ 5. 对应变张量,请写出其八面体线变与八面体切应变的表达式。 =; =。 6.1864 年法国工程师屈雷斯加(H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为 。 7. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。

8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处的最大切应力为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来 表示: ,则单元内任一点外的应变可表示为= 。 11、金属塑性成形有如下特点:、、、 。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和三类。 13、金属的超塑性分为和两大类。

16、常用的摩擦条件及其数学表达式。 17、研究塑性力学时,通常采用的基本假设有、、、体积力为零、初应力为零、。 19. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 20. 金属单晶体变形的两种主要方式有:滑移和孪生。 21.影响金属塑性的主要因素有:化学成分、组织、变形温度、变形速度、应力状态。 22. 等效应力表达式: 。 24. 平面变形问题中与变形平面垂直方向的应力σ z =________。25.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。 26.对数应变的特点是具有真实性、可靠性和可加。27.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。 28.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。 29.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。 30.材料在一定的条件下,其拉伸变形的延伸率超过100%的现

《金属塑性加工原理》考试总复习

《金属塑性加工原理》考试总复习 一、 填空题 1. 韧性金属材料屈服时, 米塞斯 准则较符合实际的。 2. 描述变形大小可用线尺寸的变化与方位上的变化来表示,即线应变(正应变)和切应变(剪应变) 3. 弹性变形时应力球张量使物体产生体积变化,泊松比5.0<ν 4. 在塑形变形时,需要考虑塑形变形之前的弹性变形,而不考虑硬化的材料叫做理想刚塑性材料。 5. 塑形成形时的摩擦根据其性质可分为干摩擦,边界摩擦和流体摩擦。 6. 根据条件的不同,任何材料都有可能产生两种不同类型的断裂:脆性断裂和韧性断裂。 7. 硫元素的存在使得碳钢易于产生 热脆 。 8. 塑性变形时不产生硬化的材料叫做 理想塑性材料 。 9. 应力状态中的 压 应力,能充分发挥材料的塑性。 10. 平面应变时,其平均正应力 m 等于 中间主应力 2 。 11. 钢材中磷使钢的强度、硬度提高,塑性、韧性 下降 。 12. 材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 超塑性 。 13. 材料经过连续两次拉伸变形,第一次的真实应变为 1 =0.1,第二次的真实应变为 2 =0.25,则总 的真实应变= 14. 固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的 塑性 。 15. 塑性成形中的三种摩擦状态分别是: 干摩擦、流体摩擦、边界摩擦 16. 对数应变的特点是具有真实性、可靠性和 可加性 。 17. 就大多数金属而言,其总的趋势是,随着温度的升高,塑性 升高 。 18. 钢冷挤压前,需要对坯料表面进行 磷化、皂化 处理。 19. 为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫 添加 剂 。 20. 对数应变的特点是具有真实性、可靠性和 可加性 。 21. 塑性指标的常用测量方法 拉伸实验,扭转实验,压缩试验 。 22. 弹性变形机理原子间距的变化; 塑性变形机理位错运动为主。 23. 物体受外力作用下发生变形,变形分为 变形和 变化。 24. 当物体变形时,向量的长短及方位发生变化,用 线应变 、 切应变 来描述变形大 小 25. 当物体变形时,向量的长短及方位发生变化,用 线应变 、 切应变 来描述变形大小。 26. 在研究塑性变形时,即不考虑弹性变形,又不考虑变形过程中的加工硬化的材料称为 理想刚塑

金属塑性成形原理

金属塑性成形原理 1:试述塑性成型得一般分类。1按成形特点分;块料与板料成形。其中块料成形分为一次加工与2次加工。一次加工包括轧制、挤压、拉拔等加工方法。二次加工包括自由锻、模锻等加工方法。2按成形时工件得温度分为热成形,冷成形,温成形。 2:在冷态下塑性变形得主要形式就是什么?为什么?1在冷态条件下,多晶体得塑性变形就是晶内变形,而晶内变形得主要方式就是滑移。2这就是因为晶界存在各种缺陷,能量较高,在外力作用下不易变形,在冷态下条件下,晶界强度高于晶内,其变形比晶内困难,还由于晶粒在生成过程中,各晶粒相互接触,形成犬牙交错状态,造成对晶界滑移机械得阻碍作用,如果晶界变形,容易引起晶界结构得破坏,与裂纹产生,因此晶间变形只能很小。 3:多晶体金属塑性变形得特点就是什么?1各晶粒变形得不同时性,2,各晶粒变形具有相互协调性.3晶粒与晶粒之间,晶粒内部与晶界附近区域之间得变形具有不均匀性。 4:细晶对变形抗力得影响?1,滑移就是由一个晶粒转移到另一个晶粒,主要取决于晶粒、晶界附近位错塞积群产生得产力场就是否能够激发相晶粒中得位错源开动起来,以进行协调性得次滑移,而位错塞积群应力场得强弱与塞积位错数目n有关,n越大,应力场就越大,位错源开动得时间就越长,位错数也就越大,因此,粗晶金属得变形比较容易,而细晶粒则需要更大得外力作用才能使相邻晶粒发生塑性变形,即晶粒越细小,金属得变形抗力越大. 5:细晶对金属塑性得影响?1,在一定得体积内,细晶粒得数目多于粗晶粒得数目,因而塑性变形就是位向有利得晶粒也较多,变形能均匀地分散到各个晶粒上。2从每个晶粒得应变分布来瞧,细晶粒时,晶界得影响区域相对加大,使得晶粒心部得应变与晶界处得应变差异性减小,细晶粒金属得变形不均匀性也较小,因此引起得应力集中必然减小,内应力较均匀,因而金属断裂前可以承受塑性变形量更大。 静态回复:待定。 6:冷塑性变形对金属组织得影响?1,晶粒形状得变化,金属经冷变形加工后,晶粒形状变化趋势与金属宏观变形一致,2,晶粒内部产生亚结构,3晶粒位向改变,产生变形织构。 7:简述静态回复过程中金属组织得变化?点缺陷减小,位错密度有所下降,但位错分布形态经过重新调整与组合而处于低能态,位错会变薄,网络更清晰,亚晶增大,但晶粒形状没有变化。 8:再结晶过程中金属塑性得变化? 答:再结晶就是一个显微组织彻底重组得过程,因而性能也发生了根本性得变化,表现为金属得强度、硬度明显下降,塑韧性显著提高,加工硬化与内应力完全消除,物理性能也得到恢复,金属大体上恢复到冷变形前得状态。 9:为什么温度越高晶粒越细小与应变速率越低,扩散所引起得作用力越大?1,温度越高,原子得动能与扩散能力越大,晶粒越细小,则意味着有越多得晶界与原子扩散得路程越短,应变速率越低,表明有更充分得时间进行扩散,温度越高晶粒越细小与应变速率越低,扩散所引起得作用力越大 10:热塑性变形对金属组织与性能得影响?1,改善晶粒组织,2,锻合内部缺陷,3,破碎并改善碳化物与非金属夹杂物在钢中得分布,4,形成纤维组织,5,改善偏析。 11:何为加工硬化?产生原因?1,由于塑性变形程度得增加,而引起金属强度、硬度增加,而塑性韧性降低得现象叫做加工硬化。2,随着塑性变形得进行,位错缠结不断增加,位错反应与相互交割加剧,结果产生固定割阶,位错缠结等障碍,以致形成胞状亚结构,使位错难以越过这些障碍而被限制在一定范围内运动,这样要使金属继续变形就要不断增加外力,由此可以理解,金属得强度、硬度增加,塑韧性降低。 12:冷变形金属与热变形金属得纤维组织有何不同?1,在晶粒组织变化方面:冷变形后,晶

(完整版)《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 =+ 5. 对应变张量,请写出其八面体线变与八面体切应变 的表达式。 =; =。

6.1864 年法国工程师屈雷斯加(H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为。 7. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处的最大切应力为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和三类。

金属塑性成形原理习题集

《金属塑性成形原理》习题集 运新兵编 模具培训中心 二OO九年四月

第一章 金属的塑性和塑性变形 1.什么是金属的塑性什么是变形抗力 2.简述变形速度、变形温度、应力状态对金属塑性和变形抗力的影响。如何提高金属的塑性 3.什么是附加应力 附加应力分几类试分析在凸形轧辊间轧制矩形板坯时产生的附加应力 4.什么是最小阻力定律最小阻力定律对分析塑性成形时的金属流动有何意义 5.塑性成形时,影响金属变形和流动的因素有哪些各产生什么影响 6.为什么说塑性成形时金属的变形都是不均匀的不均匀变形会产生什么后果 7.什么是残余应力残余应力有哪几类会产生什么后果如何消除工件中的残余应力 8.摩擦在金属塑性成形中有哪些消极和积极的作用塑性成形中的摩擦有什么特点 9.塑性成形中的摩擦机理是什么 10. 塑性成形时接触面上的摩擦条件有哪几种各适用于什么情况 11. 塑性成形中对润滑剂有何要求 12. 塑性成形中常用的液体润滑剂和固体润滑剂各有哪些石墨和二硫化钼 如何起 润滑作用 第二章 应力应变分析 1.什么是求和约定张量有哪些基本性质 2.什么是点的应力状态表示点的应力状态有哪些方法 3.什么是应力张量、应力球张量、应力偏张量和应力张量不变量 4.什么是主应力、主剪应力、八面体应力 5.什么是等效应力有何物理意义 6.什么是平面应力状态、平面应变的应力状态 7.什么是点的应变状态如何表示点的应变状态 8.什么是应变球张量、应变偏张量和应变张量不变量 9.什么是主应变、主剪应变、八面体应变和等效应变 10. 说明应变偏张量和应变球张量的物理意义 11. 塑性变形时应变张量和应变偏张量有和关系其原因何在 12. 平面应变状态和轴对称状态各有什么特点 13. 已知物体中一点的应力分量为???? ??????---=30758075050805050ij σ,试求方向余弦为21==m l ,2 1=n 的斜面上的全应力、正应力和剪应力。 14. 已知物体中一点的应力分量为???? ??????---=10010010010010ij σ,求其主应力、主剪应力、八面体应力、应力球张量及应力偏张量。 15. 设某物体内的应力场为 试求系数1C 、2C 、3C 。

相关文档
相关文档 最新文档