文档库 最新最全的文档下载
当前位置:文档库 › 安徽省六安市舒城中学等差数列高考真题复习百度文库

安徽省六安市舒城中学等差数列高考真题复习百度文库

安徽省六安市舒城中学等差数列高考真题复习百度文库
安徽省六安市舒城中学等差数列高考真题复习百度文库

一、等差数列选择题

1.已知等差数列{}n a 的公差d 为正数,()()111,211,

n n n a a a tn a t +=+=+为常数,则

n a =( )

A .21n -

B .43n -

C .54n -

D .n

2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

3.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200

B .100

C .90

D .80

4.已知数列{}n a 的前n 项和为n S ,15a =,且满足

122527

n n

a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )

A .6-

B .2-

C .1-

D .0

5.设数列{}n a 的前n 项和2

1n S n =+. 则8a 的值为( ).

A .65

B .16

C .15

D .14 6.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29

B .38

C .40

D .58

7.设等差数列{}n a 的前n 项和为n S ,10a <且11101921

a a =,则当n S 取最小值时,n 的值为( ) A .21

B .20

C .19

D .19或20

8.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6

12S

S =( ) A .

17

7

B .

83 C .

143

D .

103

9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21

2

,则该数列的项数是( ) A .8

B .4

C .12

D .16

10.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60

B .120

C .160

D .240

11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( )

A .450a a +=

B .560a a +=

C .670a a +=

D .890a a +=

12.已知数列{}n a 的前项和2

21n S n =+,n *∈N ,则5a =( )

A .20

B .17

C .18

D .19 13.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )

A .9

B .12

C .15

D .18 14.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9

9

S a =( ) A .9

B .5

C .1

D .

59

15.已知数列{}n a 满足25111,,25

a a a ==且

*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19

B .20

C .21

D .22

16.已知递减的等差数列{}n a 满足22

19a a =,则数列{}n a 的前n 项和取最大值时n =( )

A .4或5

B .5或6

C .4

D .5

17.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18

B .19

C .20

D .21

18.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6

B .7

C .8

D .10

19.已知数列{x n }满足x 1=1,x 2=23

,且

11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(

23

)n -1

B .(

23

)n C .

21

n + D .

1

2

n + 20.已知数列{}n a 中,132a =

,且满足()*

1112,22

n n n a a n n N -=+≥∈,若对于任意*

n N ∈,都有

n a n

λ

≥成立,则实数λ的最小值是( ) A .2

B .4

C .8

D .16

二、多选题21.题目文件丢失!

22.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ?=?

?

为奇数

为偶数

B .1(1)1n n a -=-+

C .2sin

2

n n a π

= D .cos(1)1n a n π=-+

23.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( )

A .2d =-

B .122a =

C .3430a a +=

D .当且仅当11n =时,n S 取得最大值

24.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <

B .10a <

C .当5n =时n S 最小

D .0n S >时n 的最小值为8

25.已知等差数列{}n a 的前n 项和为,n S 且15

11

0,20,a a a 则( )

A .80a <

B .当且仅当n = 7时,n S 取得最大值

C .49S S =

D .满足0n S >的n 的最大值为12

26.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的

是( ) A .110S =

B .10n n S S -=(110n ≤≤)

C .当110S >时,5n S S ≥

D .当110S <时,5n S S ≥

27.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )

A .1d =-

B .413a a =

C .n S 的最大值为8S

D .使得0n S >的最大整数15n =

28.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911

111

a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <

29.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =

D .当8n ≥时,0n a <

30.在数列{}n a 中,若22*

1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数

列”.下列对“等方差数列”的判断正确的是( )

A .若{}n a 是等差数列,则{}n a 是等方差数列

B .{(1)}n -是等方差数列

C .若{}n a 是等方差数列,则{}(

)*

,kn a k N

k ∈为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列

【参考答案】***试卷处理标记,请不要删除

一、等差数列选择题 1.A 【分析】

由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】

11a =,()()1211n n n a a tn a ++=+,

令1n =,则()()121211a a t a +=+,解得21a t =-

令2n =,则()()2322121a a t a +=+,即()2

311t a t -=-,若1t =,则20,1a d ==,

与已知矛盾,故解得31a t =+

{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =

则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 2.B 【分析】

画出图形分析即可列出式子求解. 【详解】

所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:

由图可得:3612107y x y -=??-=? ,解得155

48x y =??=?

.

3.C 【分析】

先求得1a ,然后求得10S . 【详解】

依题意120a a d =-=,所以101104545290S a d =+=?=. 故选:C 4.A 【分析】 转化条件为

122527

n n a a

n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.

【详解】 因为

122527

n n a a n n +-=--,所以122527n n

a a n n +-

=--, 又1127a =--,所以数列27n a n ??

??-??

是以1-为首项,公差为2的等差数列, 所以

()1212327

n

a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得

3722

n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()

()()3123min

13316p q S S a a S S =-=+=?-+--?=-.

故选:A. 【点睛】

解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 5.C 【分析】

利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】

由2

1n S n =+得,12a =,()2

111n S n -=-+,

所以()2

21121n n n a S S n n n -=-=--=-,

所以2,121,2

n n a n n =?=?-≥?,故828115a =?-=.

故选:C.

本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.A 【分析】

根据等差中项的性质,求出414a =,再求10a ; 【详解】

因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 7.B 【分析】 由题得出1392

a d =-,则2202n d

S n dn =-,利用二次函数的性质即可求解.

【详解】

设等差数列{}n a 的公差为d ,

111019

21

a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392

a d =-

,10a <,0d ∴>,

()211+2022n n n d

S na d n dn -∴==-,对称轴为20n =,开口向上,

∴当20n =时,n S 最小.

故选:B. 【点睛】

方法点睛:求等差数列前n 项和最值,由于等差数列

()2111+222n n n d d S na d n a n -?

?==+- ??

?是关于n 的二次函数,当1a 与d 异号时,n S 在

对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 8.D 【分析】

由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】

已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ?-=+-,且

9

3

6S S =,化简解得633S S =.

()()()96631292S S S S S S ?-=-+-,∴31210S S =,从而

126103

S S =. 故选:D 【点睛】 思路点睛:

(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,

(2)()()633962S S S S S ?-=+-,且9

3

6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ?-=-+-,化简解得31210S S =. 9.A 【分析】

设项数为2n ,由题意可得()21

212

n d -?=,及6S S nd -==奇偶可求解. 【详解】

设等差数列{}n a 的项数为2n , 末项比首项大

212

, ()212121;2

n a a n d ∴-=-?=① 24S =奇,30S =偶,

30246S S nd ∴-=-==奇偶②.

由①②,可得3

2

d =,4n =, 即项数是8, 故选:A. 10.B 【分析】

根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()

11515815152

a a S a +==,从而可得出结果.

【详解】

解:由题可知,2938a a a +=+,

由等差数列的性质可知2938a a a a +=+,则88a =, 故()1158

158151521515812022

a a a S a +?=

===?=. 故选:B.

11.B 【分析】

由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】

由等差数列的求和公式可得()

110101002

a a S +=

=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.C 【分析】

根据题中条件,由554a S S =-,即可得出结果. 【详解】

因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=?+-?+=. 故选:C . 13.A 【分析】

在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】

在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,

所以139522639a a a =-=?-=, 故选:A 14.B 【分析】

由已知条件,结合等差数列通项公式得1a d =,即可求9

9

S a . 【详解】

4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,

∴1999()

452

a a S d ?+=

=,99a d =,且0d ≠, ∴9

9

5S a =. 故选:B 15.B 【分析】

由等差数列的性质可得数列1n a ??

??

??

为等差数列,再由等差数列的通项公式可得1n n a ,进

而可得1

n a n

=,再结合基本不等式即可得解. 【详解】

因为*

121210,n n n n a a a ++-+=∈N ,所以12

211n n n a a a ++=+, 所以数列1n a ??

????

为等差数列,设其公差为d ,

由25111,25

a a a ==可得25112,115a a a ==?, 所以11

11

2

1145d a d a a ?+=????+=???,解得1111

a d ?=???=?,

所以

()1111n n d n a a =+-=,所以1n a n

=,

所以不等式100n n a a +≥即100

n a n

+≥对任意的*n N ∈恒成立,

又10020n n +

≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】

关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 16.A 【分析】

由22

19a a =,可得14a d =-,从而得2922

n d d S n n =

-,然后利用二次函数的性质求其最值即可 【详解】

解:设递减的等差数列{}n a 的公差为d (0d <),

因为2219a a =,所以22

11(8)a a d =+,化简得14a d =-,

所以221(1)9422222

n n n d d d d

S na d dn n n n n -=+=-+-=-, 对称轴为92

n =

因为n ∈+N ,

02

d

<, 所以当4n =或5n =时,n S 取最大值, 故选:A 17.B 【分析】

由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得

10a .

【详解】

()122n n a a n --=≥,且11a =,

∴数列{}n a 是以1为首项,以2为公差的等差数列,

通项公式为()12121n a n n =+-=-,

10210119a ∴=?-=,

故选:B. 18.D 【分析】

由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】

解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,

得:111154435242238a d a d a d a d ???

?+=+ ??

?+++=?????

{

1132024

a d a d +-+=, 解得:

{

123

a d =-=,

51424310a a d ∴=+=-+?=.

故选:D. 19.C 【分析】 由已知可得数列1n x ??????是等差数列,求出数列1n x ??

????

的通项公式,进而得出答案. 【详解】

由已知可得数列1n x ??

????

是等差数列,且121131,2x x ==,故公差12d =

()1111122n n n x +=+-?=,故21

n x n =+ 故选:C 20.A 【分析】 将11122

n n n a a -=

+变形为11221n n n n a a --=+,由等差数列的定义得出2

2n n n a +=,从而得

出()

22n n n λ+≥,求出()max

22n

n n +??????的最值,即可得出答案. 【详解】 因为2n ≥时,111

22

n n n a a -=

+,所以11221n n n n a a --=+,而1123a = 所以数列{

}

2n

n a 是首项为3公差为1的等差数列,故22n

n a n =+,从而2

2

n n n a +=

. 又因为n a n λ

≥恒成立,即()22n

n n λ+≥恒成立,所以()max 22n n n λ+??≥????. 由()()()

()()()()

1

*121322,221122n n n

n n n n n n n n n n n +-?+++≥??∈≥?

+-+?≥??N 得2n = 所以()()2

max

2222222n n n +?+??

==????,所以2λ≥,即实数λ的最小值是2 故选:A

二、多选题 21.无

22.BD 【分析】

根据选项求出数列的前4项,逐一判断即可. 【详解】

解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;

选项B :0

1(1)12,a =-+=1

2(1)10,a =-+=

23(1)12,a =-+=34(1)10a =-+=,符合题设;

选项C :,12sin

2,2

a π

==22sin 0,a π==

332sin

22

a π

==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=

3cos 212,a π=+=4cos310a π=+=,符合题设.

故选:BD. 【点睛】

本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 23.AC 【分析】

先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】

解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.

所以120a =,342530a a a a +=+=,11110201020a a d =+=-?=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】

本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:

(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;

(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定; 24.BD 【分析】

由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】

由于等差数列{}n a 是递增数列,则0d >,A 选项错误;

753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;

()()()22

171117493222224n n n d n n d n n d S na nd n d -??

--??=+=-+==--?? ??

?????,

当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.

n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.

故选:BD. 25.ACD 【分析】

由题可得16a d =-,0d <,21322

n d d S n n =

-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022

n d d

S n n =->,解出即可判断D. 【详解】

设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,

10a >,0d ∴<,且()21113+

222

n n n d d S na d n n -==-, 对于A ,

81+7670a a d d d d ==-+=<,故A 正确;

对于B ,21322n d d S n n =

-的对称轴为13

2

n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;

对于C ,4131648261822d d S d d d =?-

?=-=-,9138191822

d d

S d =?-?=-,故49S S =,故C 正确;

对于D ,令213022

n d d

S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】

方法点睛:由于等差数列()2111+

222n n n d d S na d n a n -?

?==+- ??

?是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 26.BC 【分析】 设公差d 不为零,由38a a =,解得192

a d =-,然后逐项判断.

【详解】 设公差d 不为零, 因为

38a a =,

所以1127a d a d +=+, 即1127a d a d +=--, 解得192

a d =-,

11191111551155022S a d d d d ??

=+=?-+=≠ ???

,故A 错误;

()()()()()()221101110910,10102222

n n n n n n d

d na d n n n a n n S S d ----=+

=-=-+=-,故B 正确; 若11191111551155022S a d d d d ??

=+=?-

+=> ???

,解得0d >,

()()2

2510525222

n d d d n n S n S =

-=--≥,故C 正确;D 错误; 故选:BC 27.BCD 【分析】 设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1

2

15d a =-??=?,再逐

项判断即可得解. 【详解】

设等差数列{}n a 的公差为d ,

由题意,11154111051122

15

a d a d a ???

+

=+???=?,所以1215d a =-??=?,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2

211168642

n n n a n d n n n S -=+

=-+=--+,

所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()2

8640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD. 28.AC 【分析】 将

3201911111a a e e +≤++变形为320191111

01212

a a e e -+-≤++,构造函数

()11

12

x

f x e =

-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由

3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11

12

x f x e =-+, ()()1111101111

x x x x x e f x f x e e e e --+=+-=+-=++++,

所以()1112

x f x e =

-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()

320192*********

a a S +=

≥;

当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021

202110110T a =>.

故选:AC 【点睛】

本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 29.AD 【分析】

利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】

因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,

故1a 最大,选项A 正确;选项B 不正确;

10345678910770S S a a a a a a a a -=++++++=>,

所以310S S ≠,故选项C 不正确;

当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】

本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 30.BCD 【分析】

根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.

【详解】

对于A ,若{}n a 是等差数列,如n a n =,

则12222

(1)21n n a a n n n --=--=-不是常数,故{}

n a 不是等方差数列,故A 错误;

对于B ,数列

(){}1n

-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,

{(1)}n ∴-是等方差数列,故B 正确;

对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,

数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,

()(

)()()

2222222212132221k k k k k k k k a

a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()

22

222

2221

2

1

3

2

221k k

k k k k k k a

a a a a a a a kp +++++--+-+-+

+-=,222k k a a kp ∴-=,

()

221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,

{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+

{}n a 是等方差数列,

()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,22

10n n a a --=是常数,故D 正确.

故选:BCD. 【点睛】

本题考查了数列的新定义问题和等差数列的定义,属于中档题.

相关文档