文档库 最新最全的文档下载
当前位置:文档库 › 答深度优先搜索算法的特点是

答深度优先搜索算法的特点是

答深度优先搜索算法的特点是
答深度优先搜索算法的特点是

习题 3

1、答:深度优先搜索算法的特点是

①一般不能保证找到最优解;

②当深度限制不合理时,可能找不到解,可以将算法改为可变深度限制;

③方法与问题无关,具有通用性;

④属于图搜索方法。

宽度优先搜索算法的特点是

①当问题有解时,一定能找到解;

②当问题为单位耗散值,并且问题有解时,一定能找到最优解;

③效率低;

④方法与问题无关,具有通用性;

⑤属于图搜索方法。

2、答:在决定生成子状态的最优次序时,应该采用深度进行衡量,使深度大的

结点优先扩展。

3、答:(1)深度优先

(2)深度优先

(3)宽度优先

(4)宽度优先

(5)宽度优先

4、答:如果把一个皇后放在棋盘的某个位置后,它所影响的棋盘位置数少,那

么给以后放皇后留下的余地就大,找到解的可能性也大;反之留下的余地就小,找到解的可能性也小。

并不是任何启发函数对搜索都是有用的。

6、讨论一个启发函数h在搜索期间可以得到改善的几种方法。

7、答:最短路径为ACEBDA,其耗散值为15。

8、解:(1)(S,O,S0,G)

S:3个黑色板和3个白色板在7个空格中的任何一种布局都是一个状态。

O:①一块板移入相邻的空格;

②一块板相隔1块其他的板跳入空格;

③一块板相隔2块其他的板跳入空格。

S0:

B B B W W W

G:

W W W B B B

W W W B B B

W W W B B B

W W W B B B

W W W B B B

W W W B B B

W W W B B B

(2)1401231231234567333377

=???????????=?P P P

(3)定义启发函数h 为每一白色板左边的黑色板数的和。 显然,)()(n h n h *≤,所以该算法具有可采纳性。 又,??

?≤-=),()()(0)(j i i j n n c n h n h t h ,所以该启发函数h 满足单调限制条件。

9、解:

((( ),( )),( ),(( ),( )))

((S,( )),( ),(( ),( )))

((A,( )),( ),(( ),( )))

((A,S),( ),(( ),( )))

((A,A),( ),(( ),( )))

((A),( ),(( ),( )))

(S,( ),(( ),( )))

(A,( ),(( ),( )))

(A,S,(( ),( )))

(A,A,(( ),( )))

(A,(( ),( )))

(A,(S,( )))

(A,(A,( )))

(A,(A,S))

(A,(A,A))

(A,(A))

(A,S)

(A,A)

(A)

S

10、选择一个你熟悉的领域,设计一个状态搜索系统。

11、解:从结点n到目的结点集合N的解图G′递归定义为

①如果n是N的一个元素,则G′由单个结点组成;

②如果n有一个扩展出结点{n1,n2,…,n k}的K-连接符,使得从每一个

n i(i=1,2,…,k)到N有一解图,则G′由结点n、K-连接符和{n1,n2,…,n k}中的每个结点到N的解图所组成;

③否则,n 到N不存在解图。

如果n=s,则此解图即为所求解问题的解图。

AO*算法由两个过程组成

①图生成过程,即扩展结点;

②计算耗散值的过程。

2 3

(1)

3

(2)

2

(3)

2

(4)

2

2

12、解:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

图的深度优先遍历算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2013~2014学年第二学期 课程数据结构与算法 课程设计名称图的深度优先遍历算法的实现 学生姓名陈琳 学号1204091022 专业班级软件工程 指导教师何立新 2014 年9 月 一:问题分析和任务定义 涉及到数据结构遍会涉及到对应存储方法的遍历问题。本次程序采用邻接表的存储方法,并且以深度优先实现遍历的过程得到其遍历序列。

深度优先遍历图的方法是,从图中某顶点v 出发: (1)访问顶点v ; (2)依次从v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v 有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 二:数据结构的选择和概要设计 设计流程如图: 图1 设计流程 利用一维数组创建邻接表,同时还需要一个一维数组来存储顶点信息。之后利用创建的邻接表来创建图,最后用深度优先的方法来实现遍历。 图 2 原始图 1.从0开始,首先找到0的关联顶点3 2.由3出发,找到1;由1出发,没有关联的顶点。 3.回到3,从3出发,找到2;由2出发,没有关联的顶点。 4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。

所以最后顺序是0,3,1,2,4 三:详细设计和编码 1.创建邻接表和图 void CreateALGraph (ALGraph* G) //建立邻接表函数. { int i,j,k,s; char y; EdgeNode* p; //工作指针. printf("请输入图的顶点数n与边数e(以逗号做分隔符):\n"); scanf("%d,%d",&(G->n),&(G->e)); scanf("%c",&y); //用y来接收回车符. for(s=0;sn;s++) { printf("请输入下标为%d的顶点的元素:\n",s); scanf("%c",&(G->adjlist[s].vertex)); scanf("%c",&y); //用y来接收回车符.当后面要输入的是和单个字符有关的数据时候要存贮回车符,以免回车符被误接收。 G->adjlist[s].firstedge=NULL; } printf("请分别输入该图的%d条弧\n",G->e); for(k=0;ke;k++) { printf("请输入第%d条弧的起点和终点(起点下标,终点下标):\n",(k+1)); scanf("%d,%d",&i,&j); p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=j; p->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=p; } } 2.深度优先遍历 void DFS(ALGraph* G,int v) //深度优先遍历 { EdgeNode* p;

算法设计与分析考试题及答案要点

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 2.流水作业调度问题的johnson算法的思想。

算法的五个重要的特征

1、算法的五个重要的特征:确定性、能行性、输入、输 出、有穷性/有限性。 2、表示算法的语言主要有:自然语言、流程图、盒图、 PAD图、伪代码、计算机程序设计语言 3、算法分析有两个阶段:事前分析和时候测试。 4、衡量算法有几个方面:时间和空间。。。 5、渐进意义下的符号的意义:记:算法的计算时间为 f(n), 数量级限界函数为g(n),其中,n是输入或输出规模的某种测度。f(n)表示算法的“实际”执行时间—与机器及语言有关。g(n)是形式简单的函数,如nm,logn,2n,n!等。是事前分析中通过对计算时间或频率计数统计分析所得的与机器及语言无关的函数。 以下给出算法执行时间:上界(О)、下界(Ω)、“平均”()的定义。 定义1.1 如果存在两个正常数c和N0,对于所有的N ≥N0,有|f(N)|≤C|g(N)|,则记作:f(N)= O(g(N))。 1)当说一个算法具有O(g(n))的计算时间时,指的就是 如果此算法用n值不变的同一类数据在某台机器上运行时,所用的时间总是小于g(n)的一个常数倍。 2)g(n)是计算时间f(n)的一个上界函数,f(n)的数量级 就是g(n)。 Eg : 因为对所有的N≥1有3N≤4N,所以有3N=O(N); 因为当N≥1时有N+1024≤1025N,所以有N+1024=O(N); 因为当N≥10时有2N2+11N-10≤3N2,所以有 2N2+11N-10=O(N2) 因为对所有N≥1有N2≤N3,我们有N2=O(N3) 作为一个反例N3≠O(N2),因为若不然,则存在正的常数C 和自然数N0,使得当N≥N0,有N3≤CN2,即N≤C。显然,当取N=max{N0,C+1}时这个不等式不成立,所以N3≠O(N2) 多项式定理: 定理1.1 若A(n) = amnm+…+a1n+a0是一个m次多项式,则有A(n)=Ο(nm) 即:变量n的固定阶数为m的任一多项式,与此多项式的最高阶nm同阶。 证明:取n0=1,当n≥n0时,有|A(n)|≤|am|nm+…+|a1|n+|a0| ≤(|am|+|am-1|/n+…+|a0|/nm) nm ≤(|am|+|am-1|+…+|a0|) nm 令c= |am|+|am-1|+…+|a0| 定理得证。 符号O运算性质:(f,g为定义在正数集上的正函数) (1)O(f)+O(g)=O(max(f,g)) (2)O(f)+O(g)=O(f+g) (3)O(f)O(g)=O(fg) (4)如果g(N)=O(f(N)),则O(f)+O(g)=O(f) (5)O(Cf(N))=O(f(N)),其中C是一正常数。 (6)f=O(f) 定理 1.2 如果f(n) =am nm+.+a1n+a0 且am > 0,则f(n)=?(nm )。 该定义的优点是与O的定义对称,缺点是f(N)对自然数的不同无穷子集有不同的表达式,且有不同的阶时,不能很好地刻画出f(N)的下界。比如当 100 N为正偶数 f(N)= 6N2 N为正奇数按照定义,得到f(N)=?(1),这是个平凡的下界,对算法分析没有什么价值。 “平均情况”限界函数 定义1.3 如果存在正常数c1,c2和n0,对于所有的n ≥n0,有c1|g(N)| ≤|f(N)| ≤c2|g(N)| 则记作f(N)= (g,(N)) 含义: 算法在最好和最坏情况下的计算时间就一个常数因子范围内而言是相同的。可看作:既有f(N)=Ω(g(N)),又有f(N)=Ο(g(N)) 【例1.8】循环次数直接依赖规模n-变量计数之一。(1) x=0;y=0; (2) for(k=1;k<=n;k++) (3) x++; (4) for(i=1;i<=n;i++) (5) for(j=1;j<=n;j++) (6) y++; 该算法段的时间复杂度为T(n)=Ο(n2)。 当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。【例1.9】循环次数间接依赖规模n-变量计数之二。(1) x=1;(2) for(i=1;i<=n;i++) (3) for(j=1;j<=i;j++) (4) for(k=1;k<=j;k++) (5) x++; 该算法段中频度最大的语句是(5),从内层循环向外层分析语句(5)的执行次数:算法段的时间复杂度为:T(n)=O(n3/6+低次项)=O(n )。 b.算法的时间复杂度与输入实例的初始状态有关。 这类算法的时间复杂度的分析比较复杂,一般分最好情况(处理最少的情况),最坏情况(处理最多的情况)和平均情况分别进行讨论。 【例1.10】在数值A[0..n-1]中查找给定值K:(1) i=n-1; (2) while( i>=0 and A[i]<>k ) (3) i=i-1;(4) return i; 此算法的频度不仅与问题规模n有关,还与输入实例中A

答深度优先搜索算法的特点是

习题 3 1、答:深度优先搜索算法的特点是 ①一般不能保证找到最优解; ②当深度限制不合理时,可能找不到解,可以将算法改为可变深度限制; ③方法与问题无关,具有通用性; ④属于图搜索方法。 宽度优先搜索算法的特点是 ①当问题有解时,一定能找到解; ②当问题为单位耗散值,并且问题有解时,一定能找到最优解; ③效率低; ④方法与问题无关,具有通用性; ⑤属于图搜索方法。 2、答:在决定生成子状态的最优次序时,应该采用深度进行衡量,使深度大的 结点优先扩展。 3、答:(1)深度优先 (2)深度优先 (3)宽度优先 (4)宽度优先 (5)宽度优先 4、答:如果把一个皇后放在棋盘的某个位置后,它所影响的棋盘位置数少,那 么给以后放皇后留下的余地就大,找到解的可能性也大;反之留下的余地就小,找到解的可能性也小。 并不是任何启发函数对搜索都是有用的。 6、讨论一个启发函数h在搜索期间可以得到改善的几种方法。 7、答:最短路径为ACEBDA,其耗散值为15。 8、解:(1)(S,O,S0,G) S:3个黑色板和3个白色板在7个空格中的任何一种布局都是一个状态。 O:①一块板移入相邻的空格; ②一块板相隔1块其他的板跳入空格; ③一块板相隔2块其他的板跳入空格。 S0: B B B W W W G: W W W B B B W W W B B B W W W B B B

W W W B B B W W W B B B W W W B B B W W W B B B (2)1401231231234567333377 =???????????=?P P P (3)定义启发函数h 为每一白色板左边的黑色板数的和。 显然,)()(n h n h *≤,所以该算法具有可采纳性。 又,?? ?≤-=),()()(0)(j i i j n n c n h n h t h ,所以该启发函数h 满足单调限制条件。 9、解: ((( ),( )),( ),(( ),( ))) ((S,( )),( ),(( ),( ))) ((A,( )),( ),(( ),( ))) ((A,S),( ),(( ),( ))) ((A,A),( ),(( ),( ))) ((A),( ),(( ),( ))) (S,( ),(( ),( ))) (A,( ),(( ),( ))) (A,S,(( ),( ))) (A,A,(( ),( ))) (A,(( ),( )))

深度优先遍历(邻接矩阵)

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:深度优先遍历(邻接矩阵)班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: 1﹒掌握图的基本概念和邻接矩阵存储结构。 2﹒掌握图的邻接矩阵存储结构的算法实现。 3﹒掌握图在邻接矩阵存储结构上遍历算法的实现。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 二、实验内容及要求: 编写图的深度优先遍历邻接矩阵算法。建立图的存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 四、概要设计: 深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。假设初始状态是图中所有的顶点未曾被访问,则深度优先遍历可从图的某个顶点V出发,访问此顶点,然后依次从V的未被访问的邻接点出发深度优先遍历图,直至图中所有和V有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中的一个未被访问的顶点,重复上述过程,直至图中所有顶点都被访问到为止。 以图中无向图G4为例,深度优先遍历图的过程如图所示。假设从顶点V1出发进行搜索,在访问了顶点V1后,选择邻接点V2。因为V2未曾访问,则从V2出发进行搜索。依次类推,接着从V4,V8,V5出发进行搜索。在访问了V5之后,由于V5的邻接点已都被访问,则搜索回到V8。由于同样的理由,搜索继续回到V4,V2直至V1,此时由于V1的另一个邻接点为被访问,则搜索又从V1到V3,再继续进行下去。由此得到顶点的访问序列为: V1 V2 V4 V8 V5 V3 V6 V7 五、代码 #include #include #define n 8 #define e 9 typedef char vextype; typedef float adjtype; int visited[n]; //定义结构体

算法习题

算法设计与分析试卷 一、填空题(20分,每空2分) 1、算法的性质包括输入、输出、确定性、有限性。 2、动态规划算法的基本思想就将待求问题分解成若干个子问题、先求解子问题,然后 从这些子问题的解得到原问题的解。 3、设计动态规划算法的4个步骤: (1)找出最优解的性质,并刻画其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值得到的信息,构造最优解。 4、流水作业调度问题的johnson算法: (1)令N1={i|ai=bj}; (2)将N1中作业依ai的ai的非减序排序;将N2中作业依bi的非增序排序。 5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}。 6、最优二叉搜索树即是最小平均查找长度的二叉搜索树。 二、综合题(50分) 1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)=20(5分) 2、由流水作业调度问题的最优子结构性质可知,T(N,0)=min{ai+T(N-{i},bi)}(1=sum){ sum=thissum; besti=i; bestj=j;} } return sum; } 4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分) Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w) { for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]= 0;} for(int r=0;r

图的深度优先遍历实验报告

一.实验目的 熟悉图的存储结构,掌握用单链表存储数据元素信息和数据元素之间的关系的信息的方法,并能运用图的深度优先搜索遍历一个图,对其输出。 二.实验原理 深度优先搜索遍历是树的先根遍历的推广。假设初始状态时图中所有顶点未曾访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有与v有路径相通的顶点都被访问到;若此时图有顶点未被访问,则另选图中一个未曾访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 图的邻接表的存储表示: #define MAX_VERTEX_NUM 20 #define MAXNAME 10 typedef char VertexType[MAXNAME]; typedef struct ArcNode{ int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode{ VertexType data; ArcNode *firstarc;

}VNode,AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; int vexnum,arcnum; int kind; }ALGraph; 三.实验容 编写LocateVex函数,Create函数,print函数,main函数,输入要构造的图的相关信息,得到其邻接表并输出显示。 四。实验步骤 1)结构体定义,预定义,全局变量定义。 #include"stdio.h" #include"stdlib.h" #include"string.h" #define FALSE 0 #define TRUE 1 #define MAX 20 typedef int Boolean; #define MAX_VERTEX_NUM 20

最新算法设计与分析复习要点(1)

算法设计与分析的复习要点 第一章:算法问题求解基础 算法是对特定问题求解步骤的一种描述,它是指令的有限序列。 一.算法的五个特征: 1.输入:算法有零个或多个输入量; 2.输出:算法至少产生一个输出量; 3.确定性:算法的每一条指令都有确切的定义,没有二义性; 4.可行性:算法的每一条指令必须足够基本,它们可以通过已经实现的基本运算执行有限次来实现; 5.有穷性:算法必须总能在执行有限步之后终止。 二.什么是算法?程序与算法的区别 1.笼统地说,算法是求解一类问题的任意一种特殊的方法;较严格地说,算法是对特定问题求解步骤的一种描述,它是指令的有限序列。 2.程序是算法用某种程序设计语言的具体实现;算法必须可终止,程序却没有这一限制;即:程序可以不满足算法的第5个性质“有穷性”。 三.一个问题求解过程包括:理解问题、设计方案、实现方案、回顾复查。 四.系统生命周期或软件生命周期分为: 开发期:分析、设计、编码、测试;运行期:维护。 五.算法描述方法:自然语言、流程图、伪代码、程序设计语言等。 六.算法分析:是指对算法的执行时间和所需空间的估算。算法的效率通过算法分析来确定。 七.递归定义:是一种直接或间接引用自身的定义方法。一个合法的递归定义包括两部分:基础情况和递归部分; 基础情况:以直接形式明确列举新事物的若干简单对象; 递归部分:有简单或较简单对象定义新对象的条件和方法 八.常见的程序正确性证明方法: 1.归纳法:由基础情况和归纳步骤组成。归纳法是证明递归算法正确性和进行算法分析的强有力工具; 2.反证法。 第二章:算法分析基础 一.会计算程序步的执行次数(如书中例题程序2-1,2-2,2-3的总程序步数的计算)。二.会证明5个渐近记法。(如书中P22-25例2-1至例2-9) 三.会计算递推式的显式。(迭代法、代换法,主方法) 四.会用主定理求T(n)=aT(n/b)+f(n)。(主定理见P29,如例2-15至例2-18)五.一个好的算法应具备的4个重要特征: 1.正确性:算法的执行结果应当满足预先规定的功能和性能要求; 2.简明性:算法应思路清晰、层次分明、容易理解、利于编码和调试; 3.效率:算法应有效使用存储空间,并具有高的时间效率; 4.最优性:算法的执行时间已达到求解该类问题所需时间的下界。 六.影响程序运行时间的主要因素: 1.程序所依赖的算法; 2.问题规模和输入数据规模; 3.计算机系统性能。 七.1.算法的时间复杂度:是指算法运行所需的时间;

算法设计与分析试题与答案

一、填空题(20分) 1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性: 确定性,有穷性,可行性,0个或多个输入,一个或多个输出。 2.算法的复杂性有时间复杂性和空间复杂性之分,衡量一个算法好坏的标准是时间复杂度高低。 3.某一问题可用动态规划算法求解的显著特征是该问题具有最优子结构性质。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X和Y的一个最长公共子序列{BABCD}或{CABCD}或{CADCD}。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解。 6.动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为回溯法。 8.0-1背包问题的回溯算法所需的计算时间为o(n*2n) ,用动态规划算法所需的计算时间为o(min{nc,2n})。 9.动态规划算法的两个基本要素是最优子结构和重叠子问题。 10.二分搜索算法是利用动态规划法实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 ①问题具有最优子结构性质;

②构造最优值的递归关系表达式; ③最优值的算法描述; ④构造最优解; 2.流水作业调度问题的johnson算法的思想。 ②N1={i|ai=bi}; ②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’; ③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度。 3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai和bi,且 (a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。 步骤为:N1={1,3},N2={2,4}; N1’={1,3}, N2’={4,2}; 最优值为:38 4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3 的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。 解空间为{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1), (1,1,0),(1,1,1)}。 解空间树为:

图论深度优先搜索实验报告

深度优先遍历 一、实验目的 了解深度优先遍历的基本概念以及实现方式。 二、实验内容 1、设计一个算法来对图的进行深度优先遍历; 2、用C语言编程来实现此算法。用下面的实例来调试程序: 三、使用环境 Xcode编译器 四、编程思路 深度优先遍历图的方法是,从邻接矩阵出发:访问顶点v;依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;构造一个遍历辅助矩阵visited[]进行比较若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止,并将顶点信息存储在数组Q[]里面。反复搜索可以通过使用函数的嵌套来实现。

五、调试过程 1.程序代码: //为方便调试,程序清晰直观删除了邻接矩阵的构造函数, //并且修改了main()函数,只保留了DFS函数 #include #define N 4 //定义顶点数 int a[N][N]= { {0,1,1,1} ,{1,0,0,0} ,{1,0,0,1} ,{1,0,0,1} }; //邻接矩阵由之前程序函给出 int visited[N]={0}; //遍历比较的辅助矩阵,初始化为0矩阵int Q[N]; //用来存储各个顶点的信息 static int last=-1; void DFS(int G[][N], int s) { visited[s] = 1; Q[++last]=s; for (int i=0;i

邻接矩阵的深度优先遍历

#include #include using namespace std; #define INFINITY 32767 #define MAX_VEX 50 #define OK 1 #define FALSE 0 #define TRUE 1 #define ERROR -1 bool *visited; //图的邻接矩阵存储结构 typedef struct { char *vexs; //动态分配空间存储顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum, arcnum; //图的当前定点数和弧数 }Graph; //图G中查找顶点c的位置 int LocateVex(Graph G, char c) { for(int i = 0; i < G.vexnum; ++i) { if(G.vexs[i] == c) return i; } return ERROR; } //创建无向网 void CreateUDN(Graph &G){ //采用数组(邻接矩阵)表示法,构造无向图G cout << "请输入定点数和弧数:"; cin >> G.vexnum >> G.arcnum; cout << "请输入" << G.vexnum << "个顶点" << endl; G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char)); //需要开辟多一个空间存储'\0' //构造顶点向量 for(int i = 0; i < G.vexnum; i++) { cout << "请输入第" << i+1 << "个顶点:"; cin >> G.vexs[i]; } G.vexs[G.vexnum] = '\0';

图的深度优先遍历和广度优先遍历

华北水利水电学院数据结构实验报告 20 10 ~20 11 学年第一学期2008级计算机专业 班级:107学号:200810702姓名:王文波 实验四图的应用 一、实验目的: 1.掌握图的存储结构及其构造方法 2.掌握图的两种遍历算法及其执行过程 二、实验内容: 以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现无向连通图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。 提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先和广度优先遍历,并输出遍历的结果。 三、实验要求: 1.各班学号为单号的同学采用邻接矩阵实现,学号为双号的同学采用邻接表实现。 2.C/ C++完成算法设计和程序设计并上机调试通过。 3.撰写实验报告,提供实验结果和数据。 4.写出算法设计小结和心得。 四、程序源代码: #include #define MaxVerNum 50 struct edgenode { int endver; int inform; edgenode* edgenext; }; struct vexnode { char vertex; edgenode* edgelink; }; struct Graph { vexnode adjlists[MaxVerNum]; int vexnum; int arcnum; }; //队列的定义及相关函数的实现 struct QueueNode

{ int nData; QueueNode* next; }; struct QueueList { QueueNode* front; QueueNode* rear; }; void EnQueue(QueueList* Q,int e) { QueueNode *q=new QueueNode; q->nData=e; q->next=NULL; if(Q==NULL) return; if(Q->rear==NULL) Q->front=Q->rear=q; else { Q->rear->next=q; Q->rear=Q->rear->next; } } void DeQueue(QueueList* Q,int* e) { if (Q==NULL) return; if (Q->front==Q->rear) { *e=Q->front->nData; Q->front=Q->rear=NULL; } else { *e=Q->front->nData; Q->front=Q->front->next; } } //创建图 void CreatAdjList(Graph* G) { int i,j,k; edgenode* p1; edgenode* p2;

五大常用算法

五大常用算法之一:分治算法 分治算法 一、基本概念 在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。 二、基本思想及策略 分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。 如果原问题可分割成k个子问题,1

算法复习题

1.什么是算法?算法必须满足的五个特性是什么? 算法:一组有穷的规则,规定了解决某一特定类型问题的一系列运算。(有限指令的集合,遵循它可以完成一个特定的任务). 必须满足的五个特性是(遵循以下五条准则): 1.有穷(限)性 2.确定性 3.可(能)行性 4.输入(n≥0) 5.输出(n≥1) 2.对算法进行分析分哪两个阶段?各自完成什么任务(分别得到什么结果)? 对一个算法要作出全面的分析可分成两个阶段进行,即:事前分析和事后测试。 事前分析求出该算法的一个时间界限函数; 事后测试搜集此算法的执行时间和实际占用空间的统计资料。 3.证明:若f1(n)=O(g1(n))并且f2(n)= O(g2(n)),那么f1(n) +f2(n)= O(max{g1(n), g2(n)} 证明: 根据f1(n)=O(g1(n))可知,存在正常数C1,当n≥n0时,使得|f1(n)|≤ C1|g1(n)|; 同理,根据f2(n)= O(g2(n))可知,存在正常数C2,当n≥n0时,使得|f2(n)|≤C2|g2(n)| 当n≥n0时,|f1(n)+f2(n)|≤|f1(n)|+|f2(n)|≤C1|g1(n)|+C2|g2(n)|≤ C1|g k(n)|+C2|g k(n)|

≤(C1+C2)|g k(n)|,其中g k(n)=max{g1(n),g2(n)},k={1,2} 当n≥n0时,取C=(C1+C2),据定义命题得证。 4.如果f 1(n)= Θ(g 1 (n))并且f 2 (n)= Θ(g 2 (n)),下列说法是否正确?试说明 之。 (a) f1(n) +f2(n)= Θ(g1(n)+ g2(n)) (b) f1(n) +f2(n)= Θ(min{g1(n), g2(n)}) (c) f1(n) +f2(n)= Θ(max{g1(n), g2(n)}) 答:(a)和(c)均正确,(b)错误。 (a)正确可以根据定义直接证得。 (b)错误可举反例。例:f1(n)= 2n,f2(n)=2 n2 下面证明(c)正确性. 根据上题已经证明f1(n)+f2(n)= O(max{g1(n),g2(n)}),下面只需证明 f 1(n)+f 2 (n)= Ω(max{g 1 (n), g 2 (n)}),即存在正常数C,使得|f 1 (n)+f 2 (n)|≥ C(max{g 1(n), g 2 (n)}) 根据f1(n)= Θ(g1(n))并且f2(n)= Θ(g2(n)) 得到,当n≥n0时,存在正常数C1、C2、C3、C4 C 1|g 1 (n)|≤|f 1 (n)|≤C 3 |g 1 (n)| C 2|g 2 (n)|≤|f 2 (n)|≤C 4 |g 2 (n)| 不妨设max{g1(n), g2(n)}= g1(n) 由于|f1(n)+f2(n)|≥||f1(n)|-|f2(n)||≥|C1|g1(n)|-C3|g2(n)|| =C|max{g 1(n), g 2 (n)}| 取C≥|C1-C3|的正常数,由定义得 f 1(n)+f 2 (n) = Ω(max{g 1 (n), g 2 (n)})

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有 连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。 深度优先搜索: 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。 下面图中的数字显示了深度优先搜索顶点被访问的顺序。 "* ■ J 严-* 4 t C '4 --------------------------------- --- _ 为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则: (1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。 (2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。 (3) 如果不能执行规则1和规则2,就完成了整个搜索过程。 广度优先搜索: 在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。 在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中, 算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区 域。它是用队列来实现的。 下面图中的数字显示了广度优先搜索顶点被访问的顺序。 实现广度优先搜索,也要遵守三个规则: ⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

深度优先搜索的基本思想

深度优先搜索的基本思想 搜索是人工智能中的一种基本方法,也是信息学竞赛选手所必须熟练掌握的一种方法,它最适合于设计基于一组生成规则集的问题求解任务,每个新的状态的生成均可使问题求解更接近于目标状态,搜索路径将由实际选用的生成规则的序列构成。我们在建立一个搜索算法的时候.首要的问题不外乎两个:以什么作为状态?这些状态之间又有什么样的关系?我们就简单的说一下深度优先搜索的基本思想吧。 如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索树。在深度优先搜索中,对于当前发现的结点,如果它还存在以此结点为起点而未探测到的边,就沿此边继续搜索下去,若当结点的所有边都己被探寻过.将回溯到当前结点的父结点,继续上述的搜索过程直到所有结点都被探寻为止。 深度优先搜索在树的遍历中也称作树的先序遍历。对于树而言,深度优先搜索的思路可以描述为: (1)将根结点置为出发结点。 (2)访问该出发结点. (3)依次将出发结点的子结点置为新的出发结点.进行深度优先遍历(执行(2))。 (4)退回上一层的出发结点。 深度优先搜索的具体编程可用递归过程或模拟递归来实现。他们各有各的优缺点。递归形式的程序符合思维习惯.编写起来较容易.但由于递归过程的调用借助较慢的系统栈空间传递参数和存放局部变量,故降低了执行效率。模拟递归使用数组存放堆栈数据,在管理指针和每层选择决策上不如递归容易编程.但一旦熟悉了程序框架,调试起来要比递归程序方便,由于数组一般使用静态内存.访问速度较快,执行效率也较高. 经典例子、找零钱(money.pas) 问题描述:有2n个人排队购一件价为0.5元的商品,其中一半人拿一张1元人民币,另一半人拿一张0.5元的人民币,要使售货员在售货中,不发生找钱困难,问这2n个人应该如何排队?找出所有排队的方案。(售货员一开始就没有准备零钱) 输入: 输入文件money.in仅一个数据n 输出: 输出文件money.out若干行,每行一种排队方案,每种方案前加序号No.i,每种方案0表示持0.5元钞票的人,1表示持1元钞票的人 样例: money.in

采用非递归深度优先遍历算法

2007-05-27 晴 //采用非递归深度优先遍历算法,可以将回溯法表示为一个非递归过程 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); //设置友元函数 public: void print() //定义类内函数打印结果 { for(int m=1;m<=n;m++) { cout<

}; private: int Bound(int i); void Backtrack(int i); int c; //背包容量 int n; //物品数 int *w; //物品重量数组int *p; //物品价值数组int cw; //当前重量 int cp; //当前价值 int bestp; //当前最优值int *bestx; //当前最优解int *x; //当前解 }; int Knap::Bound(int i) //装满背包

if(i<=n) b+=p/w*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

五大经典算法介绍

1分治法 1.1基本概念 在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。 1.2基本思想及策略 分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。 如果原问题可分割成k个子问题,1

相关文档
相关文档 最新文档