文档库 最新最全的文档下载
当前位置:文档库 › 现值、终值最新表与正态分布曲线的面积

现值、终值最新表与正态分布曲线的面积

现值、终值最新表与正态分布曲线的面积
现值、终值最新表与正态分布曲线的面积

附录1 现值、终值表和正态分布曲线的面积

附表1

复利终值系数表 (F/P,i,n)=(1+i)n

续表

附表2

复利现值系数表 (P/F,i,n)=(1+i)-n

续表

附表3

年金终值系数表 (F A/A,i,n)=[(1+i)n-1]/i

续表

附表4

年金现值系数表 (P A/A,i,n)=[1-(1+i)-n]/i

续表

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

单利的现值和终值

I 为利息;F 为终值;P 为现值;i 为利率(折现率) ;n 为计算利息的期数。 (一)单利的现值和终值 1. 单利现值 P=F / ( 1+ n x i ) 式中,1/( 1+ n x i)为单利现值系数。 2. 单利终值 F=P(1+n x i) 式中,(1+n x i)为单利终值系数。 结论:(1)单利的终值和单利的现值互为逆运算。 (2)单利终值系数(1+n x i)和单利现值系数1/( 1+ n x i )互为倒数。 (二)复利的现值和终值 1. 复利现值 P=F/(1+i) n式中,1/ (1+i)n为复利现值系数,记做(P/F , i, n)。 2. 复利终值 F=P(1+i)n式中,(1+i)n为复利终值系数,记做(F/P , i, n) ,n为计息期。 结论:( 1 )复利终值和复利现值互为逆运算; (2)复利终值系数(1+i)n和复利现值系数1/ (1+i) n互为倒数。 (三)年金终值和年金现值的计算 1. 普通年金终值的计算(已知年金 A ,求终值F) F=【A*(1+i) n-1】/i=A * (F/A , i, n) 式中,【(1+i) n-1] /i称为“年金终值系数”,记作(F/A , i, n),可直接查阅“年金终值系数” 2. 偿债基金的计算偿债基金是指为了在约定的未来某一时点清偿某笔债务或积聚一定数额的资金而必须分次 等额形成的存款准备金。也就是为使年金终值达到既定金额的年金数额(即已知终值F,球 年金A )。在普通年金终值公式中解出A,这个A就是偿债基金。 A=F*i/ 【(1+i) n-1] 式中,i/【(1+i) n-1 ]称为“偿债基金系数”,记做(A/F , i, n) 结论:(1)偿债基金和普通年金终值互为逆运算。 (2)偿债基金系数i/【(1+i) n-1]和普通年金终值系数【(1+i) n-1] /i互为倒数。 3. 普通年金现值 实际上就是已知年金A,求普通年金现值P。 P=A*{[1- ( 1+i ) -n]/i }=A(P/A, i, n) 式中,[1-( 1+i) -n]/i称为“年金现值系数”,记做(P/A, i, n),可直接查阅“年金现值系数表”。 4. 年资本回收额的计算 年资本回收额是指在约定年限内等额回收初始投入资本或清偿所欠债务的金额。年资本回收额的计算实际上市已知普通年金现值P,求A。 A=P*{i/[1- (1+i) -n]} 式中,i/[1- (1+i) -n]称为“资本回收系数”,记做(A /P, i, n)。结论: (1)年资本回收额与普通年金现值互为逆运算; ( 2)资本回收系数与普通年金现值系数互为倒数。 5. 即付年金终值的计算 即付年金的终值是指把即付年金每个等额A都换成第n期期末的数值,再来求和。 F=A*{[ (1+i) n -1]/i }*(1+i) =A(F /A , i, n+1) *(1+i) 或F=A*[(F/A, i ,n+1)-1] 6. 即付年金现值

正态分布的概念和特征

第一节正态分布的概念和特征 一、正态分布的概念 由表的频数表资料所绘制的直方图,图(1)可以看出,高峰位于中部,左右两侧大致对称。我们设想,如果观察例数逐渐增多,组段不断分细,直方图顶端的连线就会逐渐形成一条高峰位于中央(均数所在处),两侧逐渐降低且左右对称,不与横轴相交的光滑曲线图(3)。这条曲线称为频数曲线或频率曲线,近似于数学上的正态分布(normal distribution)。由于频率的总和为100%或1,故该曲线下横轴上的面积为100%或1。 图频数分布逐渐接近正态分布示意图 为了应用方便,常对正态分布变量X作变量变换。 ()

该变换使原来的正态分布转化为标准正态分布 (standard normal distribution),亦称u分布。u被称为标准正态变量或标准正态离差(standard normal deviate)。 二、正态分布的特征: 1.正态曲线(normal curve)在横轴上方均数处最高。 2.正态分布以均数为中心,左右对称。 3.正态分布有两个参数,即均数和标准差。是位置参数,当固定不变时,越大,曲线沿横轴越向右移动;反之,越小,则曲线沿横轴越向左移动。 是形状参数,当固定不变时,越大,曲线越平阔;越小,曲线越尖峭。通常用表示均数为,方差为的正态分布。用N(0,1)表示标准正态分布。 4.正态曲线下面积的分布有一定规律。 实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率。正态曲线下一定区间的面积可以通过附表1求得。对于正态或近似正态分布的资料,已知均数和标准差,就可对其频数分布作出概约估计。 查附表1应注意:①表中曲线下面积为-∞到u的左侧累计面积;②当已知μ、σ和X时先按式()求得u值,再查表,当μ、σ未知且样本含量n足够大时,可用样本均数和标准差S分别代替μ和σ,按式求得u值,再查表;③曲线下对称于0的区间面积相等,如区间(-∞,)与区间(,∞)的面积相等,④曲线下横轴上的总面积为100%或1。

(完整版)现值和终值的计算

企业现在需购进一台设备,买价为20000元,其应用年数为10年,如果租用,则每年年初付租金2500元,不考虑其余的因素,如果利率为10%,则应采用购入的方式()。 答案:× 解析:租金现值为2500+2500(P/A,10%,9)=2500+2500*5.7590=16897.5(元),所以应该选择租赁的方式。 某公司拟购置一处房产,付款条件是:从第7年开始,每年年初支付10万元,连续支付10次,共100万元,假定该公司的资金成本率为10%,则相当于该公司现在一次付款的金额为()万元。 A、10×[(P/A,10%,15)-(P/A,10%,5)] B、10×(P/A,10%,10)(P/F,10%,5) C、10×[(P/A,10%,16)-(P/A,10%,6)] D、10×[(P/A,10%,15)-(P/A,10%,6)] 答案:AB 解析:按递延年金求现值公式:递延年金现值=A×(P/A,i,n)×(P/F,i,m)=A×[(P/A,i,m+n)-(P/A,i,m)],m表示递延期,n+m表示总期数,一定注意应将期初问题转化为期末,所以m=5,n+m=15。 某企业向租赁公司租入设备一套,价值200万元,租期为3年,综合租赁费率为10%,则每年年末支付的等额租金为()。 A、60.42万元 B、66.66万元 C、84.66万元 D、80.42万元 答案:D 解析:企业每年年末支付的租金=200/(P/A,10%,3)=200/2.4869=80.42(万元)。 下列说法中正确的有()。 A、复利终值系数和复利现值系数互为倒数 B、普通年金终值系数和偿债基金系数互为倒数 C、偿债基金系数和资本回收系数互为倒数 D、普通年金现值系数和资本回收系数互为倒数 答案:ABD 解析:注意各种系数之间的对应关系。

预付年金终值与现值的计算

预付年金终值与现值的计算 预付年金也称先付年金、即付年金,它是在每期期初等额的系列收款、付款的年金。 (1)预付年金终值 先把预付年金转换成普通年金。转换的方法是,求终值时,假设最后一期(第n期)期末有一个等额的收付,这样就转换为n+1期的普通年金的终值问题,计算出期数为n+1期的普通年金的终值,再把最后一期多算的终值位置上的这个等额的收付A减掉,就得出预付年金终值。 预付年金的终值系数和普通年金终值系数相比,期数加1,而系数减1。 (2)预付年金现值 先把预付年金转换成普通年金,转换的方法是,求现值时,假设0时点(第1期期初)没有等额的收付,这样就转化为n-1期的普通年金的现值问题,计算期数为n-1期的普通年金的现值,再把原来未算的第1期期初位置上的这个等额的收付A加上,就得出预付年金现值。 预付年金的现值系数和普通年金现值系数相比,期数减1,而系数加1。 几个概念 息税前利润:是指未扣除利息和所得税的利润。 税前利润:是指未扣除所得税的利润。 息前税后利润:是指未扣除利息的税后利润。 利润总额:与税前利润相同。 净利润:扣除利息和所得税后的利润。 (2)关系 净利润=税前利润(利润总额)×(1-所得税税率)=息前税后利润-利息×(1-所得税税率)=息税前利润-利息-所得税费用; 息前税后利润=息税前利润×(1-所得税税率)=(税前利润+利息)×(1-所得税税率)。 )“D0”指的是“上年的股利”、“最近刚发放的股利”、“刚刚发放的股利”、“目前的股利”,“今年初发放的股利”,“本年发放的股利”; (2)“D1”指的是“预计要发放的股利(如预计的本年股利)”、“第一年末的股利”、“一年后的股利”、“第一年的股利” (3)“D0”和“D1”的本质区别是,与“d0”对应的股利“已经收到”,而与“d1”对应的

标准正态曲线下面积的求法

.标准正态曲线下面积的求法(查表资料1-3) 1.已知Z值求概率 ⑴.求Z=0至某一Z值之间的概率:直接查表 ⑵.求两个Z值之间的概率 ?两Z值符号相同:PZ1-Z2=PZ2-PZ1 ? ?两Z值符号相反:PZ1-Z2=PZ2+PZ1 ? ⑶.求某一Z值以上的概率 ?Z>0时,PZ-∞=0.5-PZ ? ?Z<0时,PZ-∞=0.5+PZ ? ⑷.求某一Z值以下的概率 ?Z>0时,P-∞-Z=0.5+PZ ? ?Z<0时,P-∞-Z=0.5-PZ ? 2.已知面积(概率)求Z值 ⑴.求Z=0以上或以下某一面积对应的Z值:直接查表 ⑵.求与正态曲线上端或下端某一面积P相对应的Z值:先用0.5-PZ,再查表 ⑶.求与正态曲线下中央部位某一面积相对应的Z值:先计算P/2,再查表 3.已知概率P或Z值,求概率密度Y ?直接查正态分布表就能得到相应的概率密度Y值。 ? ?如果由概率P求Y值,要注意区分已知概率是位于正态曲线的中间部分,还是两尾端部分,才能通过查表求得正确的概率密度。

(1)已知Z值求面积 如果是原始数据,要首先转化为标准分数,然后再由Z值查到面积,具体做法有以下三种: 第一种情况:求Z=0至某一Z值之间的面积。可以直接查表(附表1); 如查Z=0到Z=0.50的面积。查得P=0.19146。 再如:求Z=0到Z=2之间的面积。可以直接查。查附表1。先找Z行,找到2这个值;再看P行,在2旁边的那个P值为0.47725。从而得到从Z=0到Z=2这个区域的面积为0.47725。 第二种情况:求两个Z值之间的面积; 首先要找出这两个值到Z=0的面积找出来,然后看它们的符号相同还是相反。如果相同,就用大的面积减去小的面积所得差即为所求;如果符号相反,就把两个面积加起来,所得和即为所求面积。 例如:要求Z=0.50到Z=2之间的面积。先查得Z=0到Z=0.50的面积,结果查得0.19146;在查得Z=0到Z=2之间的面积,结果查得0.47725。然后看两个Z值的符号是相同还是相同。结果发现相同。那么最终所求面积等于0.47725减去0.19146,结果得0.28579。即从Z=0.50累积到Z=2的概率为0.28579,或所求面积为0.28579。 又如:要求Z=-1.50到Z=1之间的面积。先查得Z=0到Z=-1.50的面积,结果查得0.43319;在查得Z=0到Z=1之间的面积,结果查得0.34134。然后看两个Z值的符号是相同还是相反。结果发现相同。 那么最终所求面积等于0.43319加上0.34134,结果得0.77633。即从Z=-1.50累积到Z=1的概率为 0.77633,或所求面积为0.77633。 第三种情况:求某一Z值以上或以下的面积。即左端或右端,上端或下端。 例如:求Z=2以上的面积。先查Z=0到Z=2的面积为多少,查附表1的0.47725,则Z=2以上的面积就等于半块面积减去0.47725。这时就用到标准正态曲线的对称性。即整个面积为1,则半个面积为 0.50。所以Z=2以上的面积为0.02275。同理根据对称性可以求得Z=2以下的面积,Z=-2以上或以下 的面积。 例如:某地区某年高考英语这一科的考生有46000人,经过计算平均分为56.03,标准差为19.06,假定这个分布是正态的,现在问成绩在90分以上的有多少人,60分到90分有多少人,60分以下的有多少人。 (2)已知面积求Z值 第一种情况:求Z=0以上或以下某一面积相对应的Z值; 求Z=0至某一Z值之间面积所对应的Z值。可以直接查表(附表1)。如已知Z=0往上的面积等于0.30,求所对应的Z值。先查P行,找到0.30。当然表中不一定有该数据,可以找最接近的数,其所对应的Z值就是我们所要求的。查得Z=0.84。所以从Z=0往上0.30的面积所对应的Z值为0.84。同理可得从Z=0往下的面积对应的Z值,不过要在所求得的Z值前加一个负号。

正态曲线下面积

第二节正态曲线下面积 直方图是以直方的面积表示数量的。直方顶端连成曲线后,整个曲线下面积就表示总频数,用1或10 0%表示。一定区间曲线下面积就是出现在此区间的频数与总频数之比,或出现在该区间的各个变量的概率之和。例如以7岁男童102人为100%,则若要知道坐高在66至68cm间的人数占总人数的百分比,只要知道曲线下横坐标为66至68cm区间内的面积就可以了。因此求出曲线下面积有其实用意义。 曲线下某区间的面积,可根据曲线方程用积分求得,但若每次应用时都要用积分计算,那是很麻烦的。前人已将标准正态曲线下0至各u值的面积计算出来的了。由于各书列的方式不完全相同,所以使用时要注意表上的图示或说明,仍用7岁男童坐高资料为例说明正态曲线下面积表(附表2)的使用方法。该表左侧及上端为u值,表中数字为横轴自0至u曲线下的面积。 例5.1根据表4.3的资料计算得坐高的X=66.72,S=2.08,试估计总体中坐高在 (1)66.72-68.80cm间。 (2)66~68cm间及(3)68~70cm间的人数各占总人数的百分比。 (1)求坐高在66.72~68.80cm 之间曲线下面积。 ①求u(u=(X-μ)/σ,这里分别以X、S作为μ与σ的估计值) (66.72-66.72)/2.08=0 (66.80-66.72)/2.80=1 标准正态曲线下面积见图5.3(a)。 ②查附表2,u自0至1的面积,即查u=1.00,得α/2=0.3413。坐高在此区间内的人数占总人数的34. 13%。 (2)求坐高在66~68cm之间曲线下面积。 ①求u (66-66.72)/2.08=-0.346 (68-66.72)/2.08=0.615 标准正态曲线下面积见图5.3(b) ②查附表2u=0.346,得α/2=0.1353(经内插法求得,下同) u=0.615,得α/2=0.2308 0.1353+0.2308=0.3661

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.wendangku.net/doc/0f8501529.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

(完整版)现值和终值的计算

客观题 企业现在需购进一台设备,买价为 20000元,其应用年数为 10年,如果租用,则每年年初付租金 2500 元,不考虑其余的因素,如果利率 为 10%,则应采用购入的方式()。 答案:× 解析:租金现值为 2500+2500( P/A ,10%,9)=2500+2500*5.7590=16897.5 (元),所以应该选择租赁的方式。 A 、 10×[ ( P/A , 10%, 15) - ( P/A , 10%, 5)] B 、 10×( P/A , 10%, 10) ( P/F 10%,5) C 、 10×[ ( P/A , 10%, 16) - ( P/A , 10%, 6)] D 、 10×[ ( P/A , 10%, 15) - ( P/A , 10%, 6)] 答案: AB 解析:按递延年金求现值公式:递延年金现值 =A ×( P/A ,i ,n )×( P/F ,i ,m )=A ×[ ( P/A ,i , m+n )- ( P/A,i,m )],m 表示递延期, n+m 表示总期数,一定注意应将期初问题转化为期末,所以 m=5,n+m=15。 某企业向租赁公司租入设备一套,价值 200 万元,租期为 3 年,综合租赁费率为 10%,则每年年末支付的等额租金为( ) A 、 60.42 万 元 B 、 66.66 万元 C 、 84.66 万元 D 、 80.42 万元 答案: D 解析:企业每年年末支付的租金 =200/ (P/A ,10%, 3)=200/2.4869=80.42 (万元) 下列说法中正确的有()。 A 、复利终值系数和复利现值系数互为倒数 B 、普通年金终值系数和偿债基金系数互为倒数 C 、偿债基金系数和资本回收系数互为倒数 D 、普通年金现值系数和资本回收系数互为倒数 答案: ABD 解析:注意各种系数之间的对应关系。 某公司拟购置一处房产,付款条件是:从第 7 年开始,每年年初支付 10%,则相当于该公司现在一次付款的金额为( )万元。 10 万元,连续支付 10 次,共 100 万元,假定该公司的资金成本率为

复利现值终值金现值终值公式、实例

某投资项目预测的净现金流量见下表(万元),设资金基本贴现率为10%,则该项目的净现金值为()万元 解: 本例因为涉及到年金当中的递延年金,所以将年金系列一起先介绍,然后解题 年金,是指一定时期内每次等额收付款的系列款项,通常记作A 。如保险费、养老金、折旧、租金、等额分期收款、等额分期付款以及零存整取或整存零取储蓄等等。年金按每次收付发生的时点不同,可分为普通年金、即付年金、递延年金、永续年金等。结合本例,先介绍普通年金与递延年金,其他的在后面介绍。 一、普通年金,是指从第一期起,在一定时期内每期期末等额发生的系列收付款项,又称后付年金。 1.普通年金现值公式为: i i A i A i A i A i A P n n n ------+-?=+?++?+++?++?=)1(1)1()1()1()1()1(21Λ 式中的分式i i n -+-)1(1称作“年金现值系数”,记为(P/A ,i ,n ),可通过直接查阅“1元年金现值表”求得有关的数值,上式也可写作:P=A (P/A ,i ,n )

. 2.例子:租入某设备,每年年末需要支付租金120元,年复利利率为10%,则5年内应支付的租金总额的现值为: % 10%)101(1120)1(15 --+-?=+-?=i i A P n 4557908.3120≈?=(元) 二、递延年金,是指第一次收付款发生时间与第一期无关,而隔若干期(假设为s 期,s ≥1),后才开始发生的系列等额收付款项。它是普通年金的特殊形式,凡不是从第一期开始的年金都是递延年金。 1.递延年金现值公式为: []),,/(),,/()1(1)1(1s i A P n i A P A i i i i A P s n -?=?? ????+--+-?=-- (1) 或),,/(),,/()1()1(1) (s i F P s n i A P A i i i A P s s n ?-?=+?+-?=--- (2) 上述(1)公式是先计算出n 期的普通年金现值,然后减去前s 期的普通年金现值,即得递延年金的现值, 公式(2)是先将些递延年金视为(n-s)期普通年金,求出在第s 期的现值,然后再折算为第零期的现值。 2.例子:某人在年初存入一笔资金,存满5年后每年年末取出1000元,至第10年末取完,银行存款利率为10%。则此人应在最初一次存入银行的钱数为: 方法一: [])5%,10,/()10%,10,/(1000%10%)101(1%10%)101(11000510A P A P -?=?? ????+--+-?=--=1000×(6.1446-3.7908)≈2354(元)

用Excel2007制作直方图和正态分布曲线图

用Excel2007制作直方图和正态分布曲线图 ? ?| ?浏览:3677 ?| ?更新:2014-04-15 02:39 ?| ?标签: ? 1 ? 2 ? 3 ? 4 ? 5 ? 6 ?7 在学习工作中总会有一些用到直方图、正态分布曲线图的地方,下面手把手教大家在Excel2007中制作直方图和正态分布曲线图

工具/原料 ?Excel(2007) 方法/步骤 1. 1 数据录入 新建Excel文档,录入待分析数据(本例中将数据录入A列,则在后面引用中所有的数据记为A: A); 2. 2 计算“最大值”、“最小值”、“极差”、“分组数”、“分组组距”,公式如图: 3. 3 分组 “分组”就是确定直方图的横轴坐标起止范围和每个小组的起止位置。选一个比最小值小的一个恰当的值作为第一个组的起始坐标,然后依次加上“分组组距”,直到最后一个数据值比“最大值”大为止。这时的实际分组数量可能与计算的“分组数”有一点正常的差别。类似如下图。 4. 4 统计频率 “频率”就是去统计每个分组中所包含的数据的个数。 最简单的方法就是直接在所有的数据中直接去统计,但当数据量很大的时候,这种方法不但费时,而且容易出错。

一般来说有两种方法来统计每个小组的数据个数:1.采用“FREQUENCY”函数;2.采用“COUNT I F”让后再去相减。 这里介绍的是“FREQUENCY”函数方法: “Date_array”:是选取要统计的数据源,就是选择原始数据的范围; “Bins_array”:是选取直方图分组的数据源,就是选择分组数据的范围; 5. 5 生成“FREQUENCY”函数公式组,步骤如下: 1. 先选中将要统计直方图每个子组中数据数量的区域 6. 6 2. 再按“F2”健,进入到“编辑”状态 7.7 3. 再同时按住“Ctrl”和“Shift”两个键,再按“回车Enter”键,最后三键同时松开,大功告成! 8.8 制作直方图 选中统计好的直方图每个小组的分布个数的数据源(就是“频率”),用“柱形图”来完成直方图: 选中频率列下所有数据(G1:G21),插入→柱形图→二维柱形图

标准正态曲线下的面积表

标准正态曲线下的面积表 0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0276 .0319 .0359 0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0754 0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549 0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 0.8 .2881 .2910 .2939 .2967 .2996 .3023 .3051 .3078 .3106 .3133 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3316 .3340 .3365 .3389 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4270 .4292 .4306 .4319 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 1.9 .4713 .4719 .4726 .4732 .4733 .4744 .4750 .4756 .4761 .4767 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

如何用EXCEL制作成绩分析的正态分布图

如何用EXCEL制作成绩分析的正态分布图 摘要:教学评价在学校教育教学工作中的重要地位毋容置疑。考试是对学生进行的一种教育测量,也是对教师教学质量、出题水平的评价。特别是数理统计方法的应用,使得我们对学生的教育测量转化为教学评价得到了有效的帮助。本文论述了如何用EXCEL制作考试成绩的正态分成图,并结合其它相关的衡量标准,比如,区分度,学生成绩柱状分布图,难度系数,优秀率等,融合于一个图表中进行分析。这是一种有效的可操作的方法,能让每一位教师从图中获得一种易于接受的直观认识,并且方便找出教学中存在的问题,并为以后教学改进措施的制定提供有效的帮助。 关键词:教学评价,EXCEL,成绩分析,正态分布。 教育评价学是教育科学领域中的一个重要的应用性很强的分支学科。在当今世界教育领域中,教育评价、教育基础理论和教育发展被认为是三大研究范围。教育是人类有目的、有计划、有组织的活动,教育活动涉及教育方案、教育活动的实施、教育活动的参与者等等,要提高学校教育活动的有效性,就必须对这些内容进行适当的评价。因此,教育评价对于学校教育的改革和发展,对于学校教育的管理和决策,都有着至关重要的作用,所以备受各国政府及其教育行政部门的重视。 在学校日常工作中,通过教育评价活动来强化管理,已受到人们的广泛重视。不论是宏观的教育行政管理还是微观的学校工作管理,都把教育评价当作一种有效的管理手段。就一所学校而言,管理水平的高低在一定程度上能反映出该校的评价工作开展得怎么样,而评价水平的高低又能体现出学校领导者的管理水平。实施素质教育的关键是教师素质的高低。为了提高教师素质,教育行政部门和学校都加大了对教师的管理力度,开展了对教师的教学评价工作。通过有效地评价教师,不仅调动了教师工作的积极性,而且进一步促进了师资队伍的建设。所以,要做一个有效的管理者,就要重视教育评价的作用。 教学评价是教育评价的重要组成部分。它以考试作为一种基础性的手段,来收集有关学生对知识的掌握程度方面的信息;以测验作为测量的手段,获得客观的数据,进行进一步的分析、综合,并作出价值上的判断。 在学校教育教学工作中,从研究的目的出发开展评价工作,就是要通过评价活动促进教育教学改革实验的进行,从而提高教育教学的科学研究水平。因此,教学评价将有助于学校及教育工作者自身进行检查、反思,并主动改进教育教学工作,从而有助于提高教育教学质量。教学常规工作中的段考、期考,不仅仅是为了测量学生的知识掌握程度,我们还应该使用现代的数理统计技术和现代信息技术来对考试成绩进行仔细、有效的分析,从中找出需要改进的教学问题,并为今后的教学改革提供依据。因此,我们就需要使用正态分布曲线来给我们的成绩分析提供一个有效的参考。 一、如何用EXCEL制作成绩分析的正态分布图呢?我们先来看一份样图:

正态分布

第三章 正态分布 一、教学大纲要求 (一) 掌握内容 1.正态分布的概念和特征 (1)正态分布的概念和两个参数; (2)正态曲线下面积分布规律。 2.标准正态分布 标准正态分布的概念和标准化变换。 3.正态分布的应用 (1)估计频数分布; (2)制定参考值范围。 (二) 熟悉内容 标准正态分布表。 (三) 了解内容 1.利用正态分布进行质量控制 2.正态分布是许多统计方法的基础 二、教学内容精要 (一)正态分布 1.正态分布 若X 的密度函数(频率曲线)为正态函数(曲线) 2.正态分布的特征 服从正态分布的变量的频数分布由μ、σ完全决定。 (1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以x μ=为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。 (2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。 (二)标准正态分布 1.标准正态分布是一种特殊的正态分布,标准正态分布的0=μ,12 =σ ,通常用u (或Z )表示服从标准正态分布的变量,记为u ~N (0,2 1)。

2.标准化变换:σ μ -= X u ,此变换有特性:若X 服从正态分布),(2 σμN ,则u 就服 从标准正态分布,故该变换被称为标准化变换。 3. 标准正态分布表 标准正态分布表中列出了标准正态曲线下从-∞到u 范围内的面积比例()u Φ。 (三)正态曲线下面积分布 1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同),(21X X 范围内正态曲线下的面积可用公式3-2计算。 )()(21 12) 22(2)(2 1 u u dx e D X X X Φ-Φ==--? σμπ σ (3-2) 1212X X u u μ μ σ σ --= = 其中, , 。 2.几个重要的面积比例 X 轴与正态曲线之间的面积恒等于1。 正态曲线下,横轴区间σμ±内的面积为68.27%,横轴区间σμ64.1±内的面积为90.00%,横轴区间σμ96.1±内的面积为95.00%,横轴区间σμ58.2±内的面积为99.00%。 (四)正态分布的应用 某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。 1. 估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式(3-2)估计任意取值12(,)X X 范围内频数比例。 2. 制定参考值范围 (1)正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。 (2)百分位数法 常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应熟练掌握。 表3-1 常用参考值范围的制定 概率 (%) 正态分布法 百分位数法 双侧 单 侧 双侧 单侧 下 限 上 限 下 限 上 限 90 955~P P 10P 90P 95 S X 96.1± S X 64.1- S X 64.1+ 5.975.2~P P 5P 95P 99 S X 58.2± S X 33.2- S X 33.2+ 5.995.0~P P 1P 99P 3. 质量控制:为了控制实验中的测量(或实验)误差,常以S X 2±作为上、下警戒值,以S X 3±作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。 4. 正态分布是许多统计方法的理论基础。t 检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布

年金终值和年金现值的计算

六、年金终值和年金现值的计算 (一)年金的含义 年金是指一定时期内每次等额收付的系列款项。通常记作 A 。具有两个特点:一是 金额 相等;二是时间间隔相等。也可以理解为年金是指等额、 定期的系列收支。在现实工作中年 金应用很广泛。例如,分期付款赊购、分期偿还贷款、发放养老金、分期支付工程款、每年 相同的销售收入等,都属于年金收付形式。 老师手写板: 1 年 (二)年金的种类 年金按其每次收付款项发生的时点不同,可以分为四种: 普通年金(后付年 金):从第一期开始每期期末收款、付款的年金。 预付年金(先付年金、即付年金):从第一期开始每期期初收款、付款的年金。与普通 年金的区别仅 在于付款时间的不同。 递延年金:从第二期或第二期以后开始每期期末收付的年金。 永续年金:无限期的普通年金。 注意:各种类型年金之间的关系 (1)普通年金和即付年金 区别:普通年金的款项收付发生在每期期末,即付年金的款项收付发生在每期期初。 联系:第一期均 出现款项收付。 【例题1 ?单选题】2007年1月1日,甲公司租用一层写字楼作为办公场所,租赁期限 3年。该租金 有年金的特点,属于( 它们都是普通年金的特殊形式。它们 与普通年金的共同点有:它们都是每期期末发生的。区别在于递延年金前面有一个递延期, 也就是前面几期没 有现金流,永续年金没有终点。 在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的 转化形式。 【提示】 1.这里的年金收付间隔的时间不一定是 1年,可以是半年、一个季度或者一个月等。 年金: 100万 200万 300万 3年,每年12月31日支付租金10万元,共支付 (2010年考试真题) A .普通年金 B .即付年金 C .递延年金 【答案】A 【解析】每年年末发生等额年金的是普通年金。 (2)递延年金和永续年金 二者都是在普通年金的基础上发展演变起来的, D .永续年金 A A A A A A ②年、月、半年、2年 ①A

excel中关于终值和现值的计算

利用Excel计算终值、现值、年金、期限、收益率与久期 利用Excel中的5个财务函数FV、PV、PMT、NPER与RATE,可以相应地依次快捷计算终值FV、现值PV、年金金额(或每期现金流金额)A、年限(或期数)n 与收益率(每一期的复利率)r。这5个财务函数FV、PV、PMT、NPER与RATE,都有5个自变量。这5个自变量的排列次序,依次为: FV(Rate,Nper,Pmt,Pv,Type); PV(Rate,Nper,Pmt,Fv,Type); PMT(Rate,Nper,Pv,Fv,Type); NPER(Rate,Pmt,Pv,Fv,Type); RATE(Nper,Pmt,Pv,Fv,Type)。 计算这5个财务函数时,都要相应地按上述这些函数中5个自变量的排列次序,输入这5个自变量的值。其中最后一个自变量Type,只取值0或1:如果现金流发生在年末(或期末),Type就取值0或忽略;如果现金流发生在年初(或期初),Type就取值1。 当其中的自变量Pmt取为零时,计算机就自然默认为处理的是简单现金流量问题(可以认为这是一个广义的年金问题,只是其中的年金为0):只有一开始的现金流入量Pv,或者最后的现金流入量Fv。 当其中的自变量Pv或Fv取为零时,计算机就自然默认为处理的是年金问题。计算年金问题时,其中的自变量Pv或Fv都可以不取为零:Pv是指一开始的现金流入量,Fv是指最后的现金流入量。例如, RATE(36,4,-100,100,0)=4%, 其中:第1个自变量Nper是指收付年金的次数,第2个自变量Pmt是指年金流入的金额,第3个自变量Pv是指一开始的现金流入量,第4个自变量Fv是指最后的现金流入量,最后一个自变量Type取0是指年金都是在期末流入的。 以下再详细说明第1个财务函数的计算方法。其余财务函数的计算方法类似。 第1个财务函数FV(Rate,Nper,Pmt,Pv,Type)是计算终值FV,计算时:先输入第1个自变量“贴现率(每一期的复利率)Rate”的值r;再输入第2个自变量“年限(或期数)Nper”的值n;接着再输入第3个自变量“年金(或每期现金流金额)Pmt”的值A,如果计算的不是年金问题,而只是计算现在一

相关文档