文档库 最新最全的文档下载
当前位置:文档库 › 磷元素的测定方法

磷元素的测定方法

磷元素的测定方法
磷元素的测定方法

5.1概述

土壤全磷(P)量是指土壤中各种形态磷素的总和。我国土壤全磷的含量(以P,g·kg-1表示)从第二次全国各地土壤普查资料来看[1],大致在0.44-0.85g·kg-1范围内,但最高可达1.8g·kg-1,低的只有0.17g·kg-1。南方酸性土壤全磷含量一般低于0.56g·kg-1;北方石灰性土壤全磷含量则较高。

土壤全磷含量的高低,受土壤母质、成土作用和耕作施肥的影响很大。一般而言,基性火成岩的风化母质含磷多于酸性火成岩的风化母质。我国黄土母质全磷含量是比较高的,一般均在0.57—0.70g·kg-1之间。另外,土壤中磷的含量与土壤质地和有机质含量也有关系,粘土含磷多于砂性土,有机质丰富的土壤含磷亦较多。磷在土壤剖面中的分布,耕作层含磷量一般高于底土层。

大量资料的统计结果表明,我国不同地带的气候区的土壤其速效磷含量与全磷含量呈正相关的趋势。在全磷含量很低的情况下(P 0.17—0.44g·kg-1以下),土壤中有效磷的供应也常感不足,但是全磷含量较高的土壤,却不一定说明它已有足够的有效磷供应当季作物生长的需要,因为土壤中磷大部分成难溶性化合物存在。例如我国大面积发育于黄土性母质的石灰性土壤,全磷含量均在0.57—0.79g·kg-1之间,高的在0.87g·kg-1以上,但由于土壤中大量游离碳酸钙的存在,大部分磷成为难溶性的磷酸钙盐,能被作物吸收利用的有效磷含量很低,施用磷肥有明显的增产效果。因此从作物营养和施肥的角度来看,除全磷分析外,特别要测定土壤中有效磷含量,这样才能比较全面地说明土壤磷素肥力的供应状况。

土壤中磷可以分为两大类,即无机磷和有机磷。矿质土壤以无机磷为主,有机磷约占全磷的20—50%。土壤有机磷是一个很复杂的问题,许多组成和结构还不清楚,大部分有机磷,以高分子形态存在,有效性不高,这个问题一直是土壤学中一个重要的研究课题。

土壤中无机磷以吸附态和钙、铁、铝等的磷酸盐为主,土壤中无机磷存在的形态受pH的影响很大。石灰性土壤中以磷酸钙盐为主,酸性土壤中则以磷酸铝和磷

酸铁占优势。中性土壤中磷酸钙、磷酸铝和磷酸铁的比例大致为1∶1∶1。酸性土壤特别是酸性红壤中,由于大量游离氧化铁存在,很大一部分磷酸铁被氧化铁薄膜包裹成为闭蓄态磷,磷的有效性大大降低。另外,石灰性土壤中游离碳酸钙的含量对磷的有效性影响也很大,例如磷酸一钙、磷酸二钙、磷酸三钙等随着钙与磷的比例增加,其溶解度和有效性逐渐降低。因此进行土壤磷的研究时,除对全磷和有效磷测定外,很有必要对不同形态磷进行分离测定,磷的分级方法就是用来分离和测定不同形态磷的。

5.2.1 土壤样品的分解和溶液中磷的测定

土壤全磷测定要求把无机磷全部溶解,同时把有机磷氧化成无机磷,因此全磷的测定,第一步是样品的分解,第二步是溶液中磷的测定。

5.2.1.1土壤样品的分解样品分解有Na

2CO

3

熔融法,HClO4—H2SO4消煮

法,HF—HClO

4消煮法等。目前HClO

4

—H

2

SO

4

消化法应用最普遍,因为操作手续方

便,又不需要白金坩埚,但HClO

4—H

2

SO

4

消化法不及Na

2

CO

3

熔融法样品分解完全。

但其分解率已达到全磷分析的要求。Na

2CO

3

熔融法虽然操作手续较繁,但样品分

解完全,仍是全磷测定分解的标准方法。目前我国已将NaOH碱熔钼锑抗比色法列为国家标准法。样品可在银或镍坩埚中用NaOH熔融是分解土壤全磷(或全钾)比较完全和简便方法。

5.2.1.2 溶液中磷的测定溶液中磷的测定,一般都用磷钼蓝比色法。多年来,人们对钼蓝比色法进行了大量的研究工作,特别是在还原剂的选用上有了很大改革。最早常用的还原剂有氯化亚锡、亚硫酸氢钠等,以后采用有机还原剂如1,2,4-胺基萘酚磺酸,硫酸联氨,抗坏血酸等,目前应用较普遍的是钼锑抗混合试剂。

还原剂中的氯化亚锡的灵敏度最高,显色快,但颜色不稳定。土壤速效磷的速测方法仍多用氯化亚锡作还原剂,抗坏血酸是近年被广泛应用的一种还原剂,它的主要优点是生成的颜色稳定,干扰离子的影响较小,适用范围较广,但

显色慢,需要加温。如果溶液中有一定的三价锑存在时,则大大加快了抗坏血酸的还原反应,在室温下也能显色。

溶液中磷的测定加钼酸铵于含磷的溶液中,在一定酸度条件下,溶液中的正磷酸与钼酸络合形成磷钼杂多酸。

H3PO4+12H2MoO4=H3[PMo12O40]+12H2O

杂多酸是由两种或两种以上简单分子的酸组成的复杂的多元酸,是一类特

殊的配合物。在分析化学中,主要是在酸性溶液中,利用H

3PO

4

或H

4

SiO

4

等作为

原酸,提供整个配合阳离子的中心体,再加钼酸根配位使生成相应的12-钼杂多酸,然后再进行光度法、容量法或重量法测定。

磷钼酸的铵盐不溶于水,因此在过量铵离子存在下,同时磷的浓度较高时,

即生成黄色沉淀磷钼酸铵(NH

4)

3

[PMo

12

O

40

],这是质量法和容量法的基础。当少

量磷存在时,加钼酸铵则不产生沉淀,仅使溶液略现黄色[PMo

12O

40

]3-,其吸光

度很低,加入NH

4VO

3

使生成磷钒钼杂多酸。磷钒钼杂多酸是由正磷酸、钒酸和钼

酸三种酸组合而成的杂多酸,称为三元杂多酸H

3(PMo

12

O

40

)·nH

2

O,根据这个化学

式,可以认为磷钒钼酸是用一个钒酸根取代12-钼磷酸分子中的一个钼酸的结果。三元杂多酸比磷钼酸具有更强的吸光作用,亦即有较高的吸光度,这是钒钼黄法测定的依据,但是在磷较少的情况下,一般都用更灵敏的钼蓝法,即在适宜试剂浓度下,加入适当的还原剂,使磷钼酸中的一部分Mo6+ 离子被还原为Mo5+,生成一种叫做“钼蓝”的物质,这是钼蓝比色法的基础。蓝色产生的速度、强度、稳定性等与还原剂的种类、试剂的适宜浓度特别是酸度以及干扰离子等有关。

还原剂的种类对于杂多酸还原的产物——钼蓝及其机理,虽然有很多人作过研究,但意见不一致,目前一般认为:杂多酸的蓝色还原产物是由Mo6+ 和Mo5+ 原子构成,仍维持12-钼磷酸的原有结构不变,且Mo5+ 不再进一步被还原。

一般认为磷钼杂多蓝的组成可能为H

3PO

4

·10MoO

3

·Mo

2

O

5

或H

3

PO

4

·8MoO

3

·2Mo

2

O

5

说明杂多酸阳离子中有两个或四个Mo6+ 被还原到Mo5+ (有的书上把磷钼杂多

蓝的组成写成H

3PO

4

·10MoO

3

·2MoO

2

,这样钼原子似乎已被还到四价,这是不大可

能的)。

与钒相似,锑也能与磷钼酸反应生成磷锑钼三元杂多酸,其组成为P∶Sb∶Mo=1∶2∶12,此磷锑钼三元杂多酸在室温下能迅速被抗坏血酸还原为蓝色的络合物,而且还原剂与钼试剂配成单一溶液,一次加入,简化了操作手续,有利于测定方法的自动化。

H 3PO

4

、H

3

AsO

4

和H

4

SiO

4

都能与钼酸结合生成杂多酸,在磷的测定中,硅的干

扰可以控制酸度抑制之。磷钼杂多酸在较高酸度下形成(0.4—0.8mol.L-1, H+),而硅钼酸则在较低酸度下生成;砷的干扰则比较难克服,所幸,土壤中砷的含量很低,而且砷钼酸还原速度较慢,灵敏度较磷低,在一般情况下,不致影响磷的测定结果。但是在使用农药砒霜时,要注意砷的干扰影响,在这种情况下,在未加钼试剂之前将砷还原成亚砷酸而克服之。

在磷的比色测定中,三价铁也是一种干扰离子,它将影响溶液的氧化还原势,抑制蓝色的生成。在用SnCl2作还原剂时,溶液中的Fe3+ 不能超过20mg·kg-1,因此过去全磷分析中,样品分解强调用Na2CO3熔融,或HClO4消化。因为Na2CO3熔融或HClO4消化,进入溶液的Fe3+ 较少。但是用抗坏血酸作还原剂,Fe3+ 含量即使超过400mg·kg-1,仍不致产生干扰影响,因为抗坏血酸能与Fe3+ 络合,保持溶液的氧化还原势。因此磷的钼蓝比色法中,抗坏血酸作为还原剂已广泛被采用。 钼蓝显色是在适宜的试剂浓度下进行的。不同方法所要求的适宜试剂浓度不同。所谓试剂的适宜浓度是指酸度,钼酸铵浓度以及还原剂用量要适宜,使一定浓度的磷产生最深最稳定的蓝色。磷钼杂多酸是在一定酸度条件下生成的,过酸与不足均会影响结果。因此在磷的钼蓝比色测定中酸度的控制最为重要。不同方法有不同的酸度范围。兹将常用的三种钼蓝法的工作范围和各种试剂在比色液中的最终浓度列于表5—1。

表5—1 三种钼蓝法的工作范围和试剂浓度

5.3土壤中速效磷的测定

5.3.1 概述

了解土壤中速效磷供应状况,对于施肥有着直接的指导意义。土壤中速效磷的测定方法很多。有生物方法,化学速测方法,同位素方法,阴离子交换树脂方法等。

在测定土壤有效磷之前,先了解一些名词的涵义是重要的。文献中常常用土壤中有效磷含量,土壤中磷的有效性,“磷位”,磷素供应的强度因素,容量因素,速率等。弄清楚这些名词,对土壤有效磷的提取是有帮助的。

土壤中有效磷含量是指能为当季作物吸收的磷量,因此有效磷的测定生物方法是最直接的,即在温室中进行盆钵试验,测定在一定生长时间内作物从土壤吸收的磷量。

土壤中磷的有效性是指土壤中存在的磷能为植物吸收利用的程度,有的比较容易,有的则较难。这里就涉及到强度、容量、速率等因素。

土壤固相磷←→溶液中磷—→植物从溶液吸收磷

植物吸收磷,首先决定于溶液中磷的浓度(强度因素),溶液中磷的浓度高,则植物吸收的磷就多。当植物从溶液中吸收磷时,溶液中磷的浓度降低,则固相磷不断补给以维持溶液中磷的浓度不降低,这就是土壤的磷供应容量。

固相磷进入溶液的难易,或土壤吸持磷的能力,即所谓“磷

位”(1/2pCa+pH

2PO

4

),它与土壤水分状况用pF表示相似,即用能量概念来表示土

壤的供磷强度。土壤吸持磷的能力愈强,则磷对植物的有效性愈低。

土壤有效磷的测定,生物的方法被认为是最可靠的。目前用同位素32P稀释法测得的“A”值被认为是标准方法。阴离子树脂方法有类似植物吸收磷的作用,即树脂不断从溶液中吸附磷,是单方向的,有助于固相磷进入溶液,测出的结果也接近“A”值。但是用得最普遍的是化学速测方法。化学速测方法即用提取剂提取土壤中的有效磷。

5.3.4酸性土壤速效磷的测定方法A

——0.03mol·L-1 NH4F—0.025mol·L-1 HCl法[3]

5.3.4.1 方法原理NH4F—HCl法主要提取酸溶性磷和吸附磷包括大部分磷酸钙和一部分磷酸铝和磷酸铁,因为在酸性溶液中氟离子能与三价铝离子和铁离子形成络合物,促使磷酸铝和磷酸铁的溶解:

3NH4F+3HF+AlPO4—→H3PO4+(NH4)3AlF6

3NH4F+3HF+FePO4—→H3PO4+(NH4)3FeF6

溶液中磷与钼酸铵作用生成磷钼杂多酸,在一定酸度下被SnCl

2

还原成磷钼蓝,蓝色深浅与磷的浓度成正比。

5.3.4.2 试剂

(1)0.5mol·L-1盐酸溶液:20.2mL浓盐酸用蒸馏水稀释至500mL。

(2)1mol·L-1氟化铵溶液:溶解NH

4

F理力争37g于水中,稀释至1L,贮

存在塑料瓶中。

(3)浸提液:分别吸取1.0mol·L-1NH

4

F溶液15mL和0.5mol·L-1HCl溶液

25mL,加入到460mL蒸馏水中,此即0.03mol·L-1NH

4

F—0.025mol·L-1HCl溶液。

(4)钼酸铵试剂:溶解钼酸铵(NH

4)

6

Mo

7

O

24

·4H

2

O 15g于350mL蒸馏水中,

徐徐加入10mol·L-1HCl350mL,并搅动之,冷却后,加水稀释至1L,贮于棕色瓶中。

(5)25g·L-1氯化亚锡甘油溶液:溶解SnCl

2·H

2

O 2.5g于10mL浓盐酸中,

待SnCl

2

全部溶解溶液透明后,再加化学纯甘油90mL,混匀,贮存于棕色瓶中(注1)。

(6)50μg·mL-1磷(P)标准溶液参照土壤全磷测定方法一。吸取50μg·mL-1P 溶液50mL于250mL容量瓶中,加水稀释定容,即得10μg·mL-1P标准溶液。

5.3.4.3 操作步骤称1.000g土样,放入20mL试管中,从滴定管中加入浸提液7mL,试管加塞后,摇动1min,用无磷干滤纸过滤。如果滤液不清,可将滤液倒回滤纸上再过滤,吸取滤液2mL(注2),加蒸馏水6mL和钼酸铵试剂2mL,混匀后,加氯化亚锡甘油溶液1滴,再混匀。在5—15分钟内(注3) ,在分光光度计上用700nm波长进行比色(注4)。

标准曲线的绘制分别准确吸取10μg·mL-1P标准溶液2.5、5.0、10.0、15.0、20.0、和25.0mL,放入50mL容量瓶中,加水至刻度,配成0.5、1.0、2.0、3.0、4.0、5.0、μg·mL-1P的系列标准溶液。

分别吸取系列标准溶液各2mL,加水6mL和钼试剂2mL再加1滴氯化亚锡甘油溶液进行显色,绘制标准曲线。

表5—3 磷的系列标准溶液(NH4F—HCl法)

* 包括2mL提取剂。

5.3.4.4 结果计算

土壤速效磷(P)含量(mg·kg-1)=ρ×10×7/(m×2×103)×1000=ρ×35式中:ρ—从标准曲线上查得的磷的质量浓度,μg·mL-1P;

10—显色时定容体积,mL;

7—浸提剂的体积,mL;

2—吸取滤液的体积,mL;

m—风干土质量,g;

103—将μg换算成mg;

1000—换算成每kg含P质量。

5.3.4.5 注释

注1.氯化亚锡甘油溶液远比水溶液稳定,可贮存半年以上。但每隔一、二月后,仍应用标准磷溶液检查一下,视其已否失效。

注2.加入钼酸铵试剂量要准确,因为这里显色溶液的体积较小(10mL),钼酸铵试剂量的多少,容易改变溶液的酸度,影响显色。

注3. 用SnCl2还原剂的钼蓝法,颜色不够稳定,5—15min内颜色最为稳定,比色应在此时间内进行。

注4.在显色过程中氟化物可能产生干扰影响,可以加硼酸克服之,但在大多数情况下(除非少数酸性砂土)并无此必要

5.4土壤无机磷形态的分级测定

土壤中磷分为无机磷和有机磷两大类。无机磷中又可分磷酸钙、磷酸铝、磷酸铁和闭蓄态磷酸盐,即为氧化物包裹的磷酸铝和磷酸铁。这些磷酸盐在不同的土壤中存在的比例不同,石灰性土壤中以磷酸钙盐为主,而强酸性土壤中则以

磷酸铁占优势。在系统分析中NH

4F和NaOH处理必须在H

2

SO

4

处理之前,因为硫

酸不仅溶解磷酸钙,也溶解大量的磷酸铝和磷酸铁。

土壤无机磷的分级,过去虽有很多人研究,但比较系统和完整的方法,由张守敬和Jackson于1957年提出,并在六十年代又作了许多改正,在酸性或中性土壤上已成为研究土壤无机形态组成和转化的主要方法;但是对主要以磷酸钙形态存在的石灰性土壤中无机磷的分级,由于该法不能区分各种磷酸钙盐,因此具有一定的缺点。七十年代,对磷酸钙的分级虽有所改进,但仍不够完善,所以到目前为止,张守敬和Jackson的方法仍然是国际上比较广泛应用的方法。八十年代末蒋柏藩、顾益初(1989),研究了石灰性土壤无机磷分级体系;顾益初、蒋柏藩,1990,并提出了石灰性土壤无机磷分级的测定方法,它的特点是将石灰性土壤中的磷酸钙盐分成三种类型:(1)磷酸二钙型;(2)磷酸八钙型;(3)磷灰石型。并用混合浸提剂浸提磷酸铁盐。磷酸铝盐和闭蓄态磷酸盐的浸提方法与张守

敬的土壤磷的分级体系同。新体系的三级磷酸钙盐之和相当于张守敬的分级体系

的NH

4Cl和H

2

SO

4

溶性磷,非闭蓄态磷酸铁盐与闭蓄态磷酸盐之和,在这两个体

系中也基本相当。但在张守敬的体系中,磷酸钙盐绝大部分都进入H

2SO

4

浸提液

一级,而非闭蓄态的磷酸铁盐大多被混入闭蓄态磷酸盐之中。

5.4.1酸性中型土壤无机磷形态的分级测定

5.4.1.1 方法原理土壤无机形态磷分级测定方法的基本原理,是利用不同

化学浸提剂的特性,将土壤中各种形态的无机磷酸盐加以逐级分离。土壤样品首先用1mol·L-1 NH

4

Cl浸提,提出的部分为水溶性磷,断键的和结合松驰的磷。除新施磷肥的土壤外,在一般自然土壤中,这部分磷量很少,通常不必测定这一

级浸出液中的磷。第二级用0.5mol·L-1NH

4

F浸提,所浸提剂在pH8.2的条件下,F-与Al3+形成配合物,而与Fe3+ 的配合能力很弱,这样使Al-P(铝结合的磷酸盐)基本上可以与Fe-P(铁结合的磷酸盐)分离。第三级用0.1mol·L-1 NaOH浸提,由于Fe-P与NaOH的水解反应,使Fe-P中的磷酸根转化而释放。继而用0.3mol· L-1柠檬酸钠和连二亚硫酸钠溶液浸提O-P(闭蓄态磷酸盐),这部分磷是被氧化铁胶膜所包蔽,利用连二亚硫酸钠强烈的还原作用,使包蔽的氧化铁还原成亚铁,继而被柠檬酸钠配合,使氧化亚铁包裹不断剥离,而浸提出全部闭蓄态磷。以上Al-P、Fe-P和O-P的浸提都是在碱性条件下进行的,基性的Ca-P(钙

结合的磷酸盐)几乎不被溶解。此后,土壤再用0.5mol·L-1 H

2SO

4

浸提,在这一

强酸性溶液中,Ca-P(包括氟磷灰石)绝大部分被浸提出来。

5.4.1.2 主要仪器往复振荡机;电动离心机(100mL离心管,6000r·min-1);电动搅拌机;恒温水浴;pH计;分光光度计或比色计。

5.4.1.3 试剂

(1)1mol·L-1 NH

4Cl溶液:称取NH

4

Cl(化学纯)53.3g溶于约800mL水中,

稀释至1L。

(2)0.5mol·L-1 NH

4F溶液:称取NH

4

F(化学纯)18.5g溶于约800mL水中,

稀释至990mL,用4mol·L-1 NH

4

OH调至pH8.2(用pH计测定),再稀释至1L。

(3)0.1mol·L-1NaOH溶液:称NaOH(化学纯)4.0g溶于约800mL水中,冷却后稀释至1L,标定。

(4)0.30mol·L-1柠檬酸钠溶液:称柠檬酸钠(Na

3C

6

H

5

O

7

·2H

2

O,CP)88.2g

溶于约900mL热水中,冷却后稀释至1L。

(5)连二亚硫酸钠(Na

2S

2

O

4

·2H

2

O,俗称保险粉)极不稳定,易氧化和分解,

受潮或露置空气中会失效,注意防湿密封贮存于阴凉处。

(6)0.5mol·L-1 (1/2H

2SO

4

)溶液:加浓1/2H

2

SO

4

15mL于约800mL水中,冷

却后稀释至1L,标定。

(7)0.5mol·L-1 NaOH溶液;称NaOH(化学纯)20g溶于约800mL水中,冷却后稀释至1L,标定。

(8)饱和NaCl溶液:称NaCl(化学纯)400g溶于1L水中,待溶解至饱和后过滤。

(9)三酸混合液:2H

2SO

4

∶HClO

4

∶HNO

3

以1∶2∶7的体积比混合。

(10)0.8mol·L-1H

3BO

3

溶液:称H

3

BO

3

(分析纯)49.0g溶于约900mL热水中,

冷却后稀释至1L。

其余试剂同5.2.2.3试剂中6.7。

5.4.1.4 操作步骤

(1)Al-P的测定:称取通过100目的风干土样1.00××g,置于100mL

离心管中,加入1.0mol·L-1NH

4

Cl溶液50mL,在20—25℃下振荡30min,离心(约

3500r·min-1,8min),弃去上层清液(必要时也可以测定)。再在NH

4

Cl浸提过的

土样中加入0.5mol·L-1NH

4

F(pH8.2)溶液50mL,在20—25℃下振荡1h,取出离

心(约3500r·min-1,8min)将上层清液倾入小塑料瓶中。吸取上述浸出液20mL于

50mL容量瓶中,加入0.8mol·L-1H

3BO

3

溶液20mL,再加2,6-二硝基酚指示剂2

滴,用稀HCl和稀NH

4

OH溶液调节pH至待测液呈微黄,用钼锑抗法测定〔同5.2.2.4,2〕,同时作空白试验。

工作曲线的绘制:由于加入H

3BO

3

溶液可以完全消除浸出液中F-的干扰,因

此在磷标

准系列溶液中不必另加NH

4

F和H3BO3溶液。工作曲线的绘制同5.2.2.4,3。

(2)Fe-P的测定 浸提过Al-P的土样用饱和NaCl溶液洗两次(每次25mL,离心后弃去),然后加入0.1mol·L-1 NaOH溶液50mL,在20—25℃振荡2h,静置16h,再振荡2h,离心(约4500r·min-1,10min)。倾出上层清液于三角瓶中,

并在浸出液中加浓H2SO4(在结果计算时应考虑加入H

2SO

4

的体积)1.5mL,摇匀后

放置过夜,过滤,以除去凝絮的有机质。吸取适量滤液(注1),用钼锑抗比色测定磷〔同5.2.2.4,2.3〕。

(3)0-P的测定浸提液Fe-P的土样用饱和NaCl溶液洗两次(每次25mL,离心后弃去),然后加0.3mol·L-1柠檬酸钠溶液40mL,充分搅拌碎土块,再加连二亚硫酸钠1.0g,放入80—90℃水浴中,待离心管内溶液温度和水浴温度平衡后,用电动搅拌机搅拌15min,再加入0.5mol·L-1 NaOH溶液10mL(连续搅拌10min),冷却后离心(约4500r·min-1,10min),将上层清液倾入100mL容量瓶中。土样用饱和NaCl溶液洗两次(每次20mL),离心后上层清液一并倒入容量瓶中,用水定容。吸取上述浸出液10mL于50mL三角瓶中,加入三酸混合液10mL,

瓶口放一小漏斗,在电炉上消煮,逐步升高温度,待HNO

3和HClO

4

全部分解,有

H 2SO

4

回流时即可取下。冷却后成白色固体,加入50mL水,煮沸,使全部溶解后,

用0.1mol·L-1(1/2H

2SO

4

)溶液洗入100mL容量瓶中,定容。吸取30mL溶液于50mL

容量瓶中,用钼锑抗比色法测定磷〔同5.2.2.4,2、3〕,同时做空白试验。

(4)Ca-P的测定 浸提过0-P的土样加入0.5mol·L-1(1/2H

2SO

4

)溶液50mL,

在20—25℃振荡1h,离心,倾出上层清液于三角瓶中。吸取适量浸出液于50mL 容量瓶中(注1) ,用钼锑抗比色法测定磷〔同5.2.2.4(2)(3)〕。

5.4.1.5 结果计算(同5.3.3.5)

5.4.1.6 注释

注1.根据经验,一般自然土壤在各级磷比色时,浸出液的吸取量(mL)大致如下(供参考):

5.5土壤有机磷的分离测定[3]

土壤有机磷的测定主要有两类方法。第一类用酸和碱多次浸提;第二类是灼烧后再用酸浸提。前者手续烦琐,后者较为简便。在例行分析中以灼烧法使用较为普遍。

5.5.1 方法原理

土壤经550℃灼烧,使有机磷化合物转化为无机态磷,然后与未经灼烧的同

一土样,分别用0.2mol·L-1(1/2 H

2SO

4

)溶液浸提后测定磷量,所得结果的差值

即为有机磷。

5.5.2 主要仪器高温电炉;电烘箱;分光光度计或比色计。

5.5.3 试剂

0.2mol·L-1(1/2 H

2SO

4

)溶液:取浓H

2

SO

4

6mL溶解于1000mL水中,标定。

5.5.4 操作步骤称取通过60目的风干土壤样品1.0××g置于15mL瓷坩

埚中,在550℃高温电炉内灼烧1h,取出冷却,用0.2mol·L-1(1/2 H

2SO

4

)溶液

100mL将土样洗入200mL容量瓶中。另外称取1.0××g同一样品于另一个200mL

容量瓶中,加入0.2mol·L-1(1/2 H

2SO

4

)溶液100mL。

两瓶的溶液摇匀后,分别将瓶塞松放在瓶口上,一起放入40℃烘箱内保温1h。取出,冷却至室温,加水定容,过滤。

吸取两瓶的滤液各10.00mL(含5—25μgP)分别放入50mL容量瓶中,用水稀释至约30mL,用钼锑抗比色法测定磷(同5.2.2.4)。

5.5.5 结果计算(同5.3.3.5)

分别算出灼烧与未灼烧土壤的含磷量,然后经灼烧的结果减去未灼烧的结果,其差值即为有机磷含量。

磷的测定方法

全磷的测定 仪器:分光光度计,2KVA 方电炉;3KVA 调压变压器。 试剂: (1)浓H 2SO 4(二级) (2)HClO 4(二级,70-72%)。 (3)钼锑贮存液 浓H 2SO 4(二级)153ml 缓慢地倒入约400ml 水中,搅拌,冷却。10g 钼酸铵(二级)溶解于约60℃的300ml 水中,冷却。然后将H 2SO 4溶液缓缓倒入钼酸铵溶液中,再加入100ml0.5%酒石酸锑钾(KSbOC 4H 4O 6?2 1H 2O ,二级)溶液,最后用水稀释至1升,避光贮存。此贮存液含1%钼酸铵,5.5N H 2SO 4。 (4)钼锑抗显色剂 1.50g 抗坏血酸(C 6H 8O 6,左旋,旋光度+21~+22°,二级)溶于100ml 钼锑贮存液中。此液随配随用,有效期一天。 (5)二硝基酚指示剂 0.2g2,6-二硝基酚或2,4-二硝基酚[C 6H 3OH(NO 2)2]溶于100ml 水中。 (6)5ppmP 标准溶液 0.4390gKH 2PO 4(二级,105℃烘过2小时)溶于200ml 水中,加入5ml 浓H 2SO 4,转入1升容量瓶中,用水定容。此为100ppmP 标准溶液,可以长期保存。取此溶液准确稀释20倍,即为5ppmP 标准溶液,此溶液不宜保存。 实验步骤: (1)待测液的准备 称取通过100目的烘干土壤样品1.0xxxg 置于50ml 三角瓶中,以少量水湿润,加入浓H 2SO 4 8ml ,摇动后(最好放置过夜)再加入70-72%的HClO 4 10滴,摇匀,瓶口上放一小漏斗,至于电炉上加热消煮至瓶内溶液开始转白后,继续消煮20分钟,全部消煮时间为45-60分钟。将冷却后的消煮液用水小心地洗入100ml 容量瓶中,冲洗时用水应少量多次。轻轻摇动容量瓶,待完全冷却后,用水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100ml 三角瓶中。同时做试剂空白实验。 (2)测定 吸取上述待测液2-10ml (含5-25P g μ)于50ml 容量瓶中,用水稀释至约30ml ,加二硝基酚指示剂2滴,用稀NaOH 溶液和稀H 2SO 4溶液调节pH 至溶液刚呈微黄色。然后加入钼锑抗显色剂5ml ,摇匀,用水定容。在室温高于15℃的条件下放置30分钟后,以空白试验溶液为参比液调零点,读取吸收值,在工作曲线上查出显色液P ppm 数。颜色在8小时内可保持稳定。 (3)工作曲线的绘制 分别吸取5ppmP 标准溶液0,1,2,3,4,5,6ml 于50ml 容量瓶中,加水稀释至约30ml ,加入钼锑抗显色剂5ml ,摇匀,定容。即得0,0.1,0.2,0.3,0.4,0.5,0.6ppm P 标准系列溶液,与待测溶液同时比色,读取吸收值。在各放个坐标纸上以吸收值为纵坐标,P ppm 数为横坐标,绘制成工作曲线。 结果计算: 全P ,%=10010 ppm 6????W P 分取倍数显色液体积显色液 式中 显色液Pppm ——从工作曲线上查得的Pppm 数; 显色液体积——50ml ; 分取倍数——消煮溶液定容体积/吸取消煮溶液体积; 6 10——将g μ换算成g ; W ——烘干土样重(g )。

磷的测定方法

磷的测定方法 1.原理 食物中的有机物经酸氧化分解,使磷在酸性条件下与钼酸铵结合生成磷钼酸铵。此化合物经对苯二酚、亚硫酸钠还原成兰色化合物--钼蓝。用分光光度计在波长660nm处测定钼蓝的吸光值,以测定磷的含量。反应式为: H3PO4+12(NH4)3MoO4+21HNO3→(NH4) 3PO4·12MoO3+21NH4NO3+12H2O 2.适用范围 依据中华人民共和国国家标准:GB12393-90,此方法适用于所有食品及保健品中磷元素含量的测定。 3.仪器 722可见分光光度计 4.试剂 (1)硝酸(G.R),高氯酸(G.R) 硫酸(A.R) (2)混合酸消化液:硝酸+高氯酸按4+1混合 (3) 15%(V/V)硫酸溶液:取15ml硫酸缓慢加入到80ml水中,并定容至100ml。

(4) 5%(W/V)钼酸铵溶液:取5g钼酸铵,用15%硫酸溶液稀释至100ml。 (5)对苯二酚溶液:取0.5g对苯二酚于100ml水中,溶解后加一滴浓硫酸。 (6) 20%(W/V)亚硫酸钠溶液(注:此溶液需在每次实验前临时配制):称取一定量的亚硫酸钠,用蒸馏水溶解即可。 (7)标准质控物:猪肝粉(国家标准物质研究中心提供),质控物需室温干燥保存。 (8)国家标准物质中心提供:磷标准储备溶液,浓度为1000μg/mL (9)标准中间液的配制:吸取1ml磷标准储备溶液,然后移入100ml容量瓶中,用去离子水定容至100ml ,浓度为10mg/L 5.操作步骤 5.1样品消化:实验操作需在无元素污染的环境中进行。 准确称取样品干样(0.3-0.7g左右),湿样(1.0g左右),饮料等其他液体样品 (1.0-2.0g左右),然后将其放入50ml消化管中, 加混酸15ml(油样或含糖量高的食品可多加些酸),过夜。次日,将消化管放入消化炉中,消化开始时可将温度调低(约130℃左右),然后逐步将温度调高(最

煤中磷的测定方法

煤中磷的测定方法 实 习 报 告 师傅:辛宇 实习人:黄泽龙 2011年2月

煤中磷的测定方法实习报告 一、煤中磷测定的意义 煤中磷是有害元素之一,在炼焦时煤中磷进入焦炭,炼铁时磷又从焦炭进入生铁,当其含量超过0.05%时就会使钢铁产生冷脆性,因此,磷含量是煤质的重要指标之一。 二、基本原理 煤中的磷主要以无机磷存在,如磷灰石[3Ca3(PO4)2CaF2],也有微量的有机磷。由于无机磷的沸点很高,(一般为1700℃以上),所以在煤灰化过程中磷不会挥发损失,而含量甚微的有机磷,虽然挥发,但对结果影响不大。国际标准和我国现行标准都采用还原磷钼酸分光光度法,其优点是,灵敏度高,结果可靠,实验简便快速,干扰元素易于分离和消除,它试用于微量磷的分析。 磷钼蓝的反应机理 在酸性溶液中正磷酸与钼酸作用生成磷钼酸,然后抗坏血酸还原成蓝色的磷钼酸络合物。其反应及磷钼蓝的组成,至今尚无统一的意见,其中的一种观点认为: H3PO4+12H2MoO4→H3[P(Mo3O10)4]+12H2O H3[P(Mo3O10)4]+4C6H8O6→(2Mo24MoO3)2H3PO4+4C6H6O6+4H2O 当磷含量较低时,其蓝色强度与磷含量成正比。 三、方法提要 将煤样灰化后用氢氟酸—硫酸分解,脱除二氧化硅,然后加入钼酸铵和抗坏血酸,生成磷钼蓝后,用分光光度计测定吸光度。 四、实验步骤 1、试样处理 煤样灰化:按GB/T212中规定的慢速灰化煤样,然后研细到全部通过0.1mm的筛子。 灰的酸解:准确称取0.05-1g(准确至0.0002g)于聚四氟乙烯(或铂)坩埚中,加硫酸2mL,氢氟酸5mL,放在电热板上缓慢加热蒸发(温度约

植株全氮、全磷、全钾的测定

植株全氮、全磷、全钾的测定 一、待测液的制备(H2SO4—H2O2消煮法) 二、植株全氮的测定(H2SO4—H2O2消煮,蒸馏法) 三、植株全磷的测定(H2SO4—H2O2消煮,钒钼黄比色法) 四、植株全钾的测定(H2SO4—H2O2消煮,火焰光度法 一、待测液的制备(H2SO4—H2O2消煮法) 1 H2SO4—H2O2消煮原理 植物样品在浓H2SO4溶液中,经过脱水、碳化、氧化等一系列的作用后,易分解的有机物则分解,然后再加入H2O2,H2O2在热的浓H2SO4溶液中会分解出新生态氧,具有强烈的氧化作用,可继续分解没被H2SO4破坏的有机物,使有机态氮全部转化为无机铵盐。同时,样品中的有机磷也转化为无机磷酸盐,故可用同一消煮液分别测定N、P、K(植株中K以离子态存在)。 2 主要仪器: 万分之一电子天平、0.5 mm筛、三角瓶(50ml)或消煮管、移液管(5、10ml)+吸耳球、弯颈小漏斗、消煮炉、吸管、漏斗、无磷钾滤纸、容量瓶(100ml) 2 试剂: 浓硫酸(GB T625):化学纯、比重1.84 30%H2O2(GB 6684):阴凉处存放 3 操作步骤 称取烘干、磨细的植物样品(过0.5 mm筛)0.19g,置于50ml三角瓶(或消煮管)底部(勿将样品粘附在瓶颈上),加浓硫酸5mL,摇匀(最好放置过夜),瓶口盖一弯颈小漏斗,在电炉上先缓缓加热,待浓硫酸分解冒大量白烟时再升高温度(在消煮炉上先250℃消煮—温度稳定后计时,时间约30min,待浓硫酸分解冒大量白烟时再升高温度至400℃)。消煮至溶液呈均匀的棕黑色时,取下三角瓶,稍冷后提起弯颈漏斗,滴加30%H2O210滴,并不断摇动三角瓶。再加热(微沸)约7-10 min,取下,稍冷后重复滴加30%H2O25~10滴,再消煮。如此反复进行3-5次,每次添加的H2O2应逐次减少,消煮至溶液呈无色或清亮后,再加热5-10min(以赶尽剩余的H2O2),取下三角瓶冷却,用少量水冲洗漏斗,洗液流入三角瓶中。将消煮液无损地洗入100 ml容量瓶中,用水定容,摇匀。过滤或放置澄清后供氮、磷、钾测定。 二、植株全氮的测定(H2SO4—H2O2消煮,蒸馏法) 1、方法原理 蒸馏过程的反应: (NH4)2SO4 + NaOH → Na2SO + 2NH3 + 2H2O NH3 + H2O → NH4OH NH4OH + H3BO3→ NH4·H2BO3 + H2O 滴定过程的反应: NH4·H2BO3 + H2SO4→(NH4)2SO4 + 2H3BO3 2、主要仪器、试剂 (1)主要仪器:万分之一电子天平、移液枪(2ml)、移液管(5、10ml)、三角瓶(50、150ml)、容量瓶(100、1000ml)、量筒、研钵、酸式滴定管、pH仪、定氮仪 (2)需用的试剂: 40%NaOH溶液(10mol/L氢氧化钠溶液):称取40g氢氧化钠(GB 629分析纯)溶于100ml水中 硫酸(GB 625—77):分析纯,0.005mol/L硫酸(将0.01mol/L硫酸标准溶液用水稀释一倍)或0.01mol/L盐酸标准溶液 0.02mol/L硫酸标准溶液:量取浓硫酸(C.R)2.83ml,加蒸馏水稀释至5000ml,此为0.02mol/L的(1/2H2SO4)标准溶液,然后用标准碱或硼砂标定之,将0.02mol/L的(1/2H2SO4)标准溶液用水稀释4倍。 硼酸—指示剂溶液:

总磷的测定方法

总磷的测定标准方法 钼酸铵分光光度法 GB 11893-89 1、主题内容与适用范围: 本标准规定了用过硫酸钾(或硝酸-高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。总磷包括溶解的、颗粒的、有机的和无机磷。本标准适用于地面水、污水和工业废水。取25mL试料,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。在酸性条件下,砷、铬、硫干扰测定。 2 原理: 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 3 试剂: 本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。 3.1 硫酸(H2SO4),密度为1.84g/mL。 3.2 硝酸(HNO3),密度为1.4g/mL。 3.3 高氯酸(HClO4),优级纯,密度为1.68g/mL。 3.4 硫酸(H2SO4),1+1。 3.5 硫酸,约c(1/2H2SO4)=1mo1/L:将27mL硫酸(3.1)加入到973mL水中。

3.6 氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至 1000mL。 3.7 氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至1000mL。 3.8 过硫酸钾,50g/L溶液:将5g过硫酸钾(K2S2O8)溶解干水,并稀释至100mL。 3.9 抗坏血酸,100g/L溶液:溶解10g抗坏血酸(C6H8O6)于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。 3.10 钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中。溶解0.35g酒石酸锑钾KSbC4H4O7· 1/2 H2O]于100mL水中。在不断搅拌下把钼酸铵溶液徐徐加到300mL硫酸(3.4)中,加酒石酸锑钾溶液并且混合均匀。此溶液贮存于棕色试剂瓶中,放在约4摄氏度处可保存二个月。 3.11 浊度一色度补偿液:混合两个体积硫酸(3.4)和一个体积抗坏血酸溶液(3.9)。使用当天配制。 3.12 磷标准贮备溶液:称取0.2197±0.001g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移至1000mL容量瓶中,加入大约 800mL水、加5mL硫酸(3.4)用水稀释至标线并混匀。1.00mL此标准溶液含50.0μg磷。本溶液在玻璃瓶中可贮存至少六个月。 3.13 磷标准使用溶液:将10.0mL的磷标准溶液(3.12)转移至250mL容量瓶中,用水稀释至标线并混匀。1.00mL此标准溶液含2.0μg磷。使用当天配制。 3.14 酚酞,10g/L溶液:0.5g酚酞溶于50mL95%乙醇中。

土壤速效氮磷钾、有机质测定方法

土壤水解性氮的测定(碱解扩散法) 土壤水解性氮,包括矿质态氮和有机态氮中比较易于分解的部分。其测定结果与作物氮素吸收有较好的相关性。测定土壤中水解性氮的变化动态,能及时了解土壤肥力,指导施肥。 测定原理 在密封的扩散皿中,用1.8mol/L氢氧化钠(NaOH)溶液水解土壤样品,在恒温条件下使有效氮碱解转化为氨气状态,并不断地扩散逸出,由硼酸(H3BO3)吸收,再用标准盐酸滴定,计算出土壤水解性氮的含量。旱地土壤硝态氮含量较高,需加硫酸亚铁使之还原成铵态氮。由于硫酸亚铁本身会中和部分氢氧化钠,故需提高碱的浓度(1.8mol/L,使碱保持1.2mol/L的浓度)。水稻土壤中硝态氮含量极微,可以省去加硫酸亚铁,直接用1.2mol/L氢氧化钠水解。 操作步骤 1.称取通过18号筛(孔径1mm)风干样品2g(精确到0.001g)和1g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。(水稻土样品则不必加硫酸亚铁。) 2.用吸管吸取2%硼酸溶液2ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10ml1.8mol/L氢氧化钠于皿的外室(水稻土样品则加入10ml1.2mol/L氢氧化钠),立即用毛玻璃盖严。 3.水平轻轻旋转扩散皿,使碱溶液与土壤充分混合均匀,用橡皮筋固定,贴上标签,随后放入40℃恒温箱中。24小时后取出,再以0.01mol/LHCl标准溶液用微量滴定管滴定内室所吸收的氮量,溶液由蓝色滴至微红色为终点,记下盐酸用量毫升数V。同时要做空白试验,滴定所用盐酸量为V0。 结果计算 水解性氮(mg/100g土)= N×(V-V0)×14/样品重×100 式中: N—标准盐酸的摩尔浓度; V—滴定样品时所用去的盐酸的毫升数; V0—空白试验所消耗的标准盐酸的毫升数;

植物全磷、全氮、全钾的测定方法

一、植物全氮测定 (一)H2SO4-H2O2消煮法 1、适用范围 本方法不包括硝态氮的植物全氮测定,适合于含硝态氮低的植物样品的测定。 2、方法提要 植物中的氮、磷大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾的定量。采用H2O2为加速消煮的氧化剂,不仅操作手续简单快速,对氮、磷、钾的定量没有干扰,而且具有能满足一般生产和科研工作所要求的准确度。但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2气或氮的氧化物而损失。 3、试剂 (1)硫酸(化学纯,比重1.84); (2)30% H2O2(分析纯)。 4、主要仪器设备。消煮炉,定氮蒸馏器。 5、操作步骤 称取植物样品(0.5mm)0.3~0.5g(称准至0.0002g)装入100ml开氏瓶或消煮管的底部,加浓H2SO45ml,摇匀(最好放置过夜),在电炉或消煮炉上先小火加热,待H2SO4发白烟后再升高温度,当溶液呈均匀的棕黑色时取下。稍冷后加班10滴H2O2(3),再加热至微沸,消煮约7~10min,稍冷后重复加H2O2,,再消煮。如此重复数次,每次添加的H2O2应逐次减少, 消煮至溶液呈无色或清亮后,再加热10min,除去剩余的H2O2。取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用无磷钾的干滤纸过滤,或放置澄清后吸取清液测定氮、磷、钾。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。 6、注释 (1)所用的H2O2应不含氮和磷。H2O2在保存中可能自动分解,加热和光照能促使其分解,故应保存于阴凉处。在H2O2中加入少量 H2SO4酸化,可防止H2O2分解。 (2)称样量决定于NPK含量,健状茎叶称0.5g,种子0.3g,老熟茎叶可称1g,若新鲜茎叶样,可按干样的5倍称样。称样量大时,可适当增加浓H2SO4用量。 (3)加H2O2时应直接滴入瓶底液中,如滴在瓶劲内壁上,将不起氧化作用,若遗留下来还会影响磷的显色。 (二)水杨酸-锌粉还原- H2SO4-加速剂消煮法 1、适用范围 包括销态氮的植物全氮测定,适合于硝态氮含量较高的植物样品的测定。 2、方法原理 样品中的硝态氮在室温下与硫酸介质中的水杨酸作用,生成硝基水杨酸,再用硫代硫酸钠及锌粉使硝基水杨酸还原为氨基水杨酸.然后按 H2SO4-加速剂消煮法进行消煮法进行消煮样品,使样品中全部氮转化为铵盐。 3、试剂 (1)固体Na2S2O3; (2)还原锌粉(AR); (3)水杨酸-硫酸:30g水杨酸溶于1L浓硫酸中。也可以该用含苯酚的浓硫酸:40g苯酚溶于1L浓硫酸中。 4、仪器设备。同上。 5、操作步骤 称取磨细烘干样品(过0.25mm筛)0.1000~0.2000g或新鲜茎叶样品1.000~2.000g,置于100ml开氏瓶或消煮管中,先用水湿润内样品(烘干样),然后加水杨酸-硫酸10ml,摇匀后室温放置30min,加入Na2S2O3约1.5g,锌粉0.4g和水10ml,放置10 min,待还原反应完成后,加入混合加速剂2g,按土壤全氮测定方法进行消煮, 消煮完毕,取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用于滤纸过滤,或放置澄清后吸取清液测定氮。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。 (三)消煮液中铵的定量(凯氏法) 1、适用范围。适合于各种植物样品消煮液中氮的定量。 2、方法原理

植株全氮磷钾测定方法

植株全氮的测定 1 主题内容与适用范围 本标准规定了植株全氮测定的硫酸-过氧化氢消煮、碱化后蒸馏定氮的方法。 本标准适用于禾本科植株全氮含量的测定。 2引用标准 GB/T 603 化学试剂试验方法中所用制剂及制品的制备 GB/T6682 分析实验室用水规格和试验方法 NY/T 297-1995 有机肥料全氮的测定 3 方法原理 植株样品用浓硫酸加双氧水消煮,使有机氮转化为铵盐。铵盐经碱化后形成氨,经蒸馏将氨吸收到硼酸溶液中。以甲基红—溴甲酚绿为指示剂,用标准酸滴定,测定植株中的全氮含量(不包括全部硝态氮)。 4 试剂 所有试剂除注明者外,均为分析纯。分析用水应符合GB/T 6682分析实验室用水规格和试验方法三级水的规格。 4.1 硫酸(GB/T 625)。 4.2 30%过氧化氢(GB 6684)。 4.3氢氧化钠:40%,(m/V)溶液 称取40g氢氧化钠(GB 629 分析纯)溶于100mL水中。 4.4硼酸:2%(v/m)溶液 20g硼酸(GB 628)溶于1L约60℃去离子水中,冷却后再用稀碱调节溶液pH至4.5。使用前每升硼酸溶液中加入甲基红-溴甲酚绿混合指示剂20mL,并用稀酸或稀碱调节至微红色,此时该溶液的PH值为4.5。 4.5甲基红-溴甲酚绿混合指示剂 0.5g溴甲酚绿(HG 3-1220)和0.1g甲基红(HG 3-958)于研钵中,加少量95%乙醇研磨至指示剂全溶为止,最后加95%的乙醇至100mL。 4.6硫酸标准液[c(1/2 H2SO4)=0.02mol/L](GB 601)。 5 仪器 通常实验室仪器和 5.1消煮管:50mL或100mL。 5.2消煮炉或可调电炉:1000W。 5.3弯颈小漏斗:¢2cm。 5.4 凯氏定氮仪:全自动或半自动。 5.5分析天平:感量为0.1mg。 5.6移液管:5,10mL。 6 检试样的制备 取风干的实验室待测样品充分混匀后,按四分法缩减至100g,粉碎,籽粒全部通过0.

有效磷的测定(Olsen法)

土壤有效磷的测定(Olsen法) (pH 8.5 0.5molL-1NaHCO3浸提—钼锑抗比色法) 一、实验目的及说明 土壤中有效磷的含量,随土壤类型、气候、施肥水平、灌溉、耕作栽培措施等条件的不同而异。通过土壤有效磷的测定,有助于了解近期内土壤供应磷的情况,为合理施用磷肥及提高磷肥利用率提供依据。 土壤速效磷的测定中,浸提剂的选择主要是根据土壤的类型和性质测定。浸提剂是否适用,必须通过田间试验来验证。浸提剂的种类很多,近20年各国渐趋于使用少数几种浸提剂,以利于测定结果的比较和交流。我国目前使用最广学的浸提剂是0.5molL-1NaHCO3溶液(Olsen法),测定结果与作物反应有良好的相关性[1],适用于石灰性土壤、中性土壤及酸性水稻土。此外还使用0.03molL-1NH4F-0.025molL-1HCl溶液(Black法)为浸提剂,适用于酸性土壤和中性土壤。 同一土壤用不同的方法测得的有效磷含量可以有很大差异,即使用同一浸提剂,而浸提时的土液比、温度、时间、振荡方式和强度等条件的变化,对测定结果也会产生很大的影响。所以有效磷含量只是一个相对的指标。只有用同一方法,在严格控制的相同条件下,测得的结果才有相对比较的意义。在报告有效磷测定的结果时,必须同时说明所使用的测定方法。 二、方法原理 石灰性土壤中磷主要以Ca-P(磷酸钙盐)的形态存在。中性土壤Ca-P、Al-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定的比例。0.5molL-1NaHCO3(pH8.5)可以抑制Ca2+的活性,使某些活性更大的与Ca结合的P浸提出来;同时,也可使比较活性的Fe-P和Al-P起水解作用而被浸出。浸出液中磷的浓度很低,须用灵敏的钼蓝比色法测定,其原理详见土壤全磷的测定章节。 当土样含有机质较多时,会使浸出液颜色变深而影响吸光度,或在显色出现浑浊而干扰测定,此时可在浸提排荡后过滤前,向土壤悬液中加入活性碳脱色,或在分光光度计800nm 波长处测定以消除干扰。 三、实验仪器 研钵、20目筛子、电子天平(0.0001)、振荡器、722分光光度计、振荡器、勺子、小烧杯、容量瓶 四、试剂配制 (1)0.5mol·L-1NaHCO3(pH8.5)浸提剂42.0gNaHCO3(0.5mol 化学纯)溶于约800ml 水中,稀释至1L,用浓NaOH调节至pH8.5(用pH计测定),贮于聚乙稀瓶或玻璃瓶中,用塞塞紧。该溶液久置因失去CO2而使pH升高,所以如贮存期超过20天,在使用前必须检查并校准pH值。 (2)无磷的活性碳粉和滤纸须做空白试验,证明无磷存在。如含磷较多,须先用2mol·L-1HCl浸泡过液,用水冲洗多次后再用0.5mol·L-1NaHCO3浸泡过液,在布氏漏斗上抽滤,用水冲洗几次,最后用蒸馏水淋洗三次,烘干备用。如含磷较少,则直接用0.5mol·L-1 NaHCO3处理。 (3)钼锑抗试剂(6.5mol·L-1[H+])20.0g钼酸铵[(NH4)6Mo7O24·4H2O](分析纯)溶于300ml约60℃的水中,冷却。另取180ml浓H2SO4(分析纯)慢慢注入约400ml水中,

植物全磷的测定方法

二、植物全磷的测定(一)钒钼黄吸光光度法1、适用范围。适合于含磷量较高的植物样品的测定(如籽粒样品)。2、方法原理植物样品经浓H2SO4消煮使各种形态的磷转变成磷酸盐。待测液中的正磷酸与偏钒酸和钼酸能生成黄色的三元杂多酸,其吸光度与磷浓度成正比,可在波长400~490nm处用吸光光度法测定。磷浓度较高时选用较长的波长,较低时选用较短波长。此法的优点是操作简便,可在室温下显色,黄色稳定,在HNO3、HClO4和H2SO4等介质中都适用,对酸度和显色剂浓度的要求也不十分严格,干扰物少,在可见光范围内灵敏度较低,适测范围广(约为1~20mg/L P),故广泛应用于含磷较高而且变幅较大的植物和肥料样品中磷的测定。3、试剂(1)钒钼酸铵溶液:25.0g钼酸铵[(NH4)6Mo7O2·4H2O,分析纯]溶于400mL水中,必要时可适当加热,但温度不得超过60℃。另将1.25g 偏钒酸铵(NH4VO3,分析纯)溶于300mL沸水中,冷却后加入250mL浓HNO3(分析纯)。将钼酸铵溶液缓缓注入钒酸铵(溶液中,不断搅匀,最后加水稀释至1L,贮于棕色瓶中。(2)NaOH溶液(c=6mol/L):24gNaOH溶于水, 稀释至100ml。(3)二硝基酚指示剂(ρ=2g/L):0.2g2,6-二硝基酚或2,4-二硝基酚溶于100ml水中。(4)磷标准溶液ρ[(P)=50mg/L]:0.2195g(干燥的KH2PO4(分析纯)溶于水,加入5ml浓HNO3,于1L容器瓶中定容。4、主要仪器设备。分光光度计。5、分析步骤准确吸取定容,过滤或澄清后的消煮液5~20ml(V2,含P0.05~0.75mg)放入50ml容量瓶中,加2滴二硝基酚指示剂,滴加6mol/LNaOH中和至刚呈黄色,加入10.00ml钒钼酸铵试剂,用水定容(V3)。15min后,用1cm光径的比色槽在波长440nm处进行测定,以空白溶液(空白溶液消煮液按上述步骤显色),调节仪器零点。校准曲线或直线回归方程:准确吸取50mg/L P标准液0, 1, 2.5, 7.5, 10, 15ml分别放入50mL 容量瓶中,按上述步骤显色,即得0, 1.0, 2.5 , 5.0, 7.5, 10, 15 ml P的标准系列溶液,与待测液一起进行测定,读取吸光度,然后绘制校准曲线或求直线回归方程。6、结果计算ρ(P)×V3×(V1/V2)×10-4ω(P)=m式中: ω(P) ——植物磷的质量分数,%; ρ(P) ——从校准曲线或回归方程求得的显色液中磷的质量浓度, mg/L;V1——消煮液定容体积, ml;V2——吸取测定的消煮液体积, ml;V3——显色液体积, ml;m——称样量,g;10-4——将mg/L浓度单位换算为百分含量的换算因数。7、注释(1)显色液中ρ(P)=1~5 mg/L时,测定波长420nm;5~20mg/L用490nm。待测液中Fe3+浓度高应选用450nm,以清除Fe3+干扰。校准曲线也应用

总磷测定方法

总磷 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L)可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1.方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如下图所示 消解 2.样品的采集和保存

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1— 1.5kg/cm2)。 (2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4)50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤

(1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至 25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫 酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2 (相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。 (2)一般民用压力锅,在加热至顶压阀出气孔冒气时,锅内温度为120℃。 (3)当不具备压力消解条件时,亦可在常压下进行,但操作步骤如下: 分取适量混匀水样(含磷不超过30μg)于150ml锥形瓶中,加水至50 ml,加数粒玻璃珠,加1 ml3+7硫酸溶液,5ml 5%过硫酸钾溶液,置电炉上加热煮沸,调节温度使保持微沸30—40min,至最后体积为10ml 止。放冷,加1滴酚酞指示剂,滴加氢氧化钠溶液至刚呈微红色,再滴加1mol/L硫酸溶液使红色腿去,充分摇匀。如溶液不澄清,则用滤纸过滤于50 ml比色管中,用水洗锥形瓶及滤纸,一并移入比色管中,加水至标线,供分析用。

植物全氮、全磷、全钾含量的测定

实验报告 课程名称:土壤学实验指导老师:倪吾钟成绩:__________________ 实验名称:植物全氮、全磷、全钾含量的测定 同组学生姓名:余慧珍 一、实验目的和要求 二、实验内容和原理 三、实验材料与试剂四、实验器材与仪器 五、操作方法和实验步骤六、实验数据记录和处理 七、实验结果与分析八、讨论、心得 一、 实验目的和要求 1. 掌握植物样品消煮液制备方法; 2. 掌握植物全氮、磷、钾的测定与结果分析。 二、 实验内容和原理 1. 植物样品消煮——H 2SO 4-H 2O 2消煮法 在浓H 2SO 4溶液中,植物样品经过脱水、碳化、氧化等作用后,易分解的有机物则分解。再加入H 2O 2 ,H 2O 2在热浓H 2SO 4溶液中会分解出新生态氧,具有强烈的氧化作用,可继续分解没被H 2SO 4破坏的有机物,使有机态氮全部转化为无机铵盐。同时,样品中的有机磷也转化为无机磷酸盐,植株中K 以离子态存在。故可用同一消煮液分别测定N 、P 、K 。 2. 植株全氮的测定——靛酚蓝比色法 经消煮待测液中氮主要以铵态氮存在,被测物浸提剂中的NH 4+,在强碱性介质中与次氯酸盐和苯酚反应,生成水溶性染料靛酚蓝,其深浅与溶液中的NH 4+-N 含量呈正比,线性范围为0.05-0.5mg/l 之间。 3. 植株全磷的测定——钒钼黄比色法 经消煮待测液中磷主要以磷酸盐存在,在酸性条件下,正磷酸能与偏钒酸和钼酸发生反应,形成黄色的三元杂多酸—钒钼磷酸[1]。溶液黄色稳定,黄色的深浅与磷的含量成正相关。 4. 植株全钾的测定——火焰光度计法 消煮待测液中难容硅酸盐分解,从而使矿物态钾转化为可溶性钾。待测液中钾主要以钾离子形式存在,用酸溶解稀释后即可用火焰光度计测定。

总磷的测定方法

总磷的测定方法 (2009-12-01 23:17:37) 转载 标签: 杂谈 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L )可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1. 方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷 酸盐和总溶解性磷,如下图所示 水 样 总 磷 用0.45μ滤膜 过滤的滤 可溶性正磷酸盐 可溶性总磷酸盐 正磷酸盐的测定,可采用钼锑抗光度法;氯化亚锡钼蓝法;离子色谱法。 1. 样品的采集和保存 消解 消解

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1—1.5kg/cm2)。(2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4) 50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤 (1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2(相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。

植株全氮、全磷的测定

植株全氮、全磷的测定 测N仪器操作 一、测定方法: 1、称样前过100目筛,然后将试管洗净,排号,烘干。 2、称样品0.5000g,并做好记录,称K2SO4 4.5g ,CuSO4*5H2O 0.5g ,或者将两种药品按比例混好过筛后,一次性加入 5 g 混合药品。 不论是先加药品还是称样,都必须在其后将两者摇匀,还要求称好的样全部送至试管底部,加了10 ml 硫酸后继续摇匀,在放到机子上去消煮,否则误差较大。 3、消煮:插上电源后按开关---执行---等40 min后420℃时放样---将水开到最大---打开风机和电动风阀(1 h)。 4、消煮后先放到架子上冷却,再将上面的盖子取下冷却至无白雾。 5、硼酸:1 %:50g溶于5000 ml 水,将配好的35ml甲基红试剂和50ml溴甲酚绿加入5000ml硼酸。甲基红和溴甲酚绿都是称 1 g溶解到1000ml无水乙醇中。 6、NaOH:一瓶默认500g + 1250ml水。 7、0.1mol/L的标准酸:吸取15ml浓硫酸定容到5000ml,即约为0.0558 mol/L的硫酸,换算为标准酸约为0.1116mol/L 的标准酸。 8、标准酸的标定:取少许无水碳酸钠于烧杯,在180--200℃下烘4—6小时,取出放干燥瓶冷却至室温,然后称取约0.22 g 于250毫升锥形瓶中,加50毫升水溶解,各加1--2滴甲基红和溴甲酚绿指示剂,用配好的标准酸滴定,在出现红色后加热一些、冷却,反复直至红色不退去为止,记录用量V。 滴定做三个重复还有一个空白。标准酸浓度计算:C=0.22/(0.05299*V) 标定好的标准酸浓度约为0.1115---0.1117mol/L的H+浓度,开机后可以按右上方的∟● 键,输入计算好的标准酸浓度即可。 二、仪器操作:1、开机按钮:按回车键等几分钟,机子自检完成---self-fest-按手型设置键----定到Receiver---回车键,等颜色(中间瓶)与硼酸颜色相同时将机子盖打开。 2、按empty uwrette (排气),再按回车(反复操作几次至排尽气) 3、拿出标准酸的管,按filling uwritte(充气),回车,反复几次放气,充气,将管插入充液。 4、按(§§)蒸馏键,将程序按到KJ-5,results 打到recovery,重量—0.0000g ,将守门拉下即可进行清洗,拿空管进行清洗2次,清洗第二次时不用换管,直接按回车键。 5、空白:将程序按到KJ-1,result---blank, weight ---0.0000 g,拉下守门。 6、测N:程序按到KJ-1,将result—% Nitrotion, weight—输入样品重量,拉下守门。 7、关机:关机前用空管按照清洗程序清洗2遍,机子擦干净,用洗瓶加水至中间的滴定管,淹没最上面的短电极,关机。 本仪器要求测氮时空白小于0.2 ml,一般当天消煮的空白为0.065左右,消煮好隔

元素磷含量的测定方法

元素磷含量的测定方法 本方法参考ZBG76002—90适用于循环冷却水中磷的测定,其含量为0.02~50mg/L。 1 方法提要 在酸性介质中,膦酸盐、亚磷酸与过硫酸铵在加热的条件下,转变成正磷酸,利用钼酸铵和磷酸反应生成锑磷钼酸配合物,以抗坏血酸还原成“锑磷钼蓝”,用吸光光度法测定总磷酸盐(以PO43-计)的含量。 2 试剂和材料 2.1 磷酸盐标准贮备液:1 mL溶液含有0.500 mg PO43-;称量0.7165 g 预先在100~105℃干燥至恒重的磷酸二氢钾,精确至0.0002 g ,置于烧杯中,加水溶解移入1000mL容量瓶中,用水稀释至刻度,摇匀; 2.2 磷酸盐标准溶液:1 mL溶液含有0.020 mg PO43-;吸取20.00 mL磷酸盐标准贮备溶液(2.1)于500 mL容量瓶中,用水稀释至刻度,摇匀; 2.3 钼酸铵溶液:称量6.0 g钼酸铵溶于约500 mL水中,加入0.2 g酒石酸锑钾和83 mL 浓硫酸,冷却后稀释至1L,混匀,贮于棕色瓶中,贮存期6个月; 2.4 抗坏血酸溶液:称量17.6 g抗坏血酸溶于适量水中,加入0.2 g乙二胺四乙酸二钠和8 mL甲酸,用水稀释至1L,混匀,贮存于棕色瓶中,贮存期15d; 2.5 硫酸:c(H2SO4)=0.5 mol / L; 2.6 过硫酸铵24g / L溶液,贮存期7d; 3 仪器和设备 3.1 分光光度计:波长范围400~800 nm; 3.2 可调电炉:800W。 4 工作曲线的绘制 在一系列50mL容量瓶(或比色管)中,分别加入0.00,1.00,2.00,3.00,4.00,5.00 mL磷酸盐标准溶液(2.2),加水约20 mL,然后加入5mL钼酸铵溶液(2.3)和3 mL抗血酸溶液(2.4),用水稀释至刻度,摇匀,于25~30℃下放置10 min。在710 nm处,用1cm的比色皿,以试剂空白为参比,测量其吸光度。 5 试验步骤 5.1 正磷酸含量的测定 吸取20mL经中速滤纸过滤后的水样于50 mL容量瓶(或比色管)中,加入20 mL水,再加入5 mL钼酸铵溶液(2.3)、3 mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀。在25~30℃下放置10 min。在710 nm处,用1cm比色皿,以试剂空白为参比,测量其吸光度。 5.2 总磷酸盐含量的测定 吸取10mL经中速滤纸过滤后的水样于100 mL锥形瓶中,加入1 mL硫酸溶液(2.5)和5 mL过硫酸铵溶液(2.6),稀释到约25mL,在可调电炉(3.2)上缓缓煮沸15 min 以上至溶液快蒸干为止。取下,冷却至室温,移入50 mL容量瓶(或比色管)内。加入5 mL钼酸铵溶液、3 mL 抗坏血酸溶液,用水稀释至刻度,摇匀。于25~30℃下放置10 min,在710 nm处,用1 cm的比色皿,以试剂空白为参比,测量其吸光度,绘制工作曲线。

土壤中磷含量的测定

土壤中磷含量的测定(比色法) 一、现阶段测定土壤中磷含量主要方法有如下几种: (一)中性和石灰性土壤速效磷的测定 (0.5mol/L NaHCO3法) 石灰性土壤由于大量游离碳酸钙存在,不能用酸溶液来提取有效磷。一般用碳酸盐的碱溶液。由于碳酸根的同离子效应,碳酸盐的碱溶液降低碳酸钙的溶解度,也就降低了溶液中钙的浓度,这样就有利于磷酸钙盐的提取。同时由于碳酸盐的碱溶液,也降低了铝和铁离子的活性,有利于磷酸铝和磷酸铁的提取。此外,碳酸氢钠碱溶液中存在着OH-、HCO3-、 CO32-等阴离子,有利于吸附态磷的置换,因此NaHCO3不仅适用石灰性土壤,也适应于中性和酸性土壤中速效磷的提取。待测液中的磷用钼锑抗试剂显色,进行比色测定。 (二)酸性土壤速效磷的测定方法A(0.03mol/L NH4F-0.025mol/L HCl法) NH4F--HCI法主要提取酸溶性磷和吸附磷,包括大部分磷酸钙和一部分磷酸铝和磷酸铁。因为在酸性溶液中氟离子能与三价铝离子和铁离子形成络合物,促使磷酸铝和磷酸铁的溶解: 3NH4F+3HF+AlPO4一H3PO4+(NH4)3AlF6 3NH4F+3HF+FePO4一H3PO4+(NH4)3FeF6 溶液中磷与钼酸铵作用生成磷钼杂多酸,在一定酸度下被SnCl2还原成磷钼蓝,蓝色深浅与磷的浓度成正比。 (三)酸性土壤速效磷的测定方法B 0.05mol/L HCl-0.025mol/L ( 1/2H2SO4 )法 本法特别适用于固定磷较强的酸性土壤。如土壤有机质含量较低,pH小于6.5,阳离子交换量小于100 cmol/kg的土壤。本法不仅适用于酸性土壤速效磷的测

煤中含氧官能团测定方法.doc

煤中含氧官能团测定方法 1.碳和氢 碳是煤中最重要的组成元素.碳含量(Cr)随煤化程度的升高而增加.泥炭的Cr为50~60%;褐煤为60~77%;烟煤为 74~92%;无烟煤为90~98%.在煤化程度相同的煤中,丝质组的Cr最高,镜质组次之,稳定组最低.氢中煤中第二个重 要的组成元素.腐泥煤的氢含量(HR)比腐植煤高,一般在6%以上,有时达11%,这是由于形成腐泥煤的低等生物富 含氢.在腐植煤中,稳定组的HR最高,镜质组次之,丝质组最低.随煤化程度升高,它们的HR均逐渐减少. 2.氮 煤中的氮,主要是由成煤植物中的蛋白质转化而来.人们认为煤中的氮通常都是有机氮,其中有一些是杂环形的. 煤中的NR通常约为0.8~1.8%,但也随煤公程度的升高而略有下降.我国弱粘结煤和不粘结烟煤的NR多低于1%,可 能是在泥炭化阶段受到不同程度的氧化作用,成煤植物中的蛋白质氧化分解,故NR普遍较低. 3.氧 氧是煤中主要元素之一,氧在煤中存在的总量和形态直接影响着煤的性质煤的元素组成煤的组成以有机质为主 体,构成有机高分子的主要是碳、氢、氧、氮等元素。煤中存在的元素有数十种之多,但通常所指的煤的元素 组成主要是五种元素、即碳、氢、氧、氮和硫。在煤中含量很少,种类繁多的其他元素,一般不作为煤的元素 组成,而只当作煤中伴生元素或微量元素。 一、煤中的碳

一般认为,煤是由带脂肪侧链的大芳环和稠环所组成的。这些稠环的骨架是由碳元素构成的。因此,碳元素是 组成煤的有机高分子的最主要元素。同时,煤中还存在着少量的无机碳,主要来自碳酸盐类矿物,如石灰岩和 方解石等。碳含量随煤化度的升高而增加。在我国泥炭中干燥无灰基碳含量为55~62%;成为褐煤以后碳含量 就增加到60~76.5%;烟煤的碳含量为77~92.7%;一直到高变质的无烟煤,碳含量为88.98%。个别煤化度 更高的无烟煤,其碳含量多在90%以上,如北京、四望峰等地的无烟煤,碳含量高达95~98%。因此,整个成 煤过程,也可以说是增碳过程。 二、煤中的氢 氢是煤中第二个重要的组成元素。除有机氢外,在煤的矿物质中也含有少量的无机氢。它主要存在于矿物质的 结晶水中,如高岭土(Al203·2Si02·2H2O)、石膏(CaS04·2H20 )等都含有结晶水。在煤的整个变质过程中, 随着煤化度的加深,氢含量逐渐减少,煤化度低的煤,氢含量大;煤化度高的煤,氢含量小。总的规律是氢含 量随碳含量的增加而降低。尤其在无烟煤阶段就尤为明显。当碳含量由92%增至98%时,氢含量则由2.1%降到 1%以下。通常是碳含量在80~86%之间时,氢含量最高。即在烟煤的气煤、气肥煤段,氢含量能高达6. 5%。 在碳含量为65~80%的褐煤和长焰煤段,氢含量多数小于6%。但变化趋势仍是随着碳含量的增大而氢含量减 小。

相关文档