文档库 最新最全的文档下载
当前位置:文档库 › NaP4及其正负离子的结构和光谱性质

NaP4及其正负离子的结构和光谱性质

NaP4及其正负离子的结构和光谱性质
NaP4及其正负离子的结构和光谱性质

第一章《原子结构与性质》全章教案

第一章物质结构与性质教案 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。 第一节原子结构 第一课时 知识与技能: 1、进一步认识原子核外电子的分层排布 2、知道原子核外电子的能层分布及其能量关系 3、知道原子核外电子的能级分布及其能量关系 4、能用符号表示原子核外的不同能级,初步知道量子数的涵义 5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 方法和过程: 复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。 情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。 教学过程: 1、原子结构理论发展 从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。 现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。 〖复习〗必修中学习的原子核外电子排布规律:

实验十 恒星的光谱分类

实验十一恒星的光谱分类 一、实验目的 利用已拍摄的恒星光谱片进行恒星光谱的分类,熟悉恒星的哈佛光谱分类法。 二、实验原理 大多数恒星的光谱是连续谱上叠加有吸收线,少数特殊恒星光谱兼有发射线或只有发射线。恒星连续谱的能量分布、谱线、数目和强度,以及特征谱线所属的化学元素均显示出极大差异。现在常用的分类系统有哈佛分类法(以温度为参量的一元分类)和摩根—基南分类法(以温度和光度为参量的二元分类法)。 三、实验步骤: 本实习所用的恒星光谱图集是有缝摄谱仪拍摄的,色散度较大,可用哈佛分类法进行分类。 先熟悉用有缝摄谱仪所拍得的各类光谱型的典型恒星光谱图,对照各光谱型特征的解释,依次熟悉一遍,要认出光谱中氢(H)的巴尔末线系、电离钙(CaⅡ)的H、K线,G带和氦(HeI)线,初步熟悉各光谱型谱线的基本特征(参看附录中恒星光谱分类的原则)。 1.从光谱图集中找出O、B、A、F、G K和M的典型光谱片,说出它们光谱的主要区别。 2.从A型星或B型星的巴尔末线系已知的波长λ和量出谱片的线色散nm/mm,以此做为判据认证谱线。 3.天鹅座P型光谱是典型的特殊光谱,它的谱线轮廓是由吸收和发射两部分组成。在光谱片上认出H的巴尔末线系,H、K线G带和HeI线。 4.对指定恒星的光谱进行分类。 5.对照“恒星光谱图集”写出如下光谱中所指元素:氢(Hydrogen)、氦(Helium)、钙(Carbon)、铁(Iron)、氧(Oxygen)、氧化钛(Titanium Oxide)及CH(Methylacline)的谱线波长。 图sh10.1 恒星的光谱分类图例

图sh10.2 恒星的光谱

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

结构化学第二章原子的结构和性质习题及答案(教学材料)

一、填空题 1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a r e a r a -?-?π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________.角动量在Z 轴方向分量为_________. 2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。 3. 如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。 二、选择题 1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( ) A. n,l B. n,l,m C. n D. n,m 2. 用来表示核外某电子运动状况的下列各组量子数(n ,l ,m ,ms )中,哪一组是合理的() A. (2,1,-1,-1/2) B. (0,0,0,1/2) C. (3,1,2,1/2) D.(2,1,0,0) 3. 如果一个原子的主量子数是4,则它( ) A. 只有s 、p 电子 B. 只有s 、p 、d 电子 C. 只有s 、p 、d 和f 电子 D. 有s 、p 电子 4. 对氢原子Φ方程求解,下列叙述有错的是( ). A. 可得复函数解Φ=ΦΦim m Ae )(. B. 由Φ方程复函数解进行线性组合,可得到实函数解. C. 根据Φm (Φ)函数的单值性,可确定|m|=0.1.2…………I D. 根据归一化条件1)(220=ΦΦΦ?d m π求得π21 =A 5. He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( ). A.1 B.1/9 C.1/4 D.1/16 6. 电子在核附近有非零几率密度的原子轨道是( ). A.Ψ3P B. Ψ3d C.Ψ2P D.Ψ2S 7. 氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数? A. (1) (3) B. (2) (4) C. (3) (4) (5) D. (1) (2) (5)

高三复习原子结构与性质

原子结构与元素周期律 考点1 原子结构 1、原子的构成 中子N (核素) 原子核 近似相对原子质量 质子Z → 元素符号 原子结构 决定原子呈电中性 电子数(Z 个) 体积小,运动速率高(近光速),无固定轨道 核外电子 运动特征 电子云(比喻) 小黑点的意义、小黑点密度的意义。 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 2、三个基本关系 (1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中) (2)电性关系: ①原子中:质子数=核电荷数=核外电子数 ②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数 ③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数 (3)质量关系:质量数 = 质子数 + 中子数 [例1](2008·茂名一模)一定量的锎(98252Cf )是有用的中子源,1mg (98252Cf )每秒约放出2. 34xl99个中子,在医学上常用作治疗恶性肿瘤的中子源。下列有关锎的说法错误的是 A.98252Cf 原子中,中子数为154 B.98252Cf 原子中,质子数为98 C.98252Cf 原子中,电子数为 98 D.锎元素的相对原子质量为252 考点2 原子核外电子排布规律 决定 X)(A Z

[例2](2008·广州二模·理基)X和Y属短周期元素,X原子的最外层电子数是次外层电子数的一半,Y位于X的前一周期,且最外层上只有一个电子,下列说法正确的是()A.X可能是第二周期的非金属元素 B.X可能是第三周期的金属元素 C.Y可能与X同主族 D.Y一定是金属元素 考点3 相对原子质量 定义:以12C原子质量的1/12(约1.66×10-27kg)作为标准,其它原子的质量跟它比较所得的值。其国际单位制(SI)单位为1,符号为1(单位1一般不写) 原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。 如:一个氯原子的m(35Cl)=5.81×10-26kg。 核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。一种元素有几 种同位素,就应有几种不同的核素的相对原子质量,相对诸量如35Cl为34.969,37Cl为36.966。 原子比较核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该质量核素的质量数相等。如:35Cl为35,37Cl为37。 元素的相对原子质量:是按该元素各种天然同位素原子所占的原子个数百分比 算出的平均值。如:Ar(Cl)=Ar(35Cl)×a% + Ar(37Cl)×b% 元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与 其原子个数百分比的乘积之和。 注意①、核素相对原子质量不是元素的相对原子质量。 ②、通常可以用元素近似相对原子质量代替元素相对原子质量进行必要的计算。 [例4](2008·汕头二模)某元素一种同位素的原子的质子数为m,中子数为n,则下列说法正确的是( ) A.不能由此确定该元素的原子量 B.这种元素的原子量为(m+n) C.若碳原子质量为w g,此原子的质量为(m+n)w g D.核内中子的总质量小于质子的总质量

天文学课程论文《通过光谱研究恒星》

恒星光经过色散系统(光栅或棱镜)分解后形成的红橙黄绿青蓝紫七色光带。恒星光谱的形态决定于恒星的物理性质、化学成分和运动状态。光谱中包含着关于恒星的各种特征的最丰富的信息,到现在为止,关于恒星的本质的知识,几乎都是从恒星光谱的研究中得到的。绝大多数恒星光谱与太阳光谱很相似,都是在连续光谱上面有许多暗黑的谱线的吸收光谱,说明恒 星是被较冷的恒星大气包围的炽热的气体球。恒 星间谱线数目和分布差异较大,其中大部分是地 球上已存在的化学元素的谱线。通过恒星光谱的 研究,可以测定恒星的化学组成,恒星大气的温 度、压力和恒星运动的视向速度等。恒星光谱可 分为几种不同类型,其中按哈佛系统,根据绝对 温度把恒星分成O、B、A、F、G、K、M及附加的 R、N、S等类型,其中每型又分为10个次型。 20世纪初,美国哈佛大学天文台已经对50 万颗恒星进行了光谱研究。并对恒星光谱根据它 们中谱线出现情况进行了分类。结果发现它们与 颜色也有关系,即蓝色的“O”型、蓝白色的“B” 型、白色的“A”型、黄白色的“F”型、黄色的 “G”型、橙色的“K”型、红色的“M”型等主要类型。实际上这是一个恒星表面温度序列,从数万度的O型到2-3千度的M型。丹麦天文学家赫茨普龙和美国天文学家罗素,根据恒星光谱型和光度的关系,建起著名的“光谱-光度图”,也称“赫-罗”图。大部分恒星分布在从图的左上到右下的对角线上,叫主星序,都是矮星。其它还有超巨星、亮巨星、巨星、亚巨星、亚矮星和白矮星等类型,而这一不同类型表示了它们有不同的光度。赫--罗图是研究恒星的重要手段之一。它不仅显示了各类恒星的特点,同时也反映恒星的演化过程。在恒星的光谱分类中,O、B、A型称为“早型星”;F和G型称“中间光谱型”;K和M型称为“晚型星”。20世纪90年代末期,天文学家越过M型把恒星光谱分类扩展到温度更低的情况,先提出了新的L型,继而又提出了比L型温度更低的光谱分类T型。 通过恒星的颜色可以确定恒星表面的温度。然而,星光所携带的信息,远不仅限于恒星表面温度。1665年,牛顿曾经做过一项在物理学史上具有划时代重要意义的实验。他让通过小孔进来的一束太阳光照射到玻璃三棱镜上,在棱镜后面的纸屏上出现了红、橙、黄、绿、青、蓝、紫七色光组成的彩虹。他得出结论说,白光是由各种颜色的单色光混合而成的,是“复合光”。牛顿把这些按顺序排列的单色光称为“光谱”,这实际上开创了物理光学的一个崭新时代。 1814-1815年间,在德国光学仪器专家夫琅和费在研究太阳光中的“暗线”方面有了重大的进展。在此之前,他知道另一位德国科学家屋拉斯顿在太阳中光发现过某些暗的条纹,于是他着手重复牛顿和屋拉斯顿做过的实验。由于夫琅和费使用的仪器比他的前人发展得更先进、更精密,他得到的光谱是被放大了很多倍的而有利于仔细地分析与观察。夫琅和费得到了太阳光谱中的多达 700条不等间隔的暗线(今天天文学家们观察到的太阳光谱暗线已达约一百万条)。直到现在,我们仍称这些太阳光谱中的暗线叫“夫琅和费线”。 但是,尚未解决的问题是,夫琅和费线是怎样形成的,它们的物理意义是什么,人们对此在一段长时间内却未找到答案。1856年,德国物理学家克希霍夫和他的同事、化学家本生,在研究向本生发明的“本生灯”的白色火焰中撒入不同的化学物质时形成的彩色火焰的光谱时,发现不同的化学物质都有它自己的特征谱线。物质的这些特征谱线,又反过来可以作为我们识

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

原子结构和分子结构

原子结构分子结构 一、是非题 1.所谓原子轨道就是指一定的电子云。 2.价电子层排布为ns1的元素都是碱金属元素。 3.当主量子数为4时,共有4s、4p、4d、4f四个轨道。 4.第一过渡系(即第四周期)元素的原子填充电子时是先填充3d轨道后填充4s 轨道,所以失去电子时也是按这个次序先失去3d电子。 5.原子在基态时没有未成对电子,就肯定不能形成共价键。 6.由于CO2、H2O、H2S、CH4分子中都含有极性键,因此都是极性分子。 7.形成离子晶体的化合物中不可能有共价键。 8.全由共价键结合形成的化合物只能形成分子晶体。 9.在CCl4、CHCl3和CH2Cl2分子中,碳原子都是采用sp3杂化,因此这些分子都呈正四面体。 10.色散力只存在于非极性分子之间。 二、选择题 1. 在氢原子中,对r=53pm处的正确描述是() A.该处1s电子云最大B.r是1s径向分布函数的平均值 C.该处的H原子Bohr半径D.该处是1s电子云介面 2. 3s电子的径向分布图有()。 A.3个峰B.2个峰C.4个峰D.1个峰 3. 在电子云示意图中,小黑点是( ) A.其疏密表示电子出现的几率密度的大小B.表示电子在该处出现 C.其疏密表示电子出现的几率的大小D.表示电子 4. N,O,P,S原子中,第一电子亲合能最大的是( ) A.N B.O C.P D.S 5. O、S、As三种元素比较,正确的是() A.电负性O>S>As , 原子半径O<S<As B.电负性O<S<As , 原子半径O<S<As C.电负性O<S<As , 原子半径O>S>As D.电负性O>S>As , 原子半径O>S>As

原子结构与元素的性质时优秀教案

第二节原子结构与元素地性质 第三课时 【学习目标】 1.能说出元素电负性地涵义,能应用元素地电负性说明元素地某些性质 2.能根据元素地电负性资料,解释元素地“对角线”规则,列举实例予以说明 3.能从物质结构决定性质地视角解释一些化学现象,预测物质地有关性质 4.进一步认识物质结构与性质之间地关系,提高分析问题和解决问题地能力 【学习过程】 【课前预习】 1. 叫键合电子;我们用电负性描述. 2.电负性地大小可以作为判断元素金属性和非金属性强弱地尺度. 地电负性一般小于1.8,地电负性一般大于1.8,而位于非金属三角区边界地“类金属”地电负性则在1.8左右,他们既有性又 有性. 【知识梳理】 【复习】1.什么是电离能?它与元素地金属性、非金属性有什么关系? 2.同周期元素、同主族元素地电离能变化有什么规律? (3)电负性: 【思考与交流】1. 什么是电负性?电负性地大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧地非金属性与氯地非金属性哪个强? 【科学探究】 1.根据数据制作地第三周期元素地电负性变化图,请用类似地方法制作IA、VIIA元素 地电负性变化图. 2.电负性地周期性变化示例

【归纳与总结】 1. 金属元素越容易失电子,对键合电子地吸引能力越,电负性越小,其金属性越;非金属元素越容易得电子,对键合电子地吸引能力 越,电负性越,其非金属性越强;故可以用电负性来度量金属性与非金属性地强弱.周期表从左到右,元素地电负性逐渐变;周期表从上到下,元素地电负性逐渐变. 2. 同周期元素从左往右,电负性逐渐增,表明金属性逐渐减弱,非金属性逐渐增.同主族元素从上往下,电负性逐渐减,表明元素地金属性逐渐减弱,非金属性逐渐增强. 【思考】对角线规则:某些主族元素与右下方地主族元素地有些性质相似,被称为对角线原则.请查阅电负性表给出相应地解释? 3. 在元素周期表中,某些主族元素与右下方地主族元素地性质有些相似,被称为“对角线规则”.查阅资料,比较锂和镁在空气中燃烧地产物,铍和铝地氢氧化物地酸碱性以及硼和硅地含氧酸酸性地强弱,说明对角线规则,并用这些元素地电负性解释对角线规则. 4. 对角线规则 【典题解悟】 例题1.下列有关电负性地说法中正确地是() A.主族元素地电负性越大,元素原子地第一电离能一定越大. B.在元素周期表中,元素电负性从左到右越来越大 C.金属元素电负性一定小于非金属元素电负性. D.在形成化合物时,电负性越小地元素越容易显示正价 解析:电负性地变化规律: (1)同一周期,从左到右,元素电负性递增. (2)同一主族,自上而下,元素电负性递减.(3)副族元素地电负性变化趋势和主族类似.主族元素原子地电离能、电负性变化趋势基本相同,但电离能有特例,如电负性:O >N,但第一电离能:N>O,A错误.B、C选项没有考虑过渡元素地情况. 答案:D 例2.能够证明电子在核外是分层排布地事实是() A、电负性 B、电离能 C、电子亲和能 D、电势能 【当堂检测】 1. 电负性地大小也可以作为判断金属性和非金属性强弱地尺度下列关于电负性地变化规律正确地 是()

原子结构和分子结构

第四章原子结构和分子结构 第一节原子结构 自然界的物质种类繁多,性质各异。不同物质在性质上的差异是由于物质内部结构不同而引起的。在化学反应中,原子核不变,起变化的只是核外电子。要了解物质的性质及其变化规律,有必要先了解原子结构,特别是核外电子的运动状态。 一、核外电子运动的特征 我们知道,地球沿着固定轨道围绕太阳运动,地球的卫星(月球或人造卫星)也以固定的轨道绕地球运转。这些宏观物体运动的共同规律是有固定的轨道,人们可以在任何时间内同时准确地测出它们的运动速度和所在位置。电子是一种极微小的粒子,质量为9.1×10-31 kg,在核外的运动速度快(接近光速)。因此电子的运动和宏观物体的运动不同。和光一样,电子的运动具有微粒性和波动性的双重性质。对于质量为m,运动速度为v的电子,其动量为:P=mv 其相应的波长为: λ=h/P=h/mv (4-1) 式(4-1)中,左边是电子的波长λ,它表明电子波动性的特征,右边是电子的动量P (或mv),它表明电子的微粒性特征,两者通过普朗克常数h联系起来。 实验证明,对于具有波动性的微粒来说,不能同时准确地确定它在空间的位置和动量(运动速度)。也就是说电子的位置测得愈准时,它的动量(运动速度)就愈测不准,反之亦然。但是用统计的方法,可以知道电子在原子中某一区域内出现的几率。 图4-1氢原子五次瞬间照像

图4-2若干张氢原子瞬间照片叠印 电子在原子核外空间各区域出现的几率是不同的。在一定时间内,在某些地方电子出现的几率较大。而在另一些地方出现的几率较小。对于氢原子来说,核外只有一个电子。为了在一瞬间找到电子在氢原子核外的确切位置,假定我们用高速照相机先给某个氢原子拍五张照片,得到图4-1所示的五种图象,⊕代表原子核,小黑点表示电子。如果给这个氢原子照几万张照片,叠加这些照片(图4-2)进行分析,发现原子核外的一个电子在核外空间各处都有出现的可能,但在各处出现的几率不同。如果用小黑点的疏密来表示电子在核外各处的几率密度(单位体积中出现的几率)大小,黑点密的地方,是电子出现几率密度大的地方;疏的地方,是电子出现几率密度小的地方,如图4-3所示。像这样用小黑点的疏密形象地描述电子在原子核外空间的几率密度分布图象叫做电子云。所以电子云是电子在核外运动具有统计性的一种形象表示法。 图4-3氢原子的电子云图4-4氢原子电子云界面图 从图4-3中可见,氢原子的电子云是球形的,离核越近的地方其电子云密度越大。但是由于离原子核越近,球壳的总体积越小,因此在这一区域内黑点的总数并不多。而是在半径为53pm 附近的球壳中电子出现的几率最大,这是氢原子最稳定状态。为了方便,通常用电子云的界面表示原子中电子云的分布情况。所谓界面,是指电子在这个界面内出现的几率很大(95%以上),而在界面外出现的几率很小(5%以下)。 二、核外电子的运动状态 电子在原子中的运动状态,可n,l,m,ms四个量子数来描述。 (一)主量子数n

超星天文学的奥秘第三章答案

3.1恒星有多亮已完成成绩:100.0分 1 【单选题】恒星的真亮度,指的是把所有恒星都“挪到”距我们()个秒差距的地方时它们呈现的亮度。 ?A、3.26 ?B、4.3 ?C、10 ?D、206265 我的答案:C得分:25.0分 2 【单选题】根据恒星视亮度与视星等的数量关系(m=-2.5lgE),1等星与6等星的亮度相差()倍。 ?A、6 ?B、2.51 ?C、1/0.398 ?D、100 我的答案:D得分:25.0分 3 【判断题】秒差距这个长度标尺的推导过程,所利用的数学知识是极限,也就是视差角x→0时,sinx→x或者tanx→x。() 我的答案:√得分:25.0分 4 【判断题】夜空中,凡是耀眼的恒星都离我们更近,凡是相对黯淡的恒星都离我们更远。()我的答案:×得分:25.0分 3.2恒星光度和光谱测量已完成成绩:100.0分 1

【单选题】一般来说,表面温度越低的恒星,其发射的最强电磁波越不可能是()。 ?A、X射线 ?B、黄色光 ?C、红色光 ?D、红外线 我的答案:A得分:25.0分 2 【单选题】通过测量得到了一颗恒星的光度,则仍不能获取这颗恒星的()。 ?A、最强发射电磁波长 ?B、表面温度 ?C、单位表面的电磁波辐射强度 ?D、环绕行星的数量 我的答案:D得分:25.0分 3 【单选题】人类最早测量恒星光度的方法是()。 ?A、人眼主观判断 ?B、胶卷照相 ?C、光电法 ?D、CCD技术 我的答案:A得分:25.0分 4 【单选题】仅根据维恩公式,对一颗恒星进行分光光度测量,就可以间接获得它的()。?A、表面温度 ?B、光谱型 ?C、质量大小 ?D、与太阳系的距离 我的答案:A得分:25.0分 3.3光谱型与主序星已完成成绩:100.0分 1 【单选题】从赫罗图可以得知,太阳属于哪一类恒星?()

(完整版)【人教版】高中化学选修3知识点总结:第一章原子结构与性质

第一章原子结构与性质 课标要求 1.了解原子核外电子的能级分布,能用电子排布式表示常见元素的(1~36号)原子核外电子的排布。了解原子核外电子的运动状态。 2.了解元素电离能的含义,并能用以说明元素的某种性质 3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。 4.了解电负性的概念,知道元素的性质与电负性的关系。 要点精讲 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。 说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式为 或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

1原子结构和性质知识点

第一章原子结构与性质 第一节原子结构 【知识点梳理】 1、原子的诞生: 现代大爆炸理论认为:宇宙大爆炸诞生了大量的氢、少量的氦、以及极少量的锂。如今,宇宙中最丰富的元素是氢、其次是氦。地球上的元素大多数是金属,非金属仅22种。 2、能层、能级 (1)能层 ①原子核外的电子是分层排布的。根据电子的能级差异,可将核外电子分成不同的能层。 ②每一能层最多能容纳的电子数不同:最多容纳的电子数为2n2个。 ③离核越近的能层具有的能量越低。 能层序数 1 2 3 4 5 能层符号 能级符号 轨道数 电子数 离核远近由近————————→远 能量高低由低————————→高 (2)能级 在多电子的原子中,同一能层的电子,能量也可以不同。不同能量的电子分成不同的能级。 规律:①每个能层所包含的能级数等于该能层的序数n,且能级总是从s能级开始,如:第一能层只有1个能级1s,第二能层有2个能级2s和2p,第三能层有3个能级3s、3p、3d,第四能层有4个能级4s、4p、4d和4f,依此类推。 ②不同能层上的符号相同的能级中最多所能容纳的电子数相同,即每个能级中最多所能容纳的电子数只与能级有关,而与能层无关。如s能级上最多容纳2个电子,无论是1s还是2s;p能级上最多容纳6个电子,无论是2p还是3p、4p能级。 ③在每一个能层(n)中,能级符号的排列顺序依次是ns、np、nd、nf…… ④按s、p、d、f……顺序排列的各能级最多可容纳的电子数分别是1、3、5、7……的两倍,即分别是2、6、10、14…… 原子轨道 轨道形状 轨道数 最多电子数 (1)基态原子与激发态原子 ①基态原子为能量最低的原子。基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。 ②基态原子与激发态原子相互转化与能量转化关系:

分子和原子及原子的结构

分子和原子及原子的结构知识点总结 知识点一分子 1、分子是构成物质的一种微粒,表示的是一种微观概念,大部分物质是由分子构成的。(有些物质直接由原子构成) 2、分子的定义:分子是保持物质化学性质的最小(一种)微粒。 3、分子的性质 ①分子很小:质量和体积都很小,肉眼是无法看到的 ②分子总是在不断的运动着:温度升高运动速度加快。 ③分子间有间隔:一般来说气体分子间的间隔大,固体、液体分子间的间隔较小,因此气体可以压缩。 ④同种物质的分子性质相同,不同种物质的分子性质不同。 ⑤分子由原子构成,不同种物质的分子,原子构成不同,可分三种情形: a、构成分子的原子种类不同: b、构成分子的原子种类相同,但个数不同: c、构成分子的原子种类、个数都相同,但排列顺序不同(高中学习) 4、分子理论的应用: (1)用分子观点解释物理变化和化学变化。 物理变化:没有新分子生成的变化 由分子构成的物质 化学变化:分子本身发生变化,有新分子生成的变化。 (2)用分子观点解释混合物和纯净物: 混合物:由不同种分子构成的物质。纯净物:由同种分子构成的物质。 知识点二原子 1、定义:原子是化学变化中的最小粒子(用化学方法不能再分) 2、原子的性质 (1)原子的体积和质量都很小。(2)原子在不断的运动(3)原子间有一定的间隔

(4)同种物质的原子性质相同,不同种物质的原子性质不同。 3、化学变化的实质:在化学变化中,分子分解成原子,原子重新组合成新的分子。 注意:化学变化前后分子的种类一定改变,数目可能改变,原子的种类和数目一定不变。 注意:分子一定比原子大吗?答:不一定! 金属单质(如:Fe 、Cu 、Al、Hg ) 5、由原子直接构成的物质非金属固态单质(如:C、P、S、Si ) 稀有气体(氦、氖、氩、氪、氙、氡) 6、原子的构成: 带正电荷) 体积很小,约占原子体积的几千亿分之一 中子 (不带电) 原子 带负电荷) ———在核外一个相对很大的空间内做高速运动 在原子中,核电荷数= 质子数 = 核外电子数,原子核居于原子的中心,在原子中占的体积很小,但所占质量很大,电子绕着原子核作高速运动。 7、原子的分类:以核电荷数(质子数)为标准可分为100多类原子及100种元素。 8、相对原子质量: 由于原子的实际质量很小,使用起来很不方便,所以才有原子的相对质量。 国际上以碳12原子(原子核内有 6 个质子和 6 个中子)的质量的 1/12 作为标准,其它原子的质量跟它比较所得的值,就是这种原子的相对原子质量。用公式可表示为: 相对原子质量 某元素一个原子的质量一个碳原子质量的 12112 / 由此可见,相对原子质量是一个比值,不是原子的实际质量。相对原子量≈质子数+ 种子数 知识点三核外电子排布: 1、电子层:电子在原子核外一定的区域内运动,这些区域称为电子层,电子的这种分层运动的现象叫做核外 电子的分层排布。核外电子的分层排布是因为电子的能量各不相同,能量高的电子在离核远的区域运动,

第2章:《原子的结构和性质》(修改稿)

结构化学 Structural Chemistry 第二章 原子的结构和性质 Chapter 2 The structure and properties of atoms 主讲人:张 强 教授 E-mail: zhangq@https://www.wendangku.net/doc/0e19221634.html, 内蒙古师范大学化学与环境科学学院 授课专业 ● 化学专业 ● 材料物理与化学专业

第二章原子的结构和性质 1. 教学目的 掌握单电子原子Schr?dinger 方程的建立,了解其求解过程,掌握所产生量子数的物理意义和波函数、电子云的图像。由此结论推广至多电子原子,了解多电子原子的轨道近似和中心力场近似处理方法及核外电子排布的依据,理解原子结构与元素周期律性质之间的关系,了解角动量的偶合及原子光谱项的意义。2.学时安排 12学时 3.教学主题 2.1 薛定谔方程 2.1.1 类氢离子的薛定谔方程 2.1.2 变数分离 2.1.3 解Φ方程 2.1.4 Θ方程的解 2.1.5 R方程的解 2.2 类氢离子波函数及轨道能级 2.2.1 量子数的物理意义(一) 2.2.2 量子数的物理意义(二) 2.2.3 波函数与径向分布函数 2.3 多电子原子结构 2.3.1 中心力场近似和自洽场近似 2.3.2 电离能和电子亲和能 2.4 原子光谱项 2.4.1 原子光谱项定义 2.4.2 原子光谱项的推导 2.4.3 组态的能级分裂 2.4.4 基态光谱项 4. 重点和难点 重点:(1).量子数的物理意义;(2).波函数和电子云的图形;(3).多电子原子的结构. 难点:(1).单电子原子Schr?dinger方程的求解;(2).原子光谱项的推导. 5.作业 (1)自编打印习题:第一部分《量子力学基础和原子结构》习题31~44。 (2)自编辅助练习题(见打印的《结构化学》课程复习参考第一部分:11~21题)。

原子结构和分子结构复习题

原子结构和分子结构复习题 一、单项选择题 ()1、下列各套量子数合理的是 (a)3. 1. 2. + (b)3. 2. 1. –(c)2. 0. 0. 0. (d)2. 2. 1. ( ) 2、BBr3分子的空间构型为 (a) 平面三角形(b) 三角锥形(c) V形(d) 正四面体。) 7\ 收集22 ()3、下列物质中,不能形成氢键的是 (a)H2O (b) HF (c) C2H5OH (d) HBr ( ) 4、下列分子中,中心原子采取sp3杂化的是 (a) PCl3 (b) NCl3 (c) CCl4 (d) BeCl2 ()5、苯和CCl4分子间存在的作用力是哪种类型? (a ) 色散力(b)取向力(c)诱导力(d)氢键 ()6、下列元素第一电离能最大的是 (a)Be (b)B (c)N (d)O ()7、下列分子中,含有极性键的非极性分子是 (a)P4 (b)SO2 (c)HCl (d)NH3 ()8、电子云的形状由哪个量子数来确定? (a)主量子数(b)角量子数(c)磁量子数(d)自旋量子数 ( ) 9、下列关于氧分子的叙述正确的是 (a)氧分子中只有σ键(b)氧分子中只有π键 (c)氧分子的键级是3 (d)氧分子中有单电子 ( ) 10、与CO32–互为等电子体的是 (a)SO3 (b)O3 (c)SO42–、(d)CO2 二、填空题 1、第24号元素原子的核外电子排布式为________________________, 该元素位于周期表中________周期,________族,________区; 其符号和名称分别为________ 、________ 。 2、写出N2+ 的分子轨道电子排布式________________________、 其键级为________、在磁性上表现为________。 3、HCl和SO2分子之间存在的范德华力有、、。 4、某元素-2价阴离子在最外层n=4,l=0的轨道上有2个电子; n=4,l=1的轨道上有6个电子,该元素的名称为________; 其原子的价电子构型为_______ 5、分子轨道是由线性组合而成的,这种组合必须符合的三个原则是、、。 6、卤化氢中,HF 的沸点最高,原因是。 7、某电子处在3d 轨道,其轨道量子数n为______,l为______,m可能是_________。 8、按分子轨道理论,O2分子中最高能量的电子所处的分子轨道是、 O2分子中有个未成对的电子,在磁性上表现为。 三、简要回答下列问题 1. 说明原子序数为12、16、25 的元素原子中,4s和3d轨道哪个能量高? 2. 比较CH3CH2OH和CH3OCH3的熔沸点的高低,并说明原因。

相关文档