文档库 最新最全的文档下载
当前位置:文档库 › 变频器控制方式选型(精)

变频器控制方式选型(精)

变频器控制方式选型(精)
变频器控制方式选型(精)

变频器控制方式选型

概述:本文介绍了通用变频器的控制方式,以及在实际应用中如何选择合理的型号。

关键词:控制方式选型

1引言

变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。

2变频器控制方式

低压通用变频输出电压为380~690V,输出功率为0.75~560kW,工作频率为0~500Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。

2.1U/f=C的正弦脉宽调制(SPWM)控制方式

其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。

2.2电压空间矢量(SVPWM)控制方式

它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

2.3矢量控制(VC)方式

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流

Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁

链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

2.4直接转矩控制(DTC)方式

1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。

直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

2.5矩阵式交—交控制方式

VVVF变频、矢量控制变频、直接转矩控制变频都是交-直-交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交-交变频应运而生。由于矩阵式交-交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:

——控制定子磁链引入定子磁链观测器,实现无速度传感器方式;

——自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;

——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;

——实现Band Band控制按磁链和转矩的Band-Band控制产生PWM信号,对逆变器开关状态进行控制。

矩阵式交交变频具有快速的转矩响应(﹤2ms),很高的速度精度

(±2%,无PG反馈),高转矩精度(﹤+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。

3变频器控制方式的合理选用

控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约50多种。选用变频器时不要认为档次越高越好,而要按负载的特性,以满足使用要求为准,以便做到量才使用、经济实惠。表1中所列参数供选用时参考。

4转矩控制型变频器的选型及相关问题

基于调速方便、节能、运行可靠的优点,变频调速器已逐渐替代传统的变极调速、电磁调速和调压调速方式。在推出PWM磁通矢量控制的变频器数年后,1998年末又出现采用DTC控制技术的变频器。ABB公司的ACS600系列是第一代采用DTC技术的变频器,它能够用开环方式对转速和转矩进行准确控制,而且动态和静态指标已优于PWM闭环控制指标。

直接转矩控制以测量电机电流和直流电压作为自适应电机模型的输入。该

模型每隔25μs产生一组精确的转矩和磁通实际值,转矩比较器和磁通比较器将转矩和磁通的实际值与转矩和磁通的给定值进行比较,以确定最佳开关位置。由此可以看出它是通过对转矩和磁通的测量,即刻调整逆变电路的开关状态,进而调整电机的转矩和磁通,以达到精确控制的目的。

4.1选型原则

首先要根据机械对转速(最高、最低)和转矩(起动、连续及过载)的要求,确定机械要求的最大输入功率(即电机的额定功率最小值)。有经验公式 P=nT/9950(kW)

式中:P——机械要求的输入功率(kW);

n——机械转速(r/min);

T——机械的最大转矩(N•m)。

然后,选择电机的极数和额定功率。电机的极数决定了同步转速,要求电机的同步转速尽可能地覆盖整个调速范围,使连续负载容量高一些。为了充分利用设备潜能,避免浪费,可允许电机短时超出同步转速,但必须小于电机允许的最大转速。转矩取设备在起动、连续运行、过载或最高转速等状态下的最大转矩。最后,根据变频器输出功率和额定电流稍大于电机的功率和额定电流的原则来确定变频器的参数与型号。

需要注意的是,变频器的额定容量及参数是针对一定的海拔高度和环境温度而标出的,一般指海拔1000m以下,温度在40℃或25℃以下。若使用环境超出该规定,则在确定变频器参数、型号时要考虑到环境造成的降容因素。

4.2变频器的外部配置及应注意的问题

1)选择合适的外部熔断器,以避免因内部短路对整流器件的损坏变频器的型号确定后,若变频器内部整流电路前没有保护硅器件的快速熔断器,变频器与电源之间应配置符合要求的熔断器和隔离开关,不能用空气断路器代替熔断器和隔离开关。

2)选择变频器的引入和引出电缆根据变频器的功率选择导线截面合适的三芯或四芯屏蔽动力电缆。尤其是从变频器到电机之间的动力电缆一定要选用屏蔽结构的电缆,且要尽可能短,这样可降低电磁辐射和容性漏电流。当电缆长度超过变频器所允许的输出电缆长度时,电缆的杂散电容将影响变频器的正常工作,为此要配置输出电抗器。对于控制电缆,尤其是I/0信号电缆也要用屏蔽结构的。对于变频器的外围元件与变频器之间的连接电缆其长度不得超过10m。

3)在输入侧装交流电抗器或EMC滤波器根据变频器安装场所的其它设备对电网品质的要求,若变频器工作时已影响到这些设备的正常运行,可在变频器输入侧装交流电抗器或EMC滤波器,抑制由功率器件通断引起的电磁干扰。若与变频器连接的电网的变压器中性点不接地,则不能选用EMC滤波器。当变频器用500V以上电压驱动电机时,需在输出侧配置du/dt滤波器,以抑制逆变输出电压尖峰和电压的变化,有利于保护电机,同时也降低了容性漏电流和电机电缆的高频辐射,以及电机的高频损耗和轴承电流。使用du/dt滤波器时要注意滤波器上的电压降将引起电机转矩的稍微降低;变频器与滤波器之间电缆长度不得超过3m。

5结语

变频器的选型是一项需要认真对待的工作,目前市场上低压通用变频器的

品种及规格很多,选择时应按实际的负载特性,以满足使用要求为准,以便做到量才使用,经济实惠。

变频器选型如何正确选择中小型断路器

变频器选型如何正确选择中小型断路器 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

如何正确选择中小型断路器 配电(线路)、电动机和家用电器等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,选用的断路器的保护特性不同。 配电用断路器的选择 配电用断路器是指在低压电网中专门用于分配电能的断路器,包括电源总断路器和负载支路断路器。在选用这一类断路器时,需特别注意下列选用原则: (1)断路器的长延时动作电流整定值≤导线容许载流量。对于采用电线电缆的情况,可取电线电缆容许载流量的80%。 (2)3倍长延时动作电流整定值的可返回时间≥线路中最大起动电流的电动机的起动时间。 (3)短延时动作电流整定值I1为: I1=(Ijx+ 式中:Ijx———线路计算负载电流(A); k———电动机的起动电流倍数; Ied———电动机额定电流(A)。 (4)瞬时电流整定值I2为: I2=(Ijx+klkIedm) 式中:kl———电动机起动电流的冲击系数,一般取kl=~2; Iedm———最大的一台电动机的额定电流。 (5)短延时的时间阶段,按配电系统的分段而定。一般时间阶段为2~3级。每级之间的短延时时差为~,视断路器短延时机构的动作精度而定,其可返回时间应保证各级的选择性动作。选定短延时阶梯后,最好按被保护对象的热稳定性能加以校核。 电动机保护型断路器的选择 微型断路器(MCB)不能用于对电动机的保护,只可作为替代熔断器对配电线路(如电线电缆)进行保护。电动机在起动瞬间有一个5~7倍Ied,持续时间为 10s的起动电流,即使C特性在电磁脱扣电流设定为5~10倍Ied,可以保证在电动机起动时避过浪涌电流。 但对热保护来讲,其过载保护的动作值整定于,也就是说电动机要承受45% 以上的过载电流时MCB才能脱扣,这对于只能承受<20%过载的电机定子绕组来讲,

变频器的运行控制方式

变频器的运转指令方式 变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。 与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。 1操作器键盘控制 操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。 操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。 按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。同理,距离较远时则必须使用远程操作器键盘。 在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。 对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。该功能对端子控制、通讯控制都有效。 2端子控制 2.1基本概念 端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。 这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

水泵选型的原则与步骤

水泵选型的原则与步骤 第一节选用原则 泵是一种面大量广的通用型机械设备,它广泛地应用于石油、化工、电力冶金、矿山、选船、轻工、农业、民用和国防各部门,在国民经济中占有重要的地位。据79 年统计,我国泵产量达125.6万台。泵的电能消耗占全国电能消耗的21%以上。因此大力降低泵有能源消耗,对节约能源具用十分重大的意义。 目前在国民经济各个领域中,由于选型不合理,许多的泵处于不合理运行状况,运行效率低,浪费了大量能源。有的泵由于选型不合理,根本不能使用,或者使用维修成本增加,经济效益低。由此可见,合理选泵对节约能源同样具有重要意义。 所谓合理选泵,就是要综合考虑泵机组和泵站的投资和运行费用等综合性的技术经济指标,使之符合经济、安全、适用的原则。具体来说,有以下几个方面: ●必须满足使用流量和扬程的要求,即要求泵的运行工况点(装置特性曲线与泵的性能曲线的交点)经常保持在高效区间运行,这样既省动力又不易损坏机件。 ●所选择的水泵既要体积小、重量轻、造价便宜,又要具有良好的特性和较高的效率。 ●具有良好的抗汽蚀性能,这样既能减小泵房的开挖深度,又不使水泵发生汽蚀,运行平稳、寿命长。 ●按所选水泵建泵站,工程投资少,运行费用低。 第二节选型步骤 一、列出基本数据: 1、介质的特性:介质名称、比重、粘度、腐蚀性、毒性等。 2、介质中所含固体的颗粒直径、含量多少。 3、介质温度:(℃) 4、所需要的流量 一般工业用泵在工艺流程中可以忽略管道系统中的泄漏量,但必须考虑工艺变化时对流量的影响。农业用泵如果是采用明渠输水,还必须考虑渗漏及蒸发量。 5、压力:吸水池压力,排水池压力,管道系统中的压力降(扬程损失)。 6、管道系统数据(管径、长度、管道附件种类及数目,吸水池至压水池的几何标高等)。 如果需要的话还应作出装置特性曲线。 在设计布置管道时,应注意如下事项: A、合理选择管道直径,管道直径大,在相同流量下、液流速度小,阻力损失小,但价格高,管道直径小,会导致阻力损失急剧增大,使所选泵的扬程增加,配带功率增加,成本和运行费用都增加。因此应从技术和经济的角度综合考虑。 B、排出管及其管接头应考虑所能承受的最大压力。 C、管道布置应尽可能布置成直管,尽量减小管道中的附件和尽量缩小管道长度,必须转弯的时候,弯头的弯曲半径应该是管道直径的3~5倍,角度尽可能大于90℃。 D、泵的排出侧必须装设阀门(球阀或截止阀等)和逆止阀。阀门用来调节泵的工况点,逆止阀在液体倒流时可防止泵反转,并使泵避免水锤的打击。(当液体倒流时,会产生巨大的反向压力,使泵损坏) 二、确定流量扬程 流量的确定 a、如果生产工艺中已给出最小、正常、最大流量,应按最大流量考虑。 b、如果生产工艺中只给出正常流量,应考虑留有一定的余量。 对于ns>100的大流量低扬程泵,流量余量取5%,对ns<50的小流量高扬程泵,流量余量取10%,50≤ns≤100的泵,流量余量也取5%,对质量低劣和运行条件恶劣的泵,流量余量应取10%。 c、如果基本数据只给重量流量,应换算成体积流量。

变频器选型设计规范

一、变频器一拖一常规选型原则如下: (1)DANFOSS按VLT6000系列进行选择,西门子按MM420,MM430进行选型,ABB按ACS510选型 (2)不管何种品牌的变频器,选型时必需结合电机的功率、额定电流和变频器所处的环境温度、海拔高度等参数进行,在变频器满足所允许的温度和海拔条件下,优先考虑电流参数,功率参数仅作为选型时的参考参数; (3)常规按变频器安装于室内且环境温度低于40度,海拔高度低于1000米来选型; (4)各种品牌的变频器无需考虑降容时所需满足的环境条件如下表: (5)变频器按输入电压为三相380V选型; (6)常规用变频器的选型按无滤波器选型,如合同或项目要求使用滤波器,则需参考另外的选型资料; (7)常规用变频器均需按带基本操作面板去选型;操作面板安装于变频器上,如合同或项目要求操作 面板外拉或对操作面板的功能要求超过基本操作面板的情况,需参考其它的资料选型; (8)常规用变频器按IP20防护等级选型; (9)常规用变频器按变频器开关频率为4KHZ选型 (10)常规用变频器按不配相关通讯选件选型 (11)常规用变频器均按变频器变转矩运转模式选型 (12)若环境温度超过40℃,海拔高度超过1000米、有通讯选件要求或输入电压超过460V的使用情况,需考虑其它的降容措施和选型方案,具体详见本选型规范的第四条;

类型设计规范(√) 工艺规范( ) 其它( ) 以下选型以东莞电机厂的4极电机为例,列出了不同功率的4极电机在满足上述条件下所对应的变频器型号;4极电机以外或其它品牌的电机视电机的实际额定电流,所选变频器型号及相关保护可能会有不同,必需遵守电机额定电流不大于变频器输出电流来选型变频器; 3

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

PWM型变频器的基本控制方式(DOC)

PWM型变频器的基本控制方式 通用的PWM型变频器是一种交—直—交变频,通过整流器将工频交流电整流成直流电,经过中间环节再由逆变器将直流电逆变成频率可调的交流电,供给交流负载。异步电动机调速时,供电电源不但频率可变,而且电压大小也必须能随频率变化,即保持压频比基本恒定。 PWM型变频器一般采用电压型逆变器。根据供给逆变器的直流电压是可变的还是恒定的,变频器可分成两种基本控制方式。 (1)变幅PWM型变频器这是一种对变频器输出电压和频率分别进行调节的控制方式,其基本电路如图3-3所示。中间环节是滤波电容器。 图2-3 变幅PWM型变频器 晶闸管整流器用来调压,与一般晶闸管调压系统一样,采用相位控制,通过改变触发脉冲的延迟角α来获得与逆变器输出频率相对应的不同大小的直流电压。逆变器只作输出频率控制,它一般是由6个开关器件组成,按脉冲调制方式进行控制。 图3-4所示是另一种直流电压可调的PWM变频电路。它采用二极管不可控整流桥,把三相交流电变换为恒定的直流电。分立斩波器电路,来改变输出直流电压的大小,通过逆变器输出三相交流电。 图2-4 利用斩波器的变频电路图 以上两种调压式变频电路,都需要两极可控功率级,相比较,采用晶闸管整流桥可以获得更大功率的直流电,由于可控整流桥采用相位控制,输入功率因数将随输出直流电压的减小而降低;而斩波式调压,输入功率变流级采用的是二级管整流桥,所以输入端有很高的功率因数,代价是多了一个斩波器。另外,就动态响应的快速性来说后者比前者好。 (2)恒幅PWM型变频器

恒幅脉宽调制PWM式变频电路如图3.3所示,它由二极管整流桥,滤波电容和逆变器组成。逆变器的输入为恒定不变的直流电压,通过调节逆变器的脉冲宽度和输出交流电压的频率,既实现调压又实现调频,变频变压都是由逆变器承担。此系统是目前使用较普遍的一种变频系统,其主电路简单,只要配上简单的控制电路即可。它具有下列主要优点: 1)简化了主电路和控制电路的结构。由二极管整流器对逆变器提供恒定的直流电压。在PWM逆变器内,在变频的同时控制其输出电压。系统只有一个控制功率级,从而使装置的体积小,重量轻,造价低,可靠性好。 2)由二极管整流器代替晶闸管整流器,提高了装置的功率因数。 3)改善系统的动态性能。PWM型逆变器的输出功率和电压,都在逆变器内控制和调节。因此,调节速度快,调节过程中频率和电压配合好,系统动态性能好。 4)对负载有较好的供电波形。PWM型逆变器的输出电压和电流波形接近正弦波,从而解决了由于以矩形波供电引起的电动机发热和转矩降低问题,改善了电动机运行性能。 图2-5 PWM型逆变器 但PWM型逆变器也有如下缺点: 1)在调制频率和输出频率之比固定的情况下,特别是在低频时,高次谐波影响较大,因而电动机的转矩脉动和噪声都较大。 2)在调制频率和输出频率之比作有级变化的情况下,往往使控制电路比较复杂。 3)器件的工作频率与调制频率有关。有些器件的开关损耗和换相电路损耗较大,而且需要采用导通和关断时间短的高速开关器件。 2.2.2 PWM型逆变器的基本工作原理

泵选型原则

泵选型原则 设计院在设计装置设备时,要确定泵的用途和性能并选择泵型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么? 一、泵选型原则  1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵。 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料。 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 金属耐磨材质硬镍1#对粗颗粒有较好的抗磨蚀性;硬镍4#抗磨蚀性与硬镍接近,但对大颗粒,高应力的冲击性渣浆有较好的抗磨蚀性,价格较硬镍1#高;铬27耐磨铸铁抗磨蚀性类似硬镍1#,就碱性混合液而言,具有较好的耐腐蚀性,价格高于硬镍1#,Cr15Mo3是目前世界上公认的优良抗磨蚀材质,宏观硬度高达布氏650~750,对粗颗粒强磨蚀浆体有较好的抗磨蚀性能,但价格较高,而且较脆。天然橡胶适合输送弱酸,弱碱性浆体,大磨粒粒度及其速度一定的范围内,天然橡胶要比其他金属或橡胶弹性材料耐用。氯丁橡胶不如天然橡胶好,但温度低于200摄氏度时,在油类浆体中具有极好的抗磨蚀性。 3、机械方面可靠性高、噪声低、振动小。  4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。  5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。因此除以下情况外,应尽可能选用离心泵:有计量要求时,选用计量泵。扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵。扬程很低,流量很大时,可选用轴流泵和混流泵。介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵) 介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、泵的选型依据

变频器容量的选择

1、变频器容量的选择 变频器容量的选择是一个重要且复杂的问题,要考虑变频器容量与电动机容量的匹配,轻易偏小会影响电动机有效力矩的输出,影响系统的正常运行,甚至损坏装置,而容量偏大则电流的谐波分量会增大,也增加了设备投资。 1。1变频器容量选择的步骤: 变频器容量选择可分三步: (1)了解负载性质和变化规律,计算出负载电流的大小或作出负载电流图I=f (t)。 (2)预选变频器容量及其他 (3)校验预选变频器。必要时进行过载能力和起动能力的校验。若都通过,则预选的变频器容量便选定了;否则从(2)开始重新进行,直到通过为止。 在满足生产机械要求的前提下,变频器容量越小越经济。 1。2基于不用电动机负载电流下变频器容量的选择 一般地说,变频器的容量有三种表示方法:①额定电流;②适配电动机的额定功率。③额定视在功率。不管是哪一种表示方法,归根到底还是对变频器额定电流的选择,应结合实际情况根据电动机有可能向变频器吸收的电流来决定。通常变频器的过载能力有两种:①1。2倍的额定电流,可持续1分钟;②1。5倍的额定电流,可持续1分钟;而且变频器的答应电流与过程时间呈反时限的关系。如1。2(1。5)倍的额定电流可持续1min;而1。8(2。0)倍的额定电流,可持续0。5min。这就意味着:①不论任何时候向电动机提供在1min(或0。5min)以上的电流都必须在某些范围内。②过载能力这个指标,对电动机来说,只有在起动(加速)过程中才有意义,在运行过程中,实际上等同于不答应过载。 下面讨论如何根据电动机负载电流的情况来选择变频器的容量。 1。2。1一台变频器只供一台电动使用,即一拖一。 在计算出负载电流后,还应考虑三个方面的因素:①用变频器供电时,电动机电流的脉动相对工频供电时要大些;②电动机的起动要求。即是由低频低压起动,还是额定电压、额定频率直接起动。③变频器使用说明书中的相关数据是用该公司的标准电机测试出来的。要注重按常规设计生产的电机在性能上可能有一定差异,故计算变频器的容量时要留适当余量。 (1)恒定负载连续运行时变频器容量的计算。

变频器的控制方式

变频器的控制方式 1 引言 我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。根据不同的变频控制理论,其模式主要有以下三种: (1)v/f=c的正弦脉宽调制模式 (2)矢量控制(vc)模式 (3)直接转矩控制(dtc)模式 针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。这些控制方式在变频器通电运行前必须首先设置。 2 v/f控制方式 2.1 基本概念 我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。图1中所示就是变频器的基本运行v/f曲线。 由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。

当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。 基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。 2.2 预定义的v/f曲线和用户自定义v/f曲线 由于电动机负载的多样性和不确定性,因此很多变频器厂商都推出了预定义的v/f曲线和用户自定义的任意v/f曲线。 预定义的v/f曲线是指变频器内部已经为用户定义的各种不同类型的曲线。如艾默生ev2000变频器有三种特定曲线(图2a),曲线1为2.0 次幂降转矩特性、曲线2为1.7次幂降转矩特性、曲线为1.2次幂降转矩特性。罗克韦尔 ab powerflex 400变频器有4种定义的曲线(如图 2b),其定义的方式是在电动机额定频率一半(即50%fn)时的输出电压是电动机额定电压的30%时(即30%vn)为曲线1,35%vn为曲线 2,40%vn为曲线3,vn为曲线4。这些预定义的v/f曲线非常适合在可变转矩(如典型的风机和泵类负载)中使用,用户可以根据负载特性进行调整,以达到最优的节能效果。 对于其他特殊的负载,如同步电动机,则可以通过设置用户自定义v/ f 曲线的几个参数,来得到任意v/ f曲线,从而可以适应这些负载的特殊要求和特定功能。自定义v/ f曲线一般都通过折线设定,典型的有三段折线和两段折线。

西门子标准变频器控制方法描述

西门子标准变频器控制方法描述

第一节速度矢量控制(MM440) 在矢量控制中,速度控制器影响系统的动态特性。特别是恒转矩负载,速度闭环控制有利于改善系统的运动精度和跟随性能。在矢量控制过程中,速度控制器的配置是重要的环节。 根据速度控制器的反馈信号来源,可以将速度矢量控制分为带传感器的矢量控制(VC)与无传感器的矢量控制(SLVC)两种。 ?编码器的反馈信号(VC):P1300=20 ?观测器模型的反馈信号(SLVC):P1300=21 在快速调试和电机参数优化的过程中,变频器会根据负载参数自动辨识系统模型,建立模型观测器,在没有传感器的情况下,系统也会根据输出电流来计算当前速度,作为速度反馈来构成速度闭环。 速度控制器的设定方式(P1460,P1462,P1470,P1472) ?手动调节 可根据经验对速度控制器的比例与积分参数进行整定 ?PID自整定 设定参数:P1400 当P1400.0=1,使能速度控制器的增益自适应功能,即根据系统偏差的 大小来自动调节比例增益系数Kp。在弱磁区,增益系数随磁通的降低 而减小。 当P1400.1=1,速度控制器的积分被冻结,只有比例增益,即对开环运 行的电动机加上滑差补偿。 ?优化方式自整定 通过设置P1960=1,变频器会自动对速度控制器的各参数进行整定。

第二节 转矩控制(MM440) 矢量控制分为速度矢量控制与转矩矢量控制,转矩控制与速度矢量控制的主设定频率 滤波 编码器反馈 观测器模型反 馈实际频率 滤波 PI 速度 控制器 系统 手动调节 自整定 优化整定 P1400.0=1 P1960=1

泵的分类及选型原则

泵的分类及选型原则、用途 第1节泵的分类 泵的种类繁多,结构各异,分类的方法也很多,常见的分类方法有: (1)按泵工作原理分类 1)、叶片泵:叶片泵是将泵中叶轮高速旋转的机械能转化为液体的动能和压能。由于叶轮中有弯曲且扭曲的叶片,故称叶片泵。根据叶轮结构对液体作用力的不同,叶片泵可分为: 1、离心泵:靠叶轮旋转形成的惯性离心力而抽送液体的泵。 2、轴流泵:靠叶轮旋转产生的轴向推力而抽送液体的泵。属于低扬程、大流量泵型,一般的 性能范围:扬程1~12m;流量0.3~65m3/s,比转数500~1600。 3、混流泵:叶轮旋转既产生惯性离心力又产生轴向推力而抽送液体的泵。 2)、容积泵:利用工作室容积周期性的变化来输送液体。有活塞泵、柱塞泵、隔膜泵、齿轮泵、螺杆泵等。 3)、其他类型泵:有射流泵、水锤泵、电磁泵等。 (2)离心泵分类离心泵按结构形式分类: 1、按主轴方位分类:a.卧式泵:主轴水平放置;b.斜式泵:主轴与水平面呈一定角度放置;c.立 式泵:主轴垂直于水平面放置。 2、安叶轮的吸入方式分类: A、单吸泵:液体从一侧流入叶轮,存在轴向力,单吸叶轮; B、双吸泵:液体从两侧流入叶轮,双吸叶轮。不存在轴向力,泵的流量几乎比单吸泵增加 一倍 3、按叶轮级数分类:a.单级泵:泵轴只装一个叶轮;b.多级泵:同一泵轴上装有两个或两个以上 叶轮,液体依次流过每级叶轮。液体依次流过每级叶轮,级数越多,扬程越高 4、按泵壳体剖分方式分类: A、分段式泵:壳体按与主轴垂直的平面剖分; B、节段式泵:在分段式多级泵中,每一段泵体都是分开的; C、中开式泵:壳体从通过泵轴轴心线的平面上分开,按剖分平面的方位又分为: 水平中开式泵:剖分面是水平面,为卧式泵; 垂直中开式泵:剖分面与水平面垂直,为立式泵; 斜中开式泵:剖分面与水平面成一定夹角,为斜式泵。 5、按泵体的形式分类: a.蜗壳泵; b.双蜗壳泵。 6、特殊结构形式的泵: A、潜水电泵:泵和电动机制成一体,能潜入水中工作,泵体一般为单级或多级立式离心泵和 轴流泵。 B、液下泵:属单级或多级立式离心泵,电动机、泵座位于液面上部,泵体淹没在液体中,电 动机通过长传动轴带动叶轮旋转。主要用于食品等行业。

变频器选型原则与方法

变频器选型原则与方法 关于通用变频器的选型,是一个很多人关心的话题,也有一些初学者对选型原则不清楚。在这里,我想先把通用变频器的选型方法跟大家分享一下。 1.最关键的选型因素:工作电流。 根据工作电流来选变频器,在整个选型流程当中,是最后一步了。之所以把它提到最前面来讲,是要强调一下。选型时,要根据电机的实际工作电流(不是铭牌电流),来选型变频器,而不是铭牌功率。 原则上要求,在长时工作时:变频器输出电流 > 电机实际工作电流 在这里,希望大家首先对电机和变频器的铭牌数据有一个深刻的理解。这里不多讲。 一般情况下,项目是先选电机,后选变频器。即变频器的选型都是针对即有电机进行的。电机的实际工作电流与实际工况有关。只有熟悉工况,估算出电机的工作电流随时间变化的关系,才能确定相应的变频器的型号。 (1)一般情况下,拖动恒转矩负载的电机,可以以额定电流为依据,选择变频器。比如10KW电机,20A额定电流。变频器样本上10KW的变频器,21A输出电流。可以选这个变频器。 (2)一般情况下,拖动风机泵类负载的电机,也可以以额定电流为依据,选择变频器。 (3)经常短时过载运行的电机,需要计算过载周期。要求变频器最大输出电流Imax 大于电机峰值电流,且变频器的I2t在自身允许范围内。很可能会放大一档或几档来选变频器。比如10KW电机,20A额定电流。间歇工作制,1秒内过载运行2倍(即电流为40A),之后停止运行29秒。这就需要根据变频器过载曲线来选型。可以画一下电机电流随时间变化的曲线出来,要求变频器的输出电流曲线能覆盖(超过)电机电流曲线即可。对于重载变频器的选型,往往有一些经验数据可以参考。比如同类项目。 这方面,西门子变频器做得比较好,过载能力强,一般允许1.6倍短时过载(详细数据,请参考样本)。 (4)电机大,而工作负载轻时,可以根据实际情况选小变频器。 2.变频器选型的其他因素 海拔。 环境温度。运输和存储温度。保护等级。 进线电压等级。进线电源频率。变频器输出频率范围。 变频器本身的效率。过载能力。冷却方式。 尺寸。结构。安装方法。 其他选件。 (1)海拔 海拔超过1000米以后,会造成电子器件性能下降,比如电容耐压能力下降,电流承受能力也会下降。所以在海拔超过1000米的地方使用变频器,注意它的降容系数。西门子变频器样本上,会给出一个降容曲线,随海拔升高,过压和过流能力都有所下降。 (2)环境温度 在运输过程中,变频器允许的温度范围大一些。比如MM4系列变频器允许的存储温

PLC控制变频器的几种方法

在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。? 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置 2.1 系统硬件组成 FX2N系列PLC(产品版本V 3.00以上)1台(软件采用FX-PCS/WIN-C V 3.00版); FX2N-485-BD通讯模板1块(最长通讯距离50m); 或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块(最长通讯距离500m); FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内);

带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。); RJ45电缆(5芯带屏蔽); 终端阻抗器(终端电阻)100Ω; 选件:人机界面(如F930GOT等小型触摸屏)1台。 2.2 硬件安装方法 (1) 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接。 (2) 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板。 (3) 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍。 2.3 变频器通讯参数设置 为了正确地建立通讯,必须在变频器设置与通讯有关的参数如“站号”、“通讯速率”、“停止位长/字长”、“奇偶校验”等等。变频器内的Pr.117~Pr.124参数用于设置通讯参数。参数设定采用操作面板或变频器设置软件FR-SW1-SETUP-WE在PU口进行。 2.4 变频器设定项目和指令代码举例

变频器中常用的控制方式

变频器中常用的控制方式 1, 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直 接转矩控制等。 ⑴V/f 控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f 控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器 具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在 d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。 通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各 种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差 频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控 制方式在输出特性方面能得到很大的改善。但是,这种控制方式属于闭环控制方式,需要在 电动机上安装速度传感器,因此,应用范围受到限制。 无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。 (4) 直接转矩控制

泵的选型原则、依据和具体操作方式

泵的选型原则、依据和具体操作方式 设计院在设计装置设备时,要确定泵的用途和性能并选择崩型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么? 一、了解泵选型原则 1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 3、机械方面可靠性高、噪声低、振动小。 4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。 5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: a、有计量要求时,选用计量泵 b、扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵. c、扬程很低,流量很大时,可选用轴流泵和混流泵。 d、介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、.螺杆泵) e、介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 f、对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、知道泵选型的基本依据 泵选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等 1、流量是选泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。如设计院工艺设计中能算出泵正常、最小、最大三种流量。选择泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1.1倍作为最大流量。 2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%—10%余量后扬程来选型。 3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c密度d,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,有效气蚀余量计算和合适泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。 4、装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧最低液面,排出侧最高液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。 5、操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS(绝对)、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、泵的位置是固定的还是可移的。 三、选泵的具体操作

一台变频器拖动多台电机的事项你注意了吗精选文档

一台变频器拖动多台电机的事项你注意了吗精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

一台变频器拖动多台电机的事项你注意了吗?【工控老鬼分享】 变频器可以实现一拖二甚至一拖多,但需要遵循一些原则,本文作下简要分析: 1、设备选型 A. 变频器选型 在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。 如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。 如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变

频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。 B. 交流接触器选型 对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。 C. 热继电器或电动机保护器选型 对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以 内。

变频器的远程控制及调速原理.

变频器远程控制及调速原理 -----唐玉龙 一、变频器的远程控制 什么是变频器远程控制器在许多变频器的应用现场,电机与操作室距离较远。如将变频器安装在现场,不便于工人的观察与操作;如安装在操作室内,则动力线拉的距离太远,成本高,且对变频器本身及系统中其他设备造成干扰。针对上述应用情况,我们开发研制了变频器远程控制器产品。变频器远程控制器是一种实现变频器远程操作的智能仪表,通过RS485网络远程控制变频器的启动、停止、加速、减速、正反转,并实时显示变频器的工作频率、转速等运行状态信息。单机通讯距离可达1200米(9600bps),有效减少变频器的干扰。这样就可将变频器安装在电动机附近,通过屏蔽通讯线接到远端操作室内仪表盘上的变频器远程控制器上,在操作室内就能观察和操作变频器的运行状态。另外,变频器远程控制器还可接外置操作按钮,有手动/自动切换及监听等功能,可接入计算机控制系统,便于工程使用。二、变频器远程控制器的种类和功能我们研发的变频器远程控制器根据变频器的不同可分为标准型和加强型;根据通讯方式的不同可分为有线通讯、无线通讯;根据不同的通讯协议也分别有相应的产品。如果没有通讯接口或无法知道其通讯协议的变频器,可在变频器一端接上我们的远端转换器,将模拟信号和开关信号通过485网络传送到远程控制器上。这样对没有通讯口或无法知道通讯协议的变频器也都能使用,真正实现变频器万能远程控制器的功能。 二、交流异步电动机变频调速原理 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

变频器常用的几种控制方式

变频器常用的几种控制方式 变频调速技术就是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也就是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 1、1 变频器的基本结构 变频器就是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1、2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器与电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器与高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器与矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器与三相变频器等。 2、变频器中常用的控制方式 2、1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制就是为了得到理想的转矩-速度特性,基于在改变电源频率进 行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但就是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制就是一种直接控制转矩的控制方式,它就是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率与电流进行控制,因此,这就是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速与负载变动有良好的响应特性。 (3) 矢量控制 矢量控制就是通过矢量坐标电路控制电动机定子电流的大小与相位,以达到对电动机在d、q、0坐标轴系中的励磁电流与转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序与时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的

风机、水泵变频器选型原则

风机、水泵变频器选型方法 一、首先需要注意: 1.罗茨风机及潜水泵及齿轮泵等不是平方转矩的风机水泵类负载,是恒转矩负载,平方转矩类风机水泵负载一般都是针对于离心风机及水泵来的,这种负载在出口关闭情况下出口压力升到额定压力后就不升高了,因为没有流量所以负荷降低。 2.风机水泵类负载一般在设计时是按照最大需量设计的,存在富余功率。对于这类负载使用变频器按需使用就有节能的空间。 二、正确的把握变频器驱动的机械负载对象的转速——转矩特性,是选择电动机及变频器容量、决定其控制方式的基础。风机、泵类的负载为平方转矩负载。 随着转速的降低,所需转矩以平方的比例下降,低频时负载电流小,电机过热现象不会发生;但有些负载的惯量大,必须设定长的加速时间,或再启动时的大转矩引起的冲击,因此选型时需考虑裕量; 另:当电机以超出基频转速以上的转速运行时,负载所需的动力随转速的提高而急剧增加,易超出电机与变频器的容量,将导致运行中断或电机发热严重。

对于恒转矩负载,要选用G型的变频器;P型变频器适用于普通的风机和离心式水泵等负载。(罗茨风机、螺杆泵、泥浆泵、往复式柱塞泵等则要用G型): 1) 根据负载特性选择变频器:如负载为恒转矩负载需选G型变频器;如负载为风机、泵类负载应选择风机、泵类P型变频器。因为风机、水泵会随着转速增大力矩。而刚启动时力矩较小。 2) 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。因此用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。 3) 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。 4) 对于一些特殊的应用场合,如高环境温度、高开关频率(尤其是在楼宇自控等对噪音限制较高的应用场所使用时需注意)、高海拔此时会引起变频器的降容,变频器需放大一档选择。 5) 当变频器用于控制并联的几台电机时,一定要考虑变频器到电动机的电缆的长度总和在变频器的容许范围内。如果超过规定值,要放大一档或两档来选择变频器。另外在此种情况下,变频器的控制方式只能为V/F控制方式,并且变频器无法实现电动机的过流、过载保

相关文档
相关文档 最新文档