文档库 最新最全的文档下载
当前位置:文档库 › 功率放大器模块PAM06说明书20191025

功率放大器模块PAM06说明书20191025

功率放大器模块PAM06说明书20191025
功率放大器模块PAM06说明书20191025

FANUC主轴放大器模块报警-详解

FANUC主轴放大器模块报警-详解 主轴放大器报警:发生报警时STATUS 显示的报警LED(红色)点亮,2 位7 段LED 显示报警代码。01报警 代码01电机内部达到温度指标以上。 (1) 切削过程中显示本报警时(电机温度过高) (a) 请确认电 机的冷却状态。(i) 主轴电机冷却风扇停转时,请确认冷却风扇电源,如无法修复则进行更换。(ii) 对液冷电机,请 确认冷却系统。(iii) 如果主轴电机的环境温度高于指标时,请进行改善。(b) 请再次确认加工条件。(2) 轻负荷下显示本报警时(电机温度过高) (a) 频繁加速/减速时,请将包括 加速/减速时的输出量在内的平均设为连续额定以下的使 用条件。(b) 电机固有参数设定不正确。请参阅FANUC AC SPINDLE MOTOR αi series 参数说明书(B-65280CM),确认电机固有参数。(3) 电机温度较低而显示报警时(a) 主轴电机反馈电缆不良:请更换反馈电缆。(b) 参数尚未正确设定:请确认参数。(c) 控制印制电路板不良:请更换控制印 制电路板或主轴放大器。(d) 电机(内部温度传感器)不良:请更换电机。02报警代码02电机速度与指令速度有较大差异。 (1) 电机加速过程中显示本报警时(a) 加速/减速过程中时间参数设定值不恰当设定如下参数时,要比实际设备的加速/减速时间留有余量。内容4082 设定值2 (加速/减速中的

时间设定) (b) 速度检测器的设定参数有误(2) 重切削时显 示本报警(a) 切削负载超过电机的最大输出请确认负载表 的显示,修改使用条件。(b) 错误地设定了输出限制的参数请确认如下参数与机床及电机的规格一致。4028 设定值0 (输出限制模式的设定) 4029 设定值100 (输出限制值) (c) 电机固有参数设定不正确请确认电机固有参数。03报警代码03DC 链路部分的保险丝溶断。(DC 链路部分的电压不足)本报警在紧急停止解除时检查。(1) 主轴运转(旋转)过程中发生报警时很可能是SPM 内的DC 链路部分保险丝溶断,请更换SPM。此外,本报警还可能是如下原因:(a) 动力线接地故障(b) 电机绕组接地故障(c) IGBT 及IPM 模块不良(2) 紧急停止解除时或CNC 启动时PSM 输入的电磁接触器先打开,又由于本报警而关闭时(主轴连接2 轴时,也可能不关闭) (a) DC 链路部分的连线没有连接请确认DC 链路的连线是否有误。(b) SPM 内的DC 链路部保险溶断请更换SPM。06报警代码06温度传感器的异常或温度传感器电缆断线。(1) 电机固有参数设定不正确请确认电机固有参数。(2) 电缆不良反馈电缆不良。请更换电缆。(3) 控制印制电路板故障请更换控制印制电路板或主轴放大器。(4) 温度传感器有异常请更换电机(温度传感器)。07报警代码07电机超过最高转速的115%(参数标准设定)旋转。(1) 发生在主轴同步时主轴同步

音频功率放大器设计说明书要点

音频功率放大器的设计任务书 1 设计指标 (1)直接耦合的功率放大器,额定输出功率10W,负载阻抗8Ω;(2)具有频响宽、保真度度、动态特性好及易于集成化; (3)采用分立元件设计; (4)所设计的电路具有一定的抗干扰能力。 2 设计要求 (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)S C H文件生成与打印输出。 3 编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4 答辩 在规定时间内,完成叙述并回答问题。

音频功率放大器设计 摘要:这款功放采用了典型的OC L 功放电路,为全互补对称式纯甲类DC 结构,功放的每一级放大均工作于甲类状态。输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J 74(可用K389、J 109孪生对管对换)对管和K214、J77中功率M OS 管,功率输出级为2SC 5200和2S A1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。综合运用了我们前面所学的知识。设计完全符合要求。 关键字:沃尔漫电路 T IM 共源-共基电路 共射-共基电路 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 2 设计思路 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器它有吸引人的音质。甲类放大器输出电路 本身具有抵消奇次谐波失真,且甲类放大器管子始终工作在线性曲线内,晶体管自始自终处于导通状态。因此,不存在开关失真和交越失真等问题。甲类放大器始终保持大电流的工作状态。所以对猝发性声音瞬间升降能迅速反映。因而输出功率发生急剧变化时,电 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃 尔漫电路 图1 前置放大电路框图

【CN110098809A】一种氮化镓功率放大器时序保护供电装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910391971.6 (22)申请日 2019.05.13 (71)申请人 大唐终端技术有限公司 地址 300203 天津市滨海新区空港经济区 西三道158号金融中心4号楼1单元 602-3 (72)发明人 刘渊 李晓辉 李松辉 刘兆军  (74)专利代理机构 北京中企鸿阳知识产权代理 事务所(普通合伙) 11487 代理人 徐晶石 (51)Int.Cl. H03F 1/30(2006.01) H03F 1/52(2006.01) H03F 3/21(2006.01) H03F 3/24(2006.01) (54)发明名称 一种氮化镓功率放大器时序保护供电装置 (57)摘要 本发明提出了一种氮化镓功率放大器时序 保护供电装置,包括:处理器的输出端与栅压供 电模块的输入端连接,栅压供电模块的输出端与 氮化镓功放模块的栅极连接,栅压供电模块的输 出端通过第一组分压电阻后与第一比较器的差 分反向输入端连接,栅压供电模块的输出端通过 第二组分压电阻与第二比较器的差分同向输入 端连接,处理器通过与栅压供电模块相连的信号 接口,输出用于预设栅压值对应的数字编码信 号;处理器通过与漏压供电模块相连的信号接 口,使能漏压供电模块向氮化镓功放模块的漏极 供电,使功放处于工作状态。本发明可以实现功 率放大器供电时序保护,可靠并反应迅速,实施 监控功放工作温度和工作电流。权利要求书2页 说明书5页 附图1页CN 110098809 A 2019.08.06 C N 110098809 A

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

微波线性功率放大器综述

微波线性功率放大器综述 1概述 微波线性功率放大器在现代微波(无线)通信系统中的重要性越来越大。特别是在CDMA 体制移动通信系统中,线性功率放大器已经是必不可少的重要部件。 2基本指标 2.1 AM/AM AM/PM失真 一个HPA的线性特征可以用AM/AM和AM/PM 曲线来表示. 输入的RF 信号可以表示为: x(t)=R i(t)?cos[ω0t+θx(t)] (1) 相应的输出表示为: y(t)=G[R i(f)] ?cos{ω0t+θx(t)+ψ[R i(f)]} (2) 其中G和ψ表示AM/AM 和AM/PM曲线,如图一。 图. 1 实测的放大器失真曲线 理想的线性功放的曲线如图2。 图. 2 理想的放大器AM/AM和AM/PM曲线

2.2 双音IMD 、IP3、P1dB 双音IMD ,在放大器输入端加入两个CW 信号,在放大器的输出端测量的3阶、5阶等信号大小,以dBc 表示。 IP3 IMD 、IP3及P 1dB 定义图示 2.3 ACPR ACPR 主要应用在象CDMA 这样的宽频谱信号的研究上。邻道功率(ACP )定义为当主信道加一信号时,紧邻主信道的两个信道内的功率大小。邻道功率的产生主要来自两个方面,一是由于器件的非线性作用产生,二是由于主信道信号本身频谱较信道宽。ACPR 定义为ACP 功率与主信道功率的比值。 图3 邻道功率(ACP )定义 图4 器件非线性产生的邻道功率 对移动通信的CDMA 信号而言,其IM3(即ACPR )与IP3的关系可以通过一公式表示。 IP3=-5log[P IM3(f 1,f 2)B 3/P O [(3B-f 1)3-(3B-f 2)3]]+22.2 (dBm) 其中: P IM3(f 1,f 2) 表示要求的IM3的输出功率(W ) B 表示二分之一CDMA 信号带宽 (KHz ) f 1,f 2表示两个边带频率相对于中心频率的差值(KHz )

KU波段GaN MMIC功率放大器的研究

第41卷第5期2018年10月 电子器件 ChineseJournalofElectronDevices Vol.41 No.5Oct.2018 收稿日期:2017-09-13 修改日期:2017-11-11 ResearchoftheKu-BandGaNMMICPowerAmplifier SUNJiaqing,ZHENGWeibin,QIANFeng? (NanjingElectronicDevicesInstitute,Nanjing210096,China) Abstract:Thattheharmonicsourceimpedanceiscriticaltodeviceperformanceandcansignificantlyaffectdeviceoutputperformanceisprovedbytesting,andtheinfluenceofharmonicsinthematchingoffundamentalwavescannotbeignored.AKu-band12GHz~17GHzpoweramplifierMMIChasbeendevelopedutilizing0.25μmgalliumnitrideHEMTtechnologyaddingsecondharmonictuned.Inthelaterstage,somemethodsforimprovingthechipareputforwardthroughthetestoftheshellandperformanceofthelatersimulationanalysis.TheMMIChasbeendesignedusingatwo-stagestructure.Powermatchinghasbeenusedintheoutputstagetoimprovethepowerandefficiency.Andsecondharmonictunedhasbeenusedinthemiddlestageinordertoimprovetheefficiency.Lossmatchinghasbeenusedinbothinputandmiddlestageforstability.At12GHz~17GHz,theMMICshowsanoutputpowerof35dBm,powergain14dB~15dBandthemaximumpoweraddedefficiencygreaterthan40%.Keywords:GaNMMIC;Ku-band;impedancematching;loadpull;harmonicEEACC:1220 doi:10.3969/j.issn.1005-9490.2018.05.012 KU波段GaNMMIC功率放大器的研究 孙嘉庆,郑惟彬,钱 峰? (南京电子器件研究所,南京210096) 摘 要:测试验证了谐波的源端阻抗对于器件的性能以及输出特性有很大的影响,所以基波匹配中不能忽视谐波的影响三 基于此研制了一款采用0.25μm工艺GaN功率MMIC12GHz~17GHz放大器芯片,源端加入了谐波控制的部分三后期通过管壳测试以及后仿真分析功放的性能,提出一些改进芯片的方法三芯片采用二级放大的结构三末级匹配电路采用功率匹配,兼顾功率和效率;级间考虑二次谐波的匹配,进一步提高效率三输入和级间均采用有耗匹配,提高稳定性三芯片在12GHz~ 17GHz范围内漏压28V,输出功率35dBm,功率增益14dB~15dB,最大功率附加效率大于40%三 关键词:GaNMMIC;Ku波段;阻抗匹配;负载牵引;谐波 中图分类号:TN722.75 文献标识码:A 文章编号:1005-9490(2018)05-1141-04 MMIC功率放大器虽然成本较高,但是由于其体积小二高增益二高效率以及良好的一致性可以广泛量产并应用在航天雷达等领域中[1-2]三同时,相比于GaAs,GaN材料由于具有更大的禁带宽度二更高的热导率和击穿场强,在大功率应用中具有很大的潜力,因此GaNMMIC功率放大器近年来已经成为研究热点三射频功率放大器作为收发信机主要耗能模块,其工作效率的提高存在重要的意义,因此同时覆盖多个频带的高效率射频功率放大器成为研究的热门三尤其Ku波段在卫星通信领域存在着很大优势,相比于C波段的地面干扰很小,频率高,一般在12.5GHz~18GHz之间,不易受微波辐射干扰,大大 地降低了对接收环境的要求三 本文综合考虑GaNMMIC的优势,利用阻抗匹配的原理来实现功放的设计,同时加入了二次谐波调制的部分,用来进一步提高效率[3-6]三后期分别测试了芯片的效率和功率,根据测试的性能,静态电流,与实际仿真的结果,以及管芯的小信号和负载牵引(load-pull)结果进行对比,综合考虑如何进一步改进芯片三 1 电路设计 测试实验证明,基波的源阻抗牵引(Sourcepull)阻抗点对于基波负载牵引(Loadpull)的最佳功率或者最佳效率阻抗点的位置没有太多影响,几乎没有改变三相反,源端的二次谐波阻抗对于输出端二次谐波阻抗最佳功率效率点的位置影响很大,最大效率相差 万方数据

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

丙类高频功率放大器课程设计

高频电子线路课程设计报告 题目:丙类功率放大器 院系: 专业:电子信息科学与技术 班级: 姓名: 学号: 指导教师: 报告成绩: 2013年12月20日

目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (2) 3.1、系统方案论证 3.1.1 丙类谐振功率放大器电路 3.2、模块电路设计 3.2.1丙类谐振功率放大器输入端采用自给偏置电路 3.2.2丙类谐振功率放大器输出端采用直流馈电电路 3.2.3匹配网络 3.2.4 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析 四、整体电路与系统调试及仿真结果 (11) 4.1 电路设计与分析 4.2.仿真与模拟 4.2.1 Multisim 简介 4.2.2 基于Multisim电路仿真用例 五、主要元器件与设备 (14) 5.1 晶体管的选择 5.1.2 判别三极管类型和三个电极的方法 5.2电容的选择 六、课程设计体会与建议 (17) 6.1、设计体会 6.2、设计建议 七、结论 (18) 八、参考文献 (19)

一、设计目的 电子技术迅猛发展。由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。基本放大器是组成各种复杂放大电路的基本单元。弱电控制强电在许多电子设备中需要用到。放大器在当今和未来社会中的作用日益增加。 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。 设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。 二、设计思路 丙类谐振功率放大器工作原理 图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V BB 应设置在功率的截止区。 输入回路 由于功率管处于截止状态,基极偏置电压V BB 作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。 由i C ≈βi B 知,i C 也严重失真,且脉宽小于90o。 输出回路 若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线 (i C ~V BE )上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半 个周期。

TDA7375-TDA7377-TDA7379 HIFI 2.1声道低音功放模块产品规格书

TDA7375、TDA7377、TDA7379 HIFI 2.1声道功放模块产品 规 格 书 浙江剑飞电子

目录 前言 (3) 一、芯片兼容 (4) 二、板载材料标准 (4) 2.1产品PCB标准 (4) 2.2主芯片(TDA7375/TDA7377/TDA7379) (5) 2.3前级芯片(4558/5532/AD827) (5) 2.4板载电容 (6) 2.4.1黑金刚 (6) 2.4.2红宝石( Rubycon) (6) 2.4.3日本埃尔纳公司(ELNA) (7) 2.4.4威马(WIMA) (7) 2.4.5爱普科斯(EPCOS) (8) 2.4.6 台湾立隆 (8) 2.4.7电容板载 (8) 2.5其它配件材料 (9) 2.5.1电位器 (9) 2.5.2整流桥 (10) 2.5.3莲花接线座 (10) 2.5.4接线端子 (10) 2.5.5稳压模块 (10) 三、电路设计 (10) 3.1技术指标 (11) 3.2布局和接线 (12) 3.3音箱选配配置参考 (13) 四、元器件清单 (14) 五、HIFI 2.1成品模块图片 (15)

前言 TDA7375/TDA7377/TDA7379是ST公司(意法半导体公司全球第五大半导体公司服务所有电子细分市场的领先集成器件制造商)生产的双声道汽车专用IC这款芯片采用的是BTL的输出形式,外围原件极少但是音质极佳,安装也非常的方便,封装为15脚双列直插式。电源供电为直流12V-15V,本款产品为2.1声道功放模块,采用最通用的电路模式设计理念也非常的符合IC的整体效果。 套件的用料也极其讲究威马专用的音频电容,小容量电容全部采用西门子薄膜电容系列,电解电容采用(黑金刚、红宝石、ELNA)三个牌子的原装品牌电容,台湾立隆10000uF滤波电容,为了方便连接,本板的输入采用莲花座输入,输出全部采用了0.5mm的接线端子,方便外接连线。 套件PCB使用优质双面玻纤板,优质蓝色阻焊层,布局合理,美观大方。外围元件少,无噪音,低音低沉有力,中高音饱满清晰,音质纯净。适合于汽车、摩托车、电动车及多媒体音响的改装,提升您的音响,带给您新的体验。

基于GaN器件射频功率放大电路的设计解读

基于GaN器件射频功率放大电路的设计 本文主要是基于氮化镓(GaN)器件射频功率放大电路的设计,在S波段 频率范围内,应用CREE公司的氮化镓(GaN)高电子迁移速率晶体管(CGH40010和CGH40045)进行的宽带功率放大电路设计。主要工作有以下几个方面:首先,设 计功放匹配电路。在2.7GHz~3.5GHz频带范围内,对中间级和末级功放晶体管 进行稳定性分析并设置其静态工作点,继而进行宽带阻抗匹配电路的设计。本文采用双分支平衡渐变线拓扑电路结构,使用ADS软件对其进行仿真优化,设计出 满足指标要求的匹配电路。具体指标如下:通带宽度为800MHz,在通带范围内 的增益dB(S(2,1))>10dB、驻波比VSWR1<2、VSWR2 同主题文章 [1]. 宋登元,王秀山. GaN材料系列的研究进展' [J]. 微电子学. 1998.(02) [2]. 秦志新,陈志忠,周建辉,张国义. 采用N_2-RF等离子体氮化 GaAs(001)(英文)' [J]. 发光学报. 2002.(02) [3]. 谢崇木. 短波长半导体激光器开发动向' [J]. 半导体情报. 1998.(04) [4]. Robert ,Green. 现代通信测试设备必须适合多种手机标准——谈如 何选择射频功率分析测试仪器' [J]. 今日电子. 2003.(04) [5]. 宋航,Park,S,H,Kang,T,W,Kim,T,W. 分子束外延高Mg掺杂GaN的发光特性' [J]. 发光学报. 1999.(02) [6]. 付羿,孙元平,沈晓明,李顺峰,冯志宏,段俐宏,王海,杨辉. 立方相GaN 的高温MOCVD生长(英文)' [J]. 半导体学报. 2002.(02) [7]. 段猛,郝跃. GaN基蓝色LED的研究进展' [J]. 西安电子科技大学学报. 2003.(01) [8]. 郎佳红,顾彪,徐茵,秦福文. GaN基半导体材料研究进展' [J]. 激光 与光电子学进展. 2003.(03) [9]. 曾庆明,刘伟吉,李献杰,赵永林,敖金平,徐晓春,吕长志.

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

20-1000MHz 100W GaN宽带功率放大器研制

电子设计工程 Electronic Design Engineering 第26卷Vol.26第3期No.32018年2月Feb.2018 收稿日期:2017-06-18 稿件编号:201706117 作者简介:侯钧(1983—),男,重庆人,硕士研究生,工程师。研究方向:射频微波功率放大器。 功率放大器是通信系统发射链路中的重要组成部分。目前很多军、民用电台,广播电视等发射系统都工作在20~1000MHz 频段。随着宽带通信、干扰和测试系统的发展,对能覆盖整个频段的功率放大器需求非常迫切。20~1000MHz 有近6个倍频层,受制于Bode-Fano 准则,在如此宽的频段内进行匹配会面临极大挑战。微带线和电容电感相结合的方式适用于高频[1-3],若需兼顾低频,输出功率往往难以 大于10W [4]。单纯运用传输线变压器(transmission line transformer ,TLT )也不能达到需要的带宽[5-8],因此,解决20~1000MHz 频段宽带功率放大器的研制问题具有重要的应用价值。 1TLT 及磁芯的应用 TLT 具有宽的带宽、低的损耗、高的功率容量等 20~1000MHz 100W GaN 宽带功率放大器研制 侯钧1,方建新1,黄亮1,蒋超2 (1.成都四威功率电子科技有限公司四川成都611730;2.西南电子设备研究所四川成都610036)摘要:随着通信、对抗和测试设备的工作带宽逐渐增加,对相应功率放大器的带宽要求也越来越宽,而基于第三代半导体材料的GaN HEMT 具备宽工作频带的特性,有满足新需求的潜力。运用传输线变压器(Transmission Line Transformer ,TLT )加载铁氧体磁芯的技术对GaN HEMT 进行宽带匹配,研制了工作于20~1000MHz 的功率放大器。通过建立和优化TLT 模型,拓展频率低端,最终测试结果表明,在整个带宽内,输出功率≥107W ,增益≥11.3dB ,功率附加效率≥34.5%,成功将此功率量级的宽带功率放大器工作倍频层由3拓展到5以上。此功率放大器适用于同时要求宽带宽和高功率的系统中,如EMC 测试、电子对抗和宽带通讯等。 关键词:功率放大器;宽带匹配;GaN HEMT ;传输线变压器;铁氧体磁芯中图分类号:TN722.75 文献标识码:A 文章编号:1674-6236(2018)03-0111-05 100W broadband GaN power amplifier design over 20MHz to 1000MHz bandwidth HOU Jun 1,FANG Jian?xin 1,HUANG Liang 1,JIANG Chao 2 (1.Chengdu SWIEE Power Electronics Technology Co.,Ltd.,Chengdu 611730,China ;2.Southwest China Research Institute of Electronic Equipment ,Chengdu 610036,China ) Abstract:As the working bandwidth of communication ,electronic warfare and test equipment increases ,the bandwidth requirements of the corresponding power amplifiers are also increasing.The GaN HEMT based on the third-generation semiconductor material ,has the characteristics of broadband operating ,which has the potential to meet the demands of new https://www.wendangku.net/doc/1013076636.html,ing the transmission line transformer (TLT )with ferrite core to match GaN HEMT ,designed a broadband power amplifier working in the 20MHz to 1000MHz band.The model of TLT with ferrite core is established ,and its parameters are optimized by simulation ,which expands the low frequency of the power amplifier.The test results show that in the entire bandwidth ,the output power≥107W ,gain≥11.3dB ,power additional efficiency≥34.5%.Successfully expand operation octave from 3to above 5.This power amplifier is suitable for EMC testing ,electronic warfare ,broadband communication and other systems with wide bandwidth and high-power requirements. Key words:power amplifier ;broadband impedance march ;GaN HEMT ;transmission line transformer ; ferrite core - -111

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。系统可对功率进行计算显示,具有4位数字显示,精度优于5%。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。 1系统方案论证与选择 1.1整体方案 方案①:数字方案。输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。此种方案硬件电路简单,但会引入较大数字噪声。 方案②:硬件电路方案。三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。 1.2三角波产生电路设计 方案①:利用NE555产生三角波。该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。 方案②:对方波积分产生三角波。积分器与比较器级联,通过对比较器产生的方波积分得到三角波,频率与幅值控制只需调整某些电阻值,控制简单。但考虑积分电路存在积分漂移。 此处采用选择方案①。

完整word版,高频功率放大器设计及仿真

综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。

摘要 通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 关键词:高频;功率;放大;

用于UHFRFID的功率放大器设计

用于UHF RFID的功率放大器设计 用于UHF RFID的功率放大器设计 摘要:功率放大器是UHF RFID系统的重要模块,也是RFID系统中功耗最大的器件。本文采用TSMC0.18rf CMOS工艺,设计了一款用于RFID的线性功率放大器。在915MHz频段,最大输出功率为17.8dBm,饱和效率达到了40%,输出1dB压缩点(P1dB)为15.4dBm,其小信号增益达到了28.7dB。关键词:RFID;CMOS功率放大器;1dB压缩点;小信号增益;PAE 1RFID系统与PA近年来,无线通信技术得到了迅速发展。射频识别RFID (Radio Frequency Identification)作为一种新兴的自动化识别技术已经广泛 应用于物流管理、门禁管理等多个领域,有广泛的应用前景和巨大的市场价值。其基本原理是利用射频信号的反射传输,实现读写器与标签之间的通信[1]。一个典型的RFID系统包括读写器、标签、后台计算机等[2],功率放大器是RFID 系统的最后一级,它负责将基带电路传送来的调制信号放大,然后通过天线发射出去。由于功率放大器存在非线性失真等非理想因素,而且是系统中功耗最大的 器件,故必须仔细设计,以免影响发射信号质量。目前功率放大器市场上较为流行的工艺是砷化镓(GaAs)工艺,它具有良好的高频特性,但价格昂贵。随着便携式设备的广泛应用,低压、低成本、高效率IC(Integrated Circuit)成为技术研究的重点。现今CMOS工艺的截止频率能达到100GHz以上,显示了良好的高频特性。而其工艺简单、价格便宜、易于与其他模块集成的特点,也使得CMOS功率放大器得到了广泛的研究和应用,现在已经有研究人员设计了60GHz的功率放大器[3,4]。本文采用台积电的CMOS工艺(TSMC0.18rf),实现了一款用于RFID读写器的功率放大器,工作频段为902MHz~928MHz。系统采用幅移键控调制方式(ASK),为了保证线性度,同时兼顾效率,故放大

相关文档