文档库 最新最全的文档下载
当前位置:文档库 › 磁场对通电导体的作用力

磁场对通电导体的作用力

磁场对通电导体的作用力
磁场对通电导体的作用力

磁场对通电导体的作用力

磁场对通电导体的作用力

【学习目标】

1.掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。

2.掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培力。

3.知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。

【要点梳理】

要点一、对安培力的理解

要点诠释:

1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心.

2.安培力的方向

在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点:

(1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场

和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心.

(3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直,而电场力的方向与电场的方向平行.现把安培力和电场力做如下比较:

内容

项目

电场力安培力研究对象点电荷电流元

受力特点正电荷受力方向,与电

场方向相同,沿电场线

切线方向,与负电荷受

力方向相反安培力方向与磁场方向和电流方向都垂直

判断方法结合电场方向和电荷

正、负判断用左手定则判断

注意:若已知B、I方向,则由左手定则得F

的方

向被唯一确定;但若已知B(或I)、F

的方向,由于B

只要穿过手心即可,则I(或B)的方向不唯一.

3.安培力的大小

(1)计算公式:F BILsin

(2)对公式的理解:公式F BILsin

=θg,

=θ可理解为F(Bsin)IL 此时Bsinθ为B沿垂直I方向上的分量,也可理解为=θ,此时Lsinθ为L沿垂直B的方向上的投影长度,F BI(Lsin)

也叫“有效长度”,公式中的θ是B和I方向问的夹角.注意:

①若导线是弯曲的,此时公式F BILsin

=θ中的L并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端.

②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B的大小和方向与导体所在处的B的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的磁场力,然后求合力.

要点二、安培力作用下通电导体运动方向的判定方法要点诠释:

不管是电流还是磁体,对通电导线的作用都是通过磁场来实现的,因此必须要清楚导线所在位置的磁场分布情况,然后结合左手定则准确判断导线的受力情况或将要发生的运动,在实际操作过程中,往往采用以下几种方法:

电流元法把整段导线分为多段直电流元,先用左手定则判断每段电流元受力的方向,然后判断整段导线所受合力的方向,从而确定导线运动方向

等效法环形电流可等效成小磁铁,通电螺线管可以等效成条形磁铁或多个环形电流,反过

来等效也成立

特殊位置法通过转动通电导线到某个便于分析的特殊位置,然后判断其所受安培力的方向,从而确定其运动方向

结论法两平行直线电流在相互作用过程中,无转动趋势,同向电流互相吸引,反向电流互

相排斥;两不平行的直线电流相互作用时,

有转到平行且电流方向相同的趋势

转换研究对象法定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的反作用力,从而确定磁体所受合力及运动方向

注意:

(1)判断通电线圈等在磁场中的转动情况,要寻找具有对称关系的电流元.

(2)利用特殊位置要注意利用通电导体所在位置的磁场特殊点的方向.

要点三、电流表的工作原理、灵敏度及特点

要点诠释:

1.电流表的工作原理:

(1)均匀辐向磁场

蹄形磁铁和铁芯间的磁场是均匀地辐向分布的(如图所示),不管通电线圈转到什么角度,它的平面都跟磁感线平行.线圈所处的磁感应强度的大小都相同.

(2)工作原理

如图所示,设线圈所处位置的磁感应强度大小为B ,线圈长为L ,宽为d ,匝数为n ,当线圈中通有电流I 时,安培力对转轴产生力矩:122d M F F d ??=??=? ???

,安培力的大小为:F nBIL =.故安培力的力矩大小为1M

nBILd nBIS

==(S 为线圈的面积). 当线圈发生转动时,不论通电线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变.

当线圈转过θ角时,这时指针偏角也为θ角,螺旋弹簧产生阻碍线圈转动的扭转力矩为M 2,对线圈,根据力

矩平衡有12M M =.

设弹簧材料的扭转力矩与偏转角成正比,且为2M k =θ。

由nBIS k =θ得nBS I k

θ=。 其中k 、n 、B 、S 是一定的,因此有I ∝θ.

由此可知:

①线圈上指针的偏转角度θ与通入的电流I 成正比,所以电流表刻度盘上的刻度是均匀的,从线圈偏转的角度就能判断通过电流的大小.

②线圈中的电流方向改变时,安培力的方向随之改变,指针的偏转方向也随之改变.所以,根据指针的偏转方向,可以知道被测电流的方向.

2.电流表的灵敏度

电流表的灵敏度可表示为:nBS C I k

θ== 由此式可知,除了尽可能减小摩擦阻力之外,还可以通过增大n 、B 、S 和减小k 来提高电流表的灵敏度.

3.电流表的特点

(1)表盘的刻度均匀,I ∝θ。

(2)灵敏度高,量程较小,过载能力差.

(3)满偏电流I g 、内阻R g 反映了电流表的最主要

特性.

注意:使用电流表确定电流方向以前,必须先用已知方向的电流测定电流流入方向与指针偏转方向的关系.

要点四、 物体在安培力作用下的平衡或运动问题的分析方法

要点诠释:

安培力作用下物体的平衡和运动是常见的一类题型,体现了学科内知识的综合应用及知识的迁移能力,在解决这类问题时应把握以下几点:

1.将立体图转化为平面(截面)图,将抽象的空间受力分析转移到纸面上进行,一般是画出与导体棒垂直的平面,将题中的角度、电流的方向、磁场的方向标注在图上,然后进行分析.

2.注意正确的受力分析顺序,先重力,然后安培力,最后弹力和摩擦力。因为弹力和摩擦力是被动力,力的有无和方向与其他力有关.

3.注意安培力方向的判定:左手定则,垂直磁场同时又垂直于电流,即一定垂直于二者决定的平面.简单地说,通电导体在磁场、重力场中的平衡与加速运动问题的处理方法和力学问题一样,无非是多了一个安培力.解决这类问题的关键是:

(1)分析安培力的方向时千万不可跟着感觉走,牢记安培力的方向既跟磁感应强度方向垂直又跟电流方向垂直.

(2)画出导体受力的平面图.

【典型例题】

类型一、安培力方向的判断

例1、如图所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面向外运动,可以()

A.将a、c端接在电源正极,b、d端接在电源负极 B.将b、d端接在电源正极,a、c端接在电源负极 C.将a、d端接在电源正极,b、c端接在电源负极 D.将a、c端接在同一交流电源的一端,b、d端接在交流电源的另一端

举一反三

【变式】在匀强磁场B的区域中有一光滑斜面体,在斜面体上放置一根长为L,质量为m的导线,当通以如图所示方向的电流后,导线恰能保持静止,则磁感应强度B满足()

A .sin ,=mg

B IL α方向垂直斜面向上

B .sin =mg

B IL α,方向垂直斜面向下

C .tan =mg

B IL α,方向垂直向下

D .=mg B IL

,方向水平向左 类型二、安培力大小的计算

例2、如图所示,导线abc 为垂直折线,其中电流为I ,ab=bc=L ,导线所在的平面与匀强磁场垂直,匀强磁场的磁感应强度为B ,求导线abc 所受安培力的大小和方向.

【变式】在物理学中,通过引入检验电流来了解磁

场力的特性,对检验电流要求是( )

A .将检验电流放入磁场,测量其所受的磁场力F 、

导线长度L 、通电电流强度I ,应用公式B =F /IL ,即可测得磁感强度B

B .检验电流电流强度不宜太大

C .利用检验电流,运用公式B=F/IL,只能应用于

匀强磁场

D.只要满足长度L很短、电流强度I很小,将其垂直放入磁场的条件,公式B=F/IL对任何磁场都适用

类型三、判断安培力作用下物体的运动方向

例3、(2015 平度市期末)如图甲所示,蹄形磁体用悬线悬于O点,在磁铁的正下方有一水平放置的长直导线,当导线中通以由左向右的电流时,蹄形磁铁的运动情况是().

A.静止不动

B.向纸外平动

C.N极向纸外,S级向纸内转动

D.N极向纸内,S级向纸外转动

举一反三

【变式】如图所示,条形磁铁放在水平桌面上,在其中央上方固定一根导线,导线与磁铁垂直,给导线通以垂直纸面向外的电流,则()

A.磁铁对桌面的压力减小,不受桌面的摩擦力

B.磁铁对桌面的压力减小,受到桌面的摩擦力

C.磁铁对桌面的压力增大,不受桌面的摩擦力

D.磁铁对桌面的压力增大,受到桌面的摩擦力类型四、磁电式电流表

例4、如图所示甲是磁电式电流表的结构图,图乙是磁极间的磁场分布图,以下选项中正确的是()

①指针稳定后,线圈受到螺旋弹簧的力矩方向与线圈受到的磁力矩方向是相反的

②通电线圈中的电流越大,电流表指针偏转角度也

越大

③在线圈转动的范围内,各处的磁场都是匀强磁场

④在线圈转动的范围内,线圈所受磁力矩与电流有关,而与所处位置无关

A.①② B.③④ C.①②④ D.①②③④

举一反三

【变式】要想提高磁电式电流表的灵敏度,可采用的办法有()

A.增加线圈匝数

B.增加永久磁铁的磁感应强度

C.换用弹性较强的游丝,增大反抗力矩

D.增加线圈面积

E.减小转轴处摩擦

类型五、安培力与电路知识、物体平衡的综合应用例5、(2015 东城区三模)如图所示,足够长的光滑

金属导轨与水平面的夹角为θ,两导轨间距为L,在导轨上端接入电源和滑动变阻器,电源电动势为E,内阻为r。一质量为m的导体棒ab与两导轨垂直并接触良好,整个装置处于磁感应强度为B,垂直于斜面向上的匀强磁场中,导轨与导体棒的电阻不计。

(1)若要使导体棒ab静止于导轨上,求滑动变阻器的阻值应取何值;

(2)若将滑动变阻器的阻值取为零,由静止释放导体棒ab,求释放瞬间导体棒ab的加速度.

举一反三

【变式1】如图所示的天平可用来测量磁场的磁感应强度.天平的右臂下面挂一个矩形线圈,宽为L,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直于纸面.当线圈中通有电流,(方向如图)时,在天平两边加

上质量分别为m

1、m

2

的砝码时,天平平衡;当电流反向

(大小不变)时,右边再加上质量为m的砝码后,天平

又重新平衡.由此可知( )

A .磁感应强度方向垂直纸面向里,大小为12(m m )g NIL -/

B .磁感应强度方向垂直纸面向里,大小为mg 2NIL /

C .磁感应强度方向垂直纸面向外,大小为12

(m m )g NIL -/ D .磁感应强度方向垂直纸面向外。大小为mg 2NIL /

【变式2】相距20cm 的两根光滑平行铜导轨,导轨

平面倾角为a=370,上面放着质量为80g 的金属杆ab ,整个装置放在B=0.2T 的匀强磁场中。

(1)若磁场方向竖直向下,要使金属杆静止在导轨上,必须通以多大的电流。

(2)若磁场方向垂直斜面向下,要使金属杆静止在导轨上,必须通以多大的电流。

【变式3】在同一水平面上的两导轨相互平行,并处在竖直向上的匀强磁场中,一根质量为 3.6kg,有效长度为2m的金属棒放在导轨上,当金属棒中的电流为5A时,金属棒做匀速运动;当金属棒中的电流增加到8A时,金属棒的加速度为2m/s2,求磁场的磁感强度。

类型六、磁场对通电线圈的作用——电动机

例6、放在匀强磁场中的通电矩形线圈,下说列法中哪些是正确的( )

A、线圈平面与磁感线平行时,所受合力为零,合力矩最大

B、线圈平面与磁感线平行时,所受合力最大,合

力矩也最大

C、线圈平面与磁感线垂直时,所受合力为零,合力矩也为零

D、线圈平面与磁感线垂直时,所受合力为零,合力矩最大

举一反三

【变式】直流电动机模型通电后不能转动的原因有哪些?(至少回答三种)为什么? 怎样做出判断?

磁场对载流导体作用

§3。3 磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行时, 0=θ,或 180=θ,F=0,电流方向与磁场方向垂直时, 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? = 2 2 1021222L a I I B L I ?= ?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上 P B 图3-3-1 图3-3-2

所受的力 a I I L F πμ22 1022=?? 同理可证,导线λ上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I , 线框平面的法线n 与B 之间的夹角为θ,则 各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互相抵消。 图3-3-3

《磁场对通电导线的作用力》教学设计

《磁场对通电导线的作用力》教学设计 【教材分析】 本节知识是以第一、二节磁场和磁感应强度为基础,并综合运用第三节磁感线的根念,对磁场的力的性质做进一步深入的研究探讨。磁场对通电导线的力的作用不仅与磁感应强度的方向有关,而且与导线中的电流方向有关,如何更清楚地阐明磁场、电流和力三者的空间位置关关系,是理解安培力的矢量性的关键。同时,这节知识的正确理解也为后面的洛仑兹力的有关知识理解打下坚实的基础。 【教学目标】 (一)知识与技能 (1)理解磁感应强度的定义及其物理意义; (2)知道什么是安培力,会推导安培力公式F=BIL sinθ。 能够利用安培力公式和磁感应强度的定义式进行计算; (3)知道磁感线和磁感应强度的关系,知道匀强磁场的特点; (4)熟练应用左手定则判断安培力的方向。 (二)过程与方法 (1)通过观察演示实验,培养学生的观察理解、空间想象能力。 (2) 通过演示实验归纳、总结安培力的方向与电流、磁场方向的关系——左手定则。 (三)情感、态度与价值观 (1)、渗透物理学方法的教育,体会实验在物理学发展中的作用和用比值定义物理量的方法。 (2)、通过一般情况下安培力的公式F=BIL以及F=BIL sinθ使学生形成认识事物规律要抓住一般性的科学方法。 【教学重难点】 教学重点:安培力的大小计算和方向的判定。 教学难点:左手定则 【教学思路】 通过观察演示实验,培养学生的观察理解、空间想象能力。与电场一节对比学习,培养学生类比、推理能力。磁感应强度是描述磁场性质的物理量,其概念的建立是本节的重点和难点。对于安培力的方向的阐述,着重阐明线线关系和线面关系。

教学方法: -实验观察法、 逻辑推理法、讲解法 【教学器材】 蹄形磁铁多个、水平平行裸 铜线导轨,带夹导线三根,、 电源、开关、铁架台、投影 片,多媒体辅助教学设备【教学过程】 ◆新课导入 (一)复习提问: (1)什么是磁场? 通电直导线周围的磁场有什么特点? 环形电流周转的磁场有什么特点? (2)画出以下几种磁场的磁感线的分布: (二)引入 通过第二节的学习,我们已经初步了解磁场对通电导线的作用力。安培在这方面的研究做出了杰出的贡献,为了纪念他,人们把通电导线在磁场中所受的作用力叫做安培力。这节课我们对安培力作进一步的讨论。 ◆新课展示: 1、安培力的大小 演示实验:

磁场对通电导线的作用---安培力

第2节磁场对通电导线的作用---安培力 一、教学目标 1、知识与技能 知道什么是安培力;知道安培力与哪些因素有关;掌握安培力的计算公式,会计算匀强磁场中安培力的大小;会用左手定则判断安培力的方向。 2、过程与方法 用控制变量法探究安培力与哪些因素有关的过程,以及如何确定安培力方向的探究过程。认识科学探究的意义。 3、情感态度与价值观 培养学生的观察能力、分析综合能力;认识安培力的应用给我们的生活带来的影响;通过分组探究安培力的大小与哪些因素有关,培养团结协作的团队精神。 二、教学重难点 1、重点:使学生掌握电流在匀强磁场中所受安培力大小的决定因素、计算公式以及安培力方向的判定;使学生熟练的利用三维视图来分析磁场、电流以及安培力之间的关系。 2、难点:掌握匀强磁场中安培力的计算方法,并能熟练地运用左手定则判断通电导线受到的安培力的方向。 三、教学方法 实验探究;师生讨论;生生讨论;讲授法。 四、教学用具 马蹄形磁铁;铜棒;导线;干电池;铁架台;开关;PPT课件;FLASH动画等。 五、教学过程 步骤教师行为学生行为设计意图 课堂准备1、准备课件 2、教学仪器: 干电池2节、滑动变阻器、开 关、导线若干、蹄形磁铁、铝 箔、铁架台、导体棒 提前预习 为了让学生更好地 掌握新课知识。达 到深刻理解磁场对 通电导线的作用力 新课引入师:[设疑]前面学习了电场和 磁场,电和磁之间是否存在着 某种内在联系? [flash演示]奥斯特实验 [提问] 小磁针的偏转说明了什么? 观看并思考问题激发学生学习本堂 课知识的热情。

新课引入 [分析与讨论] 小磁针在磁场中受磁场力的 作用才会发生偏转,实验结果 说明,不仅磁铁能产生磁场, 电流也能产生磁场。通电导线 通过周围产生的磁场对磁体 有力的作用(电流→磁场→磁 体)。那根据牛顿第三定律可 知,磁体通过周围的磁场对通 电导线也应该有力的作用(磁 体→磁场→电流?)。下面我 们就用一个迷你小实验来探 究一下磁场对通电导线是否 也有力的作用呢? [板书] 学生回答:不仅磁铁能产生 磁场,电流也能产生磁场。 引导学生进入新课 学习 新课教学一、探究磁场对电流的作用 1、安培力

高中物理竞赛教程:3.3《磁场对载流导体的作用》

§3.3 磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行 时,ο0=θ,或ο 180=θ,F=0,电流方向与磁场方向垂直 时,ο 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? =2 21021222L a I I B L I ?=?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上所受的力 a I I L F πμ22 1022=?? P B 图3-3-1 图3-3-2

同理可证,导线 上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I ,线框平 面的法线n ρ与B ρ 之间的夹角为θ,则各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向 向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互 相抵消。 ab f 和cd f 大小相等,指向相反,但力作用线不在同 一直线上,形成一力偶,力臂从(b)中可看出为 θ θπ sin )2cos(11L L =- 故作用在线圈上的力矩为: 1 L 2 L a d c I I n ab f cd f b B θ 图3-3-3 θ ab f cd f n 图3-3-4

第九节 磁场对载流线圈的作用

10-7 磁场对载流线圈的作用 一、磁场作用于载流线圈的磁力矩 下面用安培定律来研究磁场对载流线圈的作用。 如下图所示,在磁感强度为B 的均匀磁场中,有一刚性矩形载流线圈MNOP ,它的边长分别为1l 和2l ,电流为I ,流向自M P O N M →→→→,设线圈平面的单位正法向矢量n e 的方 向与磁感强度B 方向之间的夹角为θ,即线圈平面与B 之间夹角为φ() 2/π=+θφ,并且MN 边及OP 边均 与B 垂直。 由安培定律知磁场对导线NO 段和PM 般作用力大小相等,方向相反,并且在同一直线上,所以对整个线圈来讲,它们的合力及合力矩都为零。导线MN 和OP 段受磁场力大小则分别为 21BIl F = 2 2BIl F = 这两个力大小相等,方向亦相反,但不在同一直线上,对线圈要产生磁力矩φ cos 11l F M =。 由于 θ φ-=2/π,所以 θ φsin cos =,则有 θ θsin sin 1211l BIl l F M ==

或 θsin BIS M =(10-17a ) 式中 2 1l l S =为矩形线圈的面积,磁矩 n e m IS =,此处 n e 为线圈平面的正法向矢量. 所以上 式用矢量表示则为 B m B e M ?=?=n IS (10-17b ) 如果线圈不只一匝,而是N 匝,那么线圈所受的磁力矩应为 B e M ?=n NIS (10-17c ) 讨论: 载流线圈在均匀磁场中的运动问题 (1)当载流线圈的 n e 方向与磁感强度B 的方向相同(即?=0θ),亦即磁通量为正向极大 时,M=0,磁力矩为零,此时线圈处于平衡状态[图(a)]。 (2) 当载流线圈的 n e 方向与磁感强度B 的方向相垂直(即?=90θ),亦即磁通量为零时, M=NBIS ,磁力矩最大[图(b)] (3)当载流线圈的 n e 方向与磁感强度B 的方向相反(即?=180θ)时,M=0,这时也没有磁 力矩作用在线圈上[图(c)],不过,在这种情况下,只要线圈稍稍偏过一个微小角度,它就会在磁力作用下离开这个位置,而稳定在?=0θ时的平衡状态,总之,磁场对载流线圈作用的磁力矩, 总是要使线圈转到它的 n e 方 向与磁场方向相一致的稳定 平衡位置(M10-8)。 (4)式(10-17)虽然是从矩形线圈推导出来的,但可以证明它对任意形状的平面线圈都是成立的。

《磁场对通电导体的作用力》习题1

《磁场对通电导体的作用力》习题 1、关于通电导线所受安培力F的方向,磁场B的方向和电流I的方向之间的关系,下列说法正确的是( ) A、F、 B、I三者必须保持相互垂直 B、F必须垂直B、I,但B、I可以不相互垂直 C、B必须垂直F、I,但F、I可以不相互垂直 D、I必须垂直F、B,但F、B可以不相互垂直 2、通电矩形线框abcd与长直通电导线MN在同一平面内,如图所示,ab边与MN平行.关于MN的磁场对线框的作用力,下列说法正确的是( ) A、线框有两条边所受的安培力方向相同 B、线框有两条边所受的安培力大小相等 C、线框所受的安培力的合力方向向左 D、线框所受的安培力的合力方向向右 3、在地球赤道上空,沿东西方向水平放置一根通以由西向东的直线电流,则此导线() A、受到竖直向上的安培力 B、受到竖直向下的安培力 C、受到由南向北的安培力 D、受到由西向东的安培力 4、关于通电导线在磁场中所受的安培力,下列说法正确的是( ) A、安培力的方向就是该处的磁场方向 B、安培力的方向一定垂直于磁感线和通电导线所在的平面 C、若通电导线所受的安培力为零.则该处的磁感应强度为零 D、对给定的通电导线在磁场中某处各种取向中,以导线垂直于磁场时所受的安培力最大 5、如下图所示,在匀强磁场中放有下列各种形状的通电导线,电流强度为I,磁感应强度为B,求各导线所受到的安培力。 FA=_______ FB=_______ FC=_______ FD=_______ FE=_______

6、如图所示,长为L的导线AB放在相互平行的金属导轨上, 导轨宽度为d,通过的电流为I,垂直于纸面的匀强磁场的磁感应强 度为B,则AB所受的磁场力的大小为() A、BIL B、BIdcosθ C、BId/sinθ D、BIdsinθ 7、如图所示,在垂直纸面向里的匀强磁场中,有一段弯成直 角的金属导线abc,且ab=bc=L0,通有电流I,磁场的磁感应强度为B,若要使该导线静止不动,在b点应该施加一个力F0,则F0的方向为________;B的大小为________。 感谢您的阅读,祝您生活愉快。

人教版物理选修1-1第二章第三节磁场对通电导线的作用同步训练A卷(新版)

人教版物理选修1-1第二章第三节磁场对通电导线的作用同步训练A卷(新版)姓名:________ 班级:________ 成绩:________ 一、选择题(共15小题) (共15题;共31分) 1. (2分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A . 安培力的方向可以不垂直于直导线 B . 安培力的方向总是垂直于磁场的方向 C . 安培力的大小与通电直导线和磁场方向的夹角无关 D . 将直导线从中点折成直角,安培力的大小一定变为原来的一半 【考点】 2. (2分)(2020·日照模拟) 如图所示,用电阻率为ρ、横截面积为S、粗细均匀的电阻丝折成平面梯形框架,ab、cd边均与ad边成60°角,ab=bc=cd=L.框架与一电动势为E、内阻忽略不计的电源相连接。垂直于竖直框架平面有磁感应强度大小为B、方向水平向里的匀强磁场,则框架受到安培力的合力的大小和方向为() A . ,竖直向上 B . ,竖直向上 C . ,竖直向下 D . ,竖直向下 【考点】

3. (2分) (2020高二上·常州月考) 一质量 m、电荷量的﹣q 圆环,套在与水平面成θ角的足够长的粗糙细杆上,圆环的直径略大于杆的直径,细杆处于磁感应强度为 B 的匀强磁场中。现给圆环一沿杆左上方方向的初速度 v0 ,(取为初速度 v0 正方向)以后的运动过程中圆环运动的速度图像不可能是() A . B . C . D . 【考点】

4. (2分) (2020高二上·台州月考) 四川省稻城县海子山的“高海拔宇宙线观测站” ,是世界上海拔最高、规模最大、灵敏度最强的宇宙射线探测装置。假设来自宇宙的质子流沿着与地球表面垂直的方向射向这个观测站,由于地磁场的作用(忽略其他阻力的影响),粒子到达该观测站时将() A . 竖直向下沿直线射向观测站 B . 与竖直方向稍偏东一些射向观测站 C . 与竖直方向稍偏南一些射向观测站 D . 与竖直方向稍偏西一些射向观测站 【考点】 5. (2分) (2018高二上·固阳期中) 下列说法正确的是() A . 在匀强电场中,电势降低的方向就是电场强度的方向 B . 根据公式U=Ed可知,匀强电场中任意两点间的电势差与这两点的距离成正比 C . 安培力的方向总是垂直于磁场的方向 D . 一小段通电直导线放在磁场中某处不受磁场力作用,则该处的磁感应强度一定为零 【考点】 6. (2分) (2018高二上·鄂尔多斯月考) 在绝缘圆柱体上a、b两位置固定两个金属圆环,当两环通有如图所示电流时, b处金属圆环受到的安培力为F1;若将b处金属圆环平移到c处,它受到的安培力为F2 .今保持b处金属圆环位置不变,在位置c再放置一个同样的金属圆环,并通有与a处金属圆环同向、大小为I2的电流,则在a位置的金属圆环受到的安培力()

磁场对通电导体的作用(提高)

磁场对通电导体的作用(提高) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ●掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。 ●掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培 力。 ●知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。 重点难点: ●对磁场方向、电流方向和安培力的方向三者关系的理解和运用。 ●安培力大小的计算及应用。 学习策略: ●建立空间位置关系、形成物理图景,是正确理解磁场方向、电流方向和安培力的方向三者关系的重要方法。 ●安培力和力学中的力及电场力一样,同样遵循力学中的有关规律,如遵循力的平行四边形定则,遵循牛顿定律等。 在求解有关问题时思路仍是力学中常用的规律和方法。 二、学习与应用 “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对性。我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗? 回忆磁场的基本知识,回答下列问题: (一)在磁感应强度的定义中对导体在磁场中受到的力F有什么要求? (二)通电导线在磁场中受力大小与什么因素有关? 知识要点——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补 充填在右栏。

要点一、对安培力的理解 1.安培力 通电导线在 中受到的力称为安培力。 2.安培力的方向 在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的 关键,在判定安培力的方向时要注意以下三点: (1) 安培力的方向总是既与磁场方向_______,又与电流方向______,也就是说 安培力的方向总是垂直于________.因此,在判断时首先确定磁场和电流所确定的平面, 从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力 的具体方向. (2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平 面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心. (3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁 场的方向垂直,而电场力的方向与电场的方向平行.现把安培力和电场力做如下比较: 内容 力 项目 电场力 安培力 研究对象 点电荷 电流元 受力特点 正电荷受力方向,与_____相同,沿电场线____方向,与负电荷受力方向______ 安培力方向与磁场方向和电流方向都______ 判断方法 结合电场方向和电荷正、负判断 用____手定则判断 注意:若已知B 、I 方向,则由左手定则得F 安的方向被唯一确定;但若已知B (或I )、F 安的方向,由于B 只要穿过手心即可,则I (或B )的方向不唯一. 3.安培力的大小 (1)计算公式:F _______= (2)对公式的理解:公式F BILsin =θ可理解为F (Bsin ) IL =θ,此时 Bsin θ为B 沿垂直I 方向上的分量,也可理解为F BI(Lsin )=θ,此时Lsin θ为L 沿垂直B 的方向上的投影长度,也叫“有效长度”,公式中的一是B 和I 方向问的夹角. 注意: ①若导线是弯曲的,此时公式F BILsin =θ中的L 并不是导线的总长度,而应是 弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方 向沿两端点连线由始端流向末端.

知识讲解_磁场对通电导体的作用力 基础

磁场对通电导体的作用力 编稿:xxx 审稿:xxx 【学习目标】 1.掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。 2.掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培力。 3.知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。 【要点梳理】 要点一、对安培力的理解 要点诠释: 1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心. 2.安培力的方向 在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点: (1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向. (2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心. (3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直, 内容 力 项目 电场力 安培力 研究对象 点电荷 电流元 受力特点 正电荷受力方向,与电场方向相同,沿电场线切线方向,与负电荷受力方向相反 安培力方向与磁场方向和电流方向都垂直 判断方法 结合电场方向和电荷正、负判断 用左手定则判断 安安于B 只要穿过手心即可,则I (或B )的方向不唯一. 3.安培力的大小 (1)计算公式:F BILsin =θ (2)对公式的理解:公式F BILsin =θ可理解为F (Bsin )IL =θ,此时Bsin θ为B 沿垂直I 方向上的分量,也可理解为F BI(Lsin )=θ,此时Lsin θ为L 沿垂直B 的方向上的投影长度,也叫“有效长度”,公式中的θ是B 和I 方向间的夹角. 注意: ①若导线是弯曲的,此时公式F BILsin =θ中的L 并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端. ②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B 的大小和方向与导体所在处的B 的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的

磁场对载流体的作用

磁场对载流导体的作用 3.3.1、安培力 一段通电直导线置于匀磁场中,通电导线长L ,电流强度为I ,磁场的磁感应强度为B ,电流I 和磁感强度B 间的夹角为θ,那么该导线受到的安培力为θsin ?=BIL F 电流方向与磁场方向平行时,ο 0=θ,或ο 180=θ,F=0,电流方向与磁场方向垂直时,ο 90=θ,安培力最大,F=BIL 。 安培力方向由左手定则判断,它一定垂直于B 、L 所决定的平面。 当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度l 作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为 θsin BIL F = 3.3.2、安培的定义 如图3-3-2所示,两相距为a 的平行长直导线分别载有电流1I 和2I 。 载流导线1在导线2处所产生的磁感应强度为 a I B πμ21 021= ,方向如图示。 导线2上长为2L ?的线段所受的安培力为: 2sin 21222π B L I F ?=? = 2 2 1021222L a I I B L I ?= ?πμ 其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上所受的力 P B 图3-3-1 图3-3-2

a I I L F πμ22 1022=?? 同理可证,导线λ上单位长度导线所受力也为a I I L F πμ22 101 1=??。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。 国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为27 10-?牛顿时,各导线上的电流的电流强度为1安培。 3.3.3、安培力矩 如图3-3-3所示,设在磁感应强度为B 的均匀磁场中,有一刚性长方形平面载流线图,边长分别为L 1和L 2,电流强度为I , 线框平面的法线n ρ与B ρ 之间的夹角为θ,则 各边受力情况如下: 2BIL f ab = 方向指向读者 2BIL f cd = 方向背向读者 θ θπ cos )2 sin( 11BIL BIL f bc =-= 方向向下 θ θπ cos )2 sin( 11BIL BIL f da =+= 方向向上 bc f 和da f 大小相等,方向相反且在一条直线上,互相抵消。 图3-3-3

通电导体周围的磁场

通电导体周围的磁场 一、选择题 1、许多物理学家在科学发展的历程中都做出了杰出的贡献,其中首先发现电流磁效应的是() A.沈括 B.法拉第 C.奥斯特 D.汤姆逊 2、如图2所示,小磁针甲、乙处于静止状态。根据标出的磁感线方向,可以判断出 A.螺线管的左端为N极 B.电源的左端为负极 C.小磁针甲的右端为N极 D.小磁针乙的右端为N极 3、一个能绕中心转动的小磁针在图示位置保持静止。某时刻开始小磁针所在区域出现水平向右的磁场,磁感线如图所示,则小磁针在磁场出现后() A.两极所受的力是平衡力,所以不会发生转动 B.两极所受的力方向相反,所以会持续转动 C.只有N极受力,会发生转动,最终静止时N极所指方向水平向右 D.两极所受的力方向相反,会发生转动,最终静止时N极所指方向水平向右 4、如图所示,把螺线管沿东西方向水平悬挂起来,然后给导线通电,会发生的现象是() A.通电螺线管仍保持静止不动 B.通电螺线管能在任意位置静止 C.通电螺线管转动,直至B端指向南,A端指向北 D.通电螺线管转动,直至A端指向南,B端指向北 5、为判断一段导线中是否有直流电流通过,手边若有下列几组器材,其中最为方便可用的是( ) A.小灯泡及导线 B.铁棒及细棉线 C.带电的小纸球及细棉线 D.被磁化的缝衣针及细棉线 7、在地球赤道上空某处有一小磁针处于水平静止状态,突然发现该小磁针的N极向东偏转,可能是( ) A.小磁针正西方向有一条形磁铁的S极靠近小磁针 B.小磁针正北方向有一条形磁铁的S极靠近小磁针 C.小磁针正上方有电子流自东向西水平通过 D.小磁针正上方有电子流自南向北水平通过 8、图中的两个线圈,套在光滑的玻璃管上,导线柔软,可以自由滑动,开关S闭合后则 A. 两线圈左右分开 B. 两线圈向中间靠拢 C. 两线圈静止不动 D. 两线圈先左右分开,然后向中间靠拢 9、如图所示,闭合开关S,将滑动变阻器的滑片P向右移动时,图中的电磁铁() A.a端是N极,磁性减弱 B.b端是S极,磁性增强

磁场对通电导体的作用力

磁场对通电导体的作用力

磁场对通电导体的作用力 【学习目标】 1.掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。 2.掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培力。 3.知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。 【要点梳理】 要点一、对安培力的理解 要点诠释: 1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心. 2.安培力的方向 在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点: (1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场

和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心. (3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直,而电场力的方向与电场的方向平行.现把安培力和电场力做如下比较: 内容 力 项目 电场力安培力研究对象点电荷电流元 受力特点正电荷受力方向,与电 场方向相同,沿电场线 切线方向,与负电荷受 力方向相反安培力方向与磁场方向和电流方向都垂直 判断方法结合电场方向和电荷 正、负判断用左手定则判断 注意:若已知B、I方向,则由左手定则得F 安 的方

初中物理北师大版磁场对通电导线的作用力教案

第十四章磁现象 第五节磁场对通电导线的作用力 一、教学背景分析 本节内容是本章的难点,学生虽然已初步学习了一些有关磁现象的基本概念和电流磁效应的知识,这些知识及规律几乎都是学生由实验概括得出的,但本节课对学生来说仍然很陌生,所以实验的设计尤其重要。国家课程标准中要求:通过实验,了解通电螺线管在磁场中会受到力的作用,力的方向与电流及磁场方向都有关系。所以本节课在设计上有一个最基本的原则,就是要用实验研究问题,得出结论。比如开头可以从奥斯特实验进行引入,培养学生的逆向思维能力。在讲到动圈式扬声器和耳机的时候,可以让学生亲自动手,研究它的工作原理,这样可以做到学用结合,提高学习效率。总体来说,本节课是本着培养学生的思维、锻炼学生的动手能力这个思想进行教学设计的。 二、教学目标 1.经历磁场对通电导线作用力的探究过程,体会控制实验条件的方法。知道磁场对通电导线有力的作用。知道磁场对通电导线作用力的方向与通电导线的电流方向、磁场方向有关。 2.了解动圈式扬声器和耳机的构造与原理。 3.运用磁场对通电导线的作用力分析有关物理现象,养成物理知识与实际相联系的习惯。 三、教学重点和难点 教学重点:通过实验知道磁场对通电导线有力的作用,力的方向与电流的方向、磁感线的方向有关。 通电导线在磁场中运动学生很容易理解,由运动转化到受力情况的分析学生不一定能总结到位,教师要引导学生运动状态的变化本质是力的作用,从而进一步分析设计实验,研究通电导线在磁场中受力的方向和哪些因素有关。 教学难点:左手定则及培养学生会从实验现象中总结规律。

观察实验现象很容易,通过现象分析其本质,然后总结成文字将其记录下来, 这些对学生都是一个考验。从实验现象中把抽象的磁场方向、电流方向、受力方 向三者的关系升华为形象的左手定则,对学生来说难度都很大。可以通过形象化 的方法,如用插木棍的方法将左手定则具体化,形象化。 四、教学过程 1.教学引入 复习奥斯特实验,通过小磁针的偏转,知道通电导线对它周围的磁体有力的 作用,反过来,磁体对通电导线有没有力的作用? 2.“知识点”教学 设计实验方案,教师提供器材(通电导体、蹄形磁体、 平行导轨),由一个学生上台演示,发现通电导体运动, 分析运动状态改变说明受到了力的作用,从而得出磁场 对通电导线有力的作用。 探究磁场对通电导线作用力的方向相关的因素,根 图14-5-1 据实验现象得出规律。 学生在猜想的时候要有依据。教师在学生思考的基础上加以肯定,并鼓励学 生上台操作实验进行共同探究。 ●设计实验 磁场方向不变,改变电流方向,观察通电直导线向哪个方向运动; 电流方向不变,改变磁场方向,观察通电直导线向哪个方向运动; 同时改变电流方向、磁场方向,观察通电直导线向哪个方向运动。 ●设计记录表格 根据记录的实验现象,分析现象,总结磁场对通电导线作用力的方向跟通电导线电流方向和磁场方向有关。

磁场对通电导线的作用教学设计

目录 一、【教材分析】 (2) 二、【学生分析】 (2) 三、【教学目标】 (3) 五、【教学策略设计】 (4) 六、【教学资源】 (5) 七、【教学流程】 (6) 八、【设计思路】 (7) 九、【创新之处】 (8) 十、【教学反思】 (9) 十一、【教学过程】 (9) 【附录】人教版高中物理选修1-1第二章第三节 (15)

《磁场对通电导线的作用》教学设计【课题】磁场对通电导线的作用 【教学时间】45分钟 【教学对象】高中二年级学生 【教材】人教版高中物理选修1-1第二章第三节 一、【教材分析】 本节内容选自人教版高中物理选修1-1第二章第三节的内容,考虑到安培力和磁感应强度密切相关,教材将安培力和磁感应强度归为一节。磁感应强度在磁场一章乃至整个电磁学均占据重要地位,该内容既是对前面“电流的磁场”的扩展,也为后面学习“磁场对运动电荷的作用”做好铺垫。教材设置了多种实验探究,激发学生思考,探究物理规律,并通过实例分析让学生认识生活中常见现象和科学技术,学会应用物理知识解决实际问题,体现了从“生活走向物理,物理走向社会”的新课程理念。 二、【学生分析】 1、学生的知识基础:通过前面的学习,学生已经学习了电场、电流 的磁场等基础知识,知道关于场的研究方法。 2、学生的心理特点:学生具有较强的直观感性思维,对物理实验操 作有极大兴趣,而且有强烈的探究欲望及浓厚的学习情趣和兴趣。

3、学生的认知困难:学生在八年级学习过电动机概念,但对电动机 的转动原理还不够了解,对探究方法和环节把握也不够成熟,并且学生的思维处于从形象思维向抽象思维的过渡阶段,因此在教学中需要丰富的感性认识为依托,加强直观性和形象性,以便学生理解。在教学中,教师可以为学生呈现出生动直观的实验现象,列举学生熟悉的生活实例,通过多媒体展示有关现象,以便更好的帮助学生理解所学知识。 三、【教学目标】 1、知识与技能 (1)掌握安培力概念,并通过实验探究得出安培力的计算公式和磁感应强度的定义。 (2)了解安培力的原理在生活中的应用。 2、过程与方法 (1)通过实验演示,培养学生总结归纳的能力。 (2)经历探究学习的过程,学习了类比分析的思维方法。 3、情感态度与价值观 (1)通过探究学习使学生体验到探究自然规律的艰辛与喜悦。 (2)了解科学的发现需要勤奋努力,还需要严谨的科学态度。 (3)培养学生用物理原理和研究方法解决实际问题的意识。四、【教学重点与难点】

实验:探究通电导线周围的磁场

实验:探究通电导线周围的磁场 实验目的: 探究通电导线周围的磁场分布。 实验原理: 奥斯特实验说明了电能生磁,通电导线周围存在磁场,可以利用小磁针及铁屑来研究通电直导线和单股线圈的磁场。 实验器材: 干电池4节、电池盒1个、开关1个、硬纸板、漆包线、剪刀、铁屑、针锥、铜棒、小磁针若干、导线若干。 实验步骤: 1.用剪刀剪一个长方形硬纸板,用针锥在中间扎一个洞,能使铜棒穿过此洞(如图1所示)。 图1 图2 2.在铜棒的周围放一圈小磁针,观察小磁针的N极指向(如图2所示)。

3.把铜棒的两端与电源相连,观察开关闭合的瞬间,小磁针指针的偏转情况(如图3所示)。 图3 4.拿走小磁针,在硬纸板均匀地撒上铁屑,闭合开关,轻敲纸板,观察铁屑的分布情况(如图4)。 图4 5.用曲线把这些曲线画出来,它们就是一些同心圆。 6.用漆包线绕制一个10圈左右的线圈,线圈直径大约为5~8厘米,并用剪刀刮去漆包线两端的绝缘漆。

7.用剪刀把硬纸板剪成如图所示的形状,两孔间的距离与线圈直径差不多,再把线圈左右两股插入到槽中,在板上贴一张白纸(如图5所示)。 图5 8.将线圈接入电路中,闭合开关,轻敲硬纸板,观察铁屑的分布情况(如图6所示)。 图6 操作提示: 1.在使用剪刀和针锥时,注意安全,不要被割伤。 2.在实验中,由于电路中的电流较大,开关闭合的时间不宜过长。

3.在实验中,通电后小磁针的偏转情况比较清晰,由于通电直导线周围磁场较弱,利用铁屑可能效果不是很明显,要求铜棒中的电流较大。 4.根据导线直导线周围小磁针的N极指向以及电流方向,模仿安培定则,总结出判断通电直导线周围磁场方向的方法(用右手握住导线,大拇指指向电流导线中的电流方向,则四个手指所指方向即为磁场方向)。 5.在研究通电单股线圈的磁场前,也可以使用小磁针来判断磁场的方向。

磁场对通电导线的作用习题(分类练习附答案)

磁场对通电导线的作用力四类主要题型 一.安培力大小和方向基础考察 1.关于通电导线所受安培力F 的方向,磁场B 的方向和电流I 的方向之间的关系,下列说法正确的是( ) A .F 、 B 、I 三者必须保持相互垂直 B .F 必须垂直B 、I ,但B 、I 可以不相互垂直 C .B 必须垂直F 、I ,但F 、I 可以不相互垂直 D .I 必须垂直F 、B ,但F 、B 可以不相互垂直 2.通电矩形线框abcd 与长直通电导线MN 在同一平面内,如图所示,ab 边与MN 平行.关于MN 的磁场对 线框的作用力,下列说法正确的是( BD ) A .线框有两条边所受的安培力方向相同 B .线框有两条边所受的安培力大小相等 C .线框所受的安培力的合力方向向左 D .线框所受的安培力的合力方向向右 3.在地球赤道上空,沿东西方向水平放置一根通以由西向东的直线电流,则此导线( ) A .受到竖直向上的安培力 B .受到竖直向下的安培力 C .受到由南向北的安培力 D .受到由西向东的安培力 4.关于通电导线在磁场中所受的安培力,下列说法正确的是 ( ) A.安培力的方向就是该处的磁场方向 B.安培力的方向一定垂直于磁感线和通电导线所在的平面 C.若通电导线所受的安培力为零.则该处的磁感应强度为零 D.对给定的通电导线在磁场中某处各种取向中,以导线垂直于磁场时所受的安培力最大 5. 一段通电的直导线平行于匀强磁场放入磁场中,如图所示导线上电流由左向右流过.当导线以左端点为轴在竖直平面内转过900 的过程中,导线所受的安培力 ( ) A .大小不变,方向也不变 B .大小由零渐增大,方向随时改变 C .大小由零渐增大,方向不变 D .大小由最大渐减小到零,方向不变 6.在匀强磁场中,有一段5㎝的导线和磁场垂直,当导线通过的电流是1A 时,受磁场的 作用力是0.1N ,那么磁感应强度B= T ;现将导线长度增大为原来的3倍,通过电流减小为原来的一半,那么磁感应强度B= T ,导线受到的安培力F= N 。 二.有效长度的考察 1.如下图所示,在匀强磁场中放有下列各种形状的通电导线,电流强度为I ,磁感应强度为B ,求各导线所受到的安培力. F A =_______ F B =_______ F C =_______ F D =_______ F E =_______ 2.如图所示,长为L 的导线AB 放在相互平行的金属导轨上,导轨宽度为d ,通过的电流为I ,垂直于纸面的匀强磁场的磁感应强度为B ,则AB 所受的磁场力的大小为( ) A .BIL B .BIdcos θ C .BId/sin θ D .BIdsin θ

第二十一讲:§6.5磁场对运动电荷和载流导线的作用(一、二、三)

第二十一讲:§6.5磁场对运动电荷和载流导线的作用(一、二、三) 一、洛伦磁力:运动电荷在磁场中所受的力 1、表达式:q m ?=υ 满足右手螺旋关系 2、讨论:①0 q ,m 与 ?υ 同向; ②0 q ,m 与 ?υ 反向; 洛伦磁力与速度垂直,因而不做功。它不能改变运动电荷的速度大小,只能改变速度方向,使其运动方向发生改变。 二、带电粒子在磁场中的运动 设有一均匀磁场,磁感应强度B ,带电粒子以初速度0进入磁场,根据牛顿定律,有 dt d m q m υυ=?= (6-30) 1、0//B 由(6-30)式,0=m F ,带电粒子在磁场 不受力的作用,将作匀速直线运动。 2、0┴B 此时,带电粒子在磁场中作匀速圆周运动 如图所示: ①回旋半径:R m B q F m 200υυ== qB m R 0υ=? ②回旋周期:qB m qB m R T πυυπυπ222000===

③回旋频率:m qB T f π21== 3、0与B 成任意夹角θ 此时,可将0υ分解为 θυυcos 0//= θυυs i n 0=⊥ ①回旋半径:R m B q F m 2⊥⊥==υυ qB m qB m R θυυsin 0==?⊥ ②回旋周期:qB m qB m R T πυυπυπ222===⊥⊥⊥ 结果同上 ③旋距:qB m T h πθ υυ2cos 0//== P222例题6-5 三、霍尔 在导体两侧出现电势差的现象,称为霍尔效应。霍尔效应是磁电效应的一种,即带电粒子在磁场和电场在运动所产生的效应。 1、霍尔电势差 21U U U H -= b BI U H ∝ b BI R U H H =? ⑴

通电导体在磁场受力

通电导体在磁场受力

————————————————————————————————作者:————————————————————————————————日期:

通电导体在磁场中受力 阳平一中王彦奎 一、地位作用 通电导体在磁场中受力运动是电磁学中的一个重要现象和规律,它能让学生认识到电与磁之间的联系,有助于树立辩证唯物主义的世界观。 通过导体的运动体现导体受力是一种转换的研究方法。通电导体在磁场中受力运动现象十分生动明显,能引起学生的兴趣和关注,加强对这一物理规律的感性认识,产生深刻的印象,达到良好的辅助教学效果。 二、实验不足 原实验是通电导体棒在轨道上运动,这样设计我认为主要有以下两点不足:第一、作为演示实验,直观性不是很强。导体棒的运动学生不容易看清楚。第二|、实验操作难度大,不容易成功。导体棒与轨道容易接触不良,导致不通电。轨道稍有不水平,由于产生的电磁力小,只能向一个方向滚动,不能进行完整的实验探究。 三、实验改进 把导体棒换成方形线圈,用支架吊起。 四、实验器材 电源、开关、U形磁铁、方形线圈、支架、导线若干。 五、实验原理 磁场对通电导线有力的作用,磁场力的方向与磁场的方向和电流

的方向有关。 实验装置 六、实验过程 1、闭合开关,方形线圈运动,记录磁极、电流和线圈的运动方向。 2、改变电源正负极,观察线圈运动方向并记录。 3、改变磁极方向,观察线圈的运动方向并记录。 4、从记录中得结论。

七、实验效果 这样操作方便,产生的电磁力大,阻力小,实验现象明显,整个教室的学生都能看清楚。很轻松就能完成整个探究过程。 八、自我评价 这个实验是我多次讲这一课总结出来的,因为我用原实验器材不成功的次数很多,因此就想到了用方形线圈替换,发现很方便,于是就推荐给了我们备课组。 N S S N S N ⊙ ⊙

相关文档
相关文档 最新文档