文档库 最新最全的文档下载
当前位置:文档库 › 第五讲立体几何文科参考答案

第五讲立体几何文科参考答案

第五讲立体几何文科参考答案
第五讲立体几何文科参考答案

第五讲 参考答案

第一节 空间几何体

例1变式与引申:

(1) 答案:A 解析:设正三棱柱的底边长为a

,则

2a =4a =

,又由24

V a h =

=解得3h =

,所以三棱柱的左视图的面积为3?

=,故选A

(2) 答案:A 解析:由正视图、侧视图可知,体积最小时,底层有3个小正方体,上面有2个,共5个;体积最大时,底层有9个小正方体,上面有2个,共11个,故这个几何体的最大体积与最小体积的差是6.故选A.

例2变式与引申:思路解析:截面过正四面体的两顶点及球心,则必过对棱的中点。

解答:如图5-1-1,ΔABE 为题中的三角形,

由已知得AB=2,

BE=2=

BF=23BE =

==ΔABE

的面积为1122S BE AF =

??==注:解决这类问题的关键是准确分析出组合体的结构特征,发挥自己的空间想象能力,把立体图和截面图对照分析,找出几何体中的数量关系。与球有关的截面问题为了增加图形的直观性,解题时常常画一个截面圆起衬托作用。 例3 变式与引申:

解析 如图(2)所示,所得的旋转体是两个底面重合的圆锥,高的和为AB=5,而底面半径为

.5

12=?=

AB BC AC DC ∴旋转体的表面积为(),AC BC DC S ππ5

84

=

+?=表

图5-1-1

体积为BD CD AD CD V ??+??=

223

1

31ππ

.5

485512312

ππ=???? ???=

例4变式与引申:

解:如图5-1-2(利用“割”思想)连EF ,

()

11111111111111111112311

333111326

A EBFD A D EF A EF

B F A D E F A EB A D E A EB A D E A EB

V V V V V S C D S C B a

S S a a a -----????=+=+=?+?=+=?=

习题5-1

1.答案:C 由主视图与侧视图可知,是在长方体的左上角去掉了一个小长方体,所以该几何体的俯视图

为答案C

2.答案:20π

解:在ABC ?中2AB AC ==,120BAC ∠=?,

可得BC =,由正弦定理,可得

ABC ?外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '?

中,易得球半径R ,故此球的

表面积为2

420R ππ=。

3.解:【解析】由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥

V -ABCD ;

(1) ()1

864643

V =

???= (2) 该四棱锥有两个侧面VAD 、VBC 是全等的等腰三角形,且BC 边上的高为

1h = 另两个侧面VAB. VCD 也是全等的等腰三角形,

D1

C1

C B A

D E

F A1 B1

图5-1-2

AB 边上的高为

25h ==

因此11

2(685)402

2S =????=+

4、解:如图5-1-3(Ⅰ)由已知可求得,正方形ABCD 的面积4=S ,

所以,求棱锥ABCD O -的体积3

8

2431=??=V

(Ⅱ)设线段AC 的中点为E ,连接ME ,

则EMD ∠为异面直线OC 与MD 所成的角(或其补角)

由已知,可得5,3,2===

MD EM DE ,

2

2

2

)5()3()2(=+

DEM ?∴为直角三角形

3

2tan ==

∠∴EM

DE

EMD ,

所以,异面直线OC 与MD 所成角的大小3

2

3arctan .

5.证明: 图5-1-4解析 (1)证明:由折起的过程可知,PE ⊥EF. 又PE ⊥AE ,AE EF=E ,

∴PE ⊥D 面ACFE. 又PE ?面PEF ,∴面PEF ⊥面ACFE.

(2)由(1)知PE ⊥面ACFE ,则PE 即为四棱锥P —ACFE 的高. 而,6

2621692x x x ,S

S BEF

ABC =?==?? ∴x x V V x V BEF

P ACB P ????

?

?-??=-===623662131)(2 ,129362????

?

?-?=x x (0<x <63).

图5-1-3

P

B

C

A

D

E

F

图5-1-4

∴,4936)(2???

? ??-?='x x V 所以当0<x <6时,)(x V '>0,)(x V 单调递增; 当6<x <63时,)(x V '<0,)(x V 单调递减. 因此当6=x 时,)(x V 取得最大值.612

第二节 点、直线、平面之间的位置关系

变式与引申1:解:对于//αβ,结合,//,m n αβ⊥则可推得m n ⊥.答案C .

变式与引申2:解(1) 因为ABCD 为菱形,所以AB=BC ,又60ABC ∠=

,所以AB=BC=AC , 又M 为BC 中点,所以BC AM ⊥ 而PA ⊥平面ABCD ,BC ?平面ABCD,所以PA BC ⊥ 又PA AM A = ,所以BC ⊥平面AMN (2

)因为11122AMC S AM CM ?=

?==

又PA ⊥底面,ABCD 2,PA = 所以1AN = 所以,三棱锥N AMC -的体积31=

V AMC S AN ?

?113== (3)存在,取PD 中点E ,连结NE ,EC,AE,因为N ,E 分别为PA ,PD 中点,所以AD NE 2

1

// 又在菱形ABCD 中,1

//

2

CM AD 所以MC NE //,即MCEN 是平行四边形 所以, EC NM //,又?EC 平面ACE ,?NM 平面ACE 所以MN //平面ACE , 即在PD 上存在一点E ,使得//NM 平面ACE

,此时1

2

PE PD ==. 变式与引申3:

解:证明:(1)∵三棱柱ABC -A 1B 1C 1是直三棱柱,∴侧面与底面垂直,

即平面A 1B 1C 1⊥平面BB 1C 1C ,又∵AB ⊥BC ,∴A 1B 1⊥B 1C 1,从而A 1B 1⊥平面BB 1C 1C . (2)由题设可知四边形BB 1C 1C 为正方形,∴BC 1⊥B 1C ,

又由(1)可知A 1B 1⊥平面BB 1C 1C ,而BC 1 平面BB 1C 1C ,∴A 1B 1⊥BC 1,

又∵A 1B 1∩B 1C =B 1,且A 1B 1 平面A 1B 1C ,B 1C 平面A 1B 1C ,∴BC 1⊥平面A 1B 1C ,而A 1C 平面A 1B 1C ,∴BC 1⊥A 1C .

(3)∵直三棱柱的侧面均为矩形,而D 、E 分别为所在侧面对角线的交点,∴D 为A 1C 的中点,E 为B 1C 的中点,∴DE ∥A 1B 1,而由(1)知,A 1B 1⊥平面BB 1C 1C .∴DE ⊥平面BB 1C 1C .

变式与引申4:证明:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF,DF=AD=DC (1)连接DB ,可知B 、N 、D 共线,且AC ⊥DN 又FD ⊥AD FD ⊥CD ,∴FD ⊥面ABCD

∴FD ⊥AC ∴AC ⊥面FDN FDN GN 面? ∴GN ⊥AC

(2)点P 在A 点处

下证:取DC 中点S ,连接AS 、GS 、GA G 是DF 的中点,∴GS//FC,AS//CM ∴面GSA//面FMC GSA GA 面? ∴GA//面FMC 即GP//面FMC

习题5-2

1.答案:(1)(2) 解析:(3)条件不充分,推导不出结论(4)少了两“相交”二字

2.解:(1)∵E,F 分别是AB BD ,的中点.

∴EF 是△ABD 的中位线,∴EF ∥AD ,

∵EF ∥?面ACD ,AD ?面ACD ,∴直线EF ∥面ACD ; (2) AD BD ⊥,EF AD ∥,∴EF BD ⊥.

CB CD = ,F 是BD 的中点,CF BD ∴⊥.

又EF CF F =,BD ∴⊥面EFC ,BD ? 面BCD ,∴面EFC ⊥面BCD .

3.解

(1)如图5-1-5,在△PBC 中,E ,F 分别是PB ,PC 的中

点,∴EF ∥BC .

又BC ∥AD ,∴EF ∥AD ,又∵AD ?平面P AD ,E F ?平面

P AD ,∴EF ∥平面P AD .

(2)连接AE ,AC,EC ,过E 作EG ∥P A 交AB 于点G ,

则BG ⊥平面ABCD ,且EG =

1

2

P A . 在△P AB 中,AD =AB ,∠P AB °,BP =2,∴AP =AB

EG

=2

.

∴S △ABC =

12AB ·BC =12

∴V E-AB C =13S △ABC ·EG =13

=13

. 4.证明: (1)如图5-1-6, 三棱柱ABC —A 1B 1C 1是直棱柱,⊥∴1BB 平面ABC ,

又?CF 平面ABC , 1BB CF ⊥∴ (2)解: 三棱柱ABC —A 1B 1C 1是直棱柱, ⊥∴1BB 平面ABC ,又?AC 平面ABC 1BB AC ⊥∴

?=∠90ACB BC AC ⊥∴.1B BC BB =? ⊥∴AC 平面

ECBB 1 AC S V SCBB ECBB A ?=

∴-113

1

5-1-5

E 是棱CC 1的中点,22

1

1==

∴AA EC 62)42(21

)(2111+?+?=?+=∴BC BB EC S ECBB

.4263

1

3111=??=?=∴-AC S V ECBB ECBB A

(3)解:CF//平面AEB 1,证明如下:取AB 1的中点G ,联结EG ,FG G F , 分别是棱AB 、AB 1中点.2

1

,//11BB FG BB FG =

∴ 又.2

1

,//11BB EC BB EC =

EC FG EC FG =∴,//∴四边形FGEC 是平行四边形

.//EG CF ∴ 又?CF 平面AEB ,?EG 平面AEB 1,//CF ∴平面AEB 1

5.解:如图5-1-7(1)证明:由已知得:,DE AE DE EC ⊥⊥, DE ABCE ∴⊥面

DE BC ∴⊥, BC CE ⊥又,BC DCE ∴⊥面 (2)证明:取AB 中点H ,连接GH ,FH ,

//GH BD ∴, //FH BC , //GH BCD ∴面, //FH BCD 面 //FHG BCD ∴面面, //GF BCD ∴面

(3)分析可知,R 点满足3AR RE =时,BDR BDC ⊥面面 证明:取BD 中点Q ,连结DR 、BR 、CR 、CQ 、RQ

容易计算2,2

CD BD CR DR CQ ==

=== 在BDR

中2BR DR BD =

==

可知RQ =, ∴在CRQ 中,2

2

2

CQ RQ CR += ,∴CQ RQ ⊥ 又在CBD 中,,CD CB Q BD CQ BD =∴⊥为中点,

CQ BDR ∴⊥面, BDC BDR ∴⊥面面

第五讲 测试题

一、选择题(每小题5分,共50分)

1、B 【解析】可知该几何体为底面边长为2,高为2的正四棱锥,斜高

4+B

2、B 【解析】在四棱锥P -ABCD ,其中底面ABCD

A B

C

D

E

G

F 图5-1-7

P

A

B

C

D

是矩形,PA ⊥底面ABCD ,且AD =4,AB =3,PA =4, 如图5-1-8.1

434163

V =

???=,故选B 3、D 【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为

24=3216??=,选D . 4、D 【解析】∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,

5、C 【解析】①正确;②,m n 可能异面,不正确;③n 可能在面α内,不正确;④正确,故选C

6、A 【解析】由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=

7、C 【解析】利用等体积法。如图,有ABCD O ABC O ABD O ACD O BCD V V V V V ----=+++,所以1

3

ABCD V S R =?

(S 为四面体的表面积),可求得R =

C 8、C 【解析】设底面边长为a ,则高所以体积,

设,则,当y 取最值时,,解得a=0或a=4时,体积最大,

此时,故选C.

9:B.解析:由题意知 以正方体各个面的中心为顶点的凸多面体为正八面体(即两个同底同高同棱长的正

四棱锥),所有棱长均为1,其中每个正四棱锥的高均为

,故正八面体的体积为

212=21=323

V V =???正四棱锥, 故选B.

10、B 【解析】如图建立空间直角坐标系,则(1,1,0)C ,1(0,1D ,可设(,0,0)E x ,

那么

CE E D +1=,再转化到平面直角坐标系中,x 轴上动点(,0)x 到两定点

(0,2),(1,1)M N -的距离和,其最小值为10MN ==,故选B

二、填空题(每小题5分,共25分)

11

3

【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =????=四面体,当直径通过AB 与CD 的中点时

,max h =

故max 3

V =

12、3【解析】可知点P 在平面ABC 上的射影O 为△ABC 的外心,又可知△ABC 为直角三角形,则点P 为斜边AB 的中点,故P 到平面ABC

的距离PO

13、

92π

【解析】补形法

2R =32

R =, 故球O 的体积为92

π

14、22【解析】||AD AD =u u u r ,222

||||()AD AB BC CD AB BC CD =++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r

222222AB BC CD AB BC BC CD CD AB =+++?+?+?u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r

44400222cos1208=+++++???=o ,

故||AD AD =u u u

r

=15 、①②③【解析】①②易知正确;棱锥的高为顶点A 到底面BEF 的距离,也就是点A 到面11BDD B 的

,底面BEF

为定值112=,得

11312V ==,故③正确; ④不正确

三、解答题(共75分)

16、如图5-1-9(1)证明:因为PD ⊥平面ABCD ,BC ?平面ABCD ,所

以PD ⊥BC 。

由∠BCD=900,得CD ⊥BC ,

又PD DC=D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD 。

因为PC ?平面PCD ,故PC ⊥BC 。

(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等。 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍。 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F 。 易知

DF=

2

,故点A 到平面PBC

(方法二)体积法:连结AC 。设点A 到平面PBC 的距离为h 。 因为AB ∥DC ,∠BCD=900,所以∠ABC=900。

图5-1-9

从而AB=2,BC=1,得ABC ?的面积1ABC S ?=。 由PD ⊥平面ABCD 及PD=1,得三棱锥P-ABC 的体积1133

ABC V S PD ?=

?=。 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC 。 又PD=DC=1

,所以PC =

=。

由PC ⊥BC ,BC=1,得PBC ?

的面积2

PBC S ?=。 由A PBC P ABC V V --=,11

33

PBC S h V ?==

,得h = 故点A 到平面PBC

17、如图5-1-10证明:(Ⅰ)设AC 于BD 交于点G 。因为EF ∥AG,且EF=1,AG=

1

2

AG=1

所以四边形AGEF 为平行四边形 所以AF ∥EG

因为EG ?平面BDE,AF ?平面BDE, 所以AF ∥平面BDE

(Ⅱ)连接FG 。因为EF ∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG 为菱形。所以CF ⊥EG. 因为四边形ABCD 为正方形,所以BD ⊥AC.又因为平面ACEF ⊥平面ABCD,且平面ACEF ∩平面ABCD=AC,所以BD ⊥平面ACEF.所以CF ⊥BD.又BD ∩EG=G,所以CF ⊥平面BDE.

18、如图5-1-11解:(Ⅰ)因为侧面BCC 1B 1是菱形,所以11BC C B ⊥ 又已知B BC B A B A C B =?⊥1111,且

所又⊥C B 1平面A 1BC 1,又?C B 1平面AB 1C ,

所以平面⊥C AB 1平面A 1BC 1 .

(Ⅱ)设BC 1交B 1C 于点E ,连结DE , 则DE 是平面A 1BC 1与平面B 1CD 的交线, 因为A 1B//平面B 1CD ,所以A 1B//DE. 又E 是BC 1的中点,所以D 为A 1C 1的中点. 即A 1D :DC 1=1.

19.解: (1)由三视图可知,该几何体底面ABCD 为菱形且,60

=∠BAC AB=2,易知PB//DE AEC //平面PB ∴ (2)过O 作OF ⊥PA ,垂足为F

图5-1-10

图5-1-11

在POA ?中,PO PA PF ?=2

2

1

=

∴PF 23=FA

31=FA PF 在菱形ABCD 中 BD ⊥AC 又PO ⊥平面ABCD PO BD ⊥∴ 则BD ⊥平面APO ⊥∴PA 平面BDF

∴当3

1

=FA PF 时,⊥PA 平面BDF 在POA ?中,过F 作FH//PO 则FH ⊥平面BCD FH=4343=PO 3322

1

=??=∴?BCD S

4

3

3433131=

??=?=∴?-FH S V BCD BDC F

20、解:(I )证明:取AC 中点F ,连结OF 、FB

AE BD AE BD EA OF EA OF CE O AC F 2

1

//,21//,,==

∴且又且中点为中点是 ∴F//DB ,OF=DB ∴四边形BDOF 是平行四边形 ∴OD//FB

又?FB 平面MEG ,OD ?平面MEG ∴OD 面ABC 。 (II )当N 是EM 中点时,ON ⊥平面ABDE 。

证明:取EM 中点N ,连结ON 、CM ,∵AC=BC ,M 为AB 中点,∴CM ⊥AB , 又∵面ABDE ⊥面ABC ,面ABDE 面ABC=AB ,CM ?面ABC , ∴CM ⊥AB ,

∵N 是EM 中点,O 为CE 中点,∴ON//CM , ∴ON ⊥平面ABDE 。

21、解:(1)设底面对角线交点为G ,则可以通过证明EG ∥FH ,得FH ∥平面EDB ;(2)利用线线、线面的平行与垂直关系,证明FH ⊥平面ABCD ,得FH ⊥BC ,FH ⊥AC ,进而得EG ⊥AC ,AC ⊥平面EDB ;(3)证明BF ⊥平面CDEF ,得BF 为四面体B-DEF 的高,进而求体积.

(1),1//,

21

//,2

////AC BD G G AC EG GH H BC GH AB EF AB EFGH EG FH EG EDB FH EDB

∴∴?∴证:设与交于点,则为的中点,连,由于为的中点,故

又四边形为平行四边形

,而平面,平面

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

立体几何文科解答题16个

精品文档 。 1欢迎下载 1.如图,在四棱锥P ?ABCD 中,底面ABCD 是正方形.点E 是棱PC 的中点,平面ABE 与 棱PD 交于点F . (1)求证:AB//EF ; (2)若PA =AD ,且平面PAD ⊥平面ABCD ,试证明AF ⊥平面PCD . 2.如图,在三棱柱ABC ?A 1B 1C 1中,AA 1⊥平面ABC ,AC ⊥BC ,AC =BC =CC 1=2, 点D 为AB 的中点. (1)证明:AC 1∥平面B 1CD ; (2)求三棱锥A 1?CDB 1的体积. 3.如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (Ⅰ)求证:PA ⊥BD ; (Ⅱ)求证:平面BDE ⊥平面PAC ; (Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 4.在三棱锥P ABC -中, PB ⊥底面,90,ABC BCA M ∠=o 为AB 的中点, E 为PC 的中点,点F 在PA 上,且2AF FP =. (1)求证: AC ⊥平面PBC ; (2)求证: //CM 平面BEF ; (3)若2PB BC CA ===,求三棱锥E ABC -的体积 .

试卷第2页,总5页 5.如图,在多面体ABCDFE 中,四边形ADFE 是正方形,在等腰梯形ABCD 中,AD ∥BC ,AB =CD =AD =1,BC =2,G 为BC 中点,平面ADFE ⊥平面ADCB . (1)证明:AC ⊥BE ; (2)求三棱锥A ?GFC 的体积. 6.如图,在四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 为菱形, 60ABC ∠=o , 1,PA PB E ==为PC 的中点 . (1)求证: //PA 平面BDE ; (2)求三棱锥P BDE -的体积. 7.如图,四棱锥P ?ABCD 中,底面ABCD 是平行四边形,且平面PAC ⊥平面ABCD ,E 为PD 的中点,PA =PC ,AB =2BC =2,∠ABC =60°. (Ⅰ)求证:PB//平面ACE ;

届高三文科数学立体几何专题训练

2015届高三数学(文)立体几何训练题 1、如图3,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的一点. ⑴求证:平面PAC ⊥平面PBC ; ⑵若PA=AB=2,∠ABC=30°,求三棱锥P -ABC 的体积. 2、如图,已知P A ?⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF 3、如图,四棱柱1111D C B A ABCD -中,A A 1?底面ABCD ,且41=A A . 梯 形ABCD 的面积为6,且AD 平面DCE A 1与B B 1交于点E . (1)证明:EC D A 111A ABB 4、如图,已知正三棱柱ABC —A 1B 1C 1,AA 1=AB =2a ,D 、E 分别为CC 1、A 1B 的中 点. (1)求证:DE ∥平面ABC ; (2)求证:AE ⊥BD ; (3)求三棱锥D —A 1BA 的体积 . 5.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB , 将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; P A B C O E F A B C D E A 1 B 1 C 1 D 1 A D F

F E A (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体CDFN 体积的最大值. 6、如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA ,AP=AC, 点D ,E 分别在棱,PB PC 上,且BC (Ⅰ)求证:D E ⊥平面PAC ; (Ⅱ)若PC ⊥AD ,且三棱锥P ABC -的体积为8,求多面体ABCED 的体积。 7、如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点, 且AB AF 3 1 =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE . (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积. 8、如图甲,在平面四边形ABCD 中,已知45,90,105,o o o A C ADC ∠=∠=∠=A B BD =,现将四边 形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;

2015年高考文科数学立体几何试题汇编

图 2 1俯视图 侧视图 正视图2 11.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A . 3 B.1 C. 21 + D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 317 B .210 C .13 2 D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A ) 2 3 (B )3 (C )2 (D )13 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

高考立体几何文科大题及标准答案

高考立体几何大题及答案 1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD , 2AD =,2DC SD ==,点M 在侧棱SC 上,o ∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====, 120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平 面ABE 所成角的正弦值. A C B A 1 B 1 C 1 D E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB = 且E 为PB 的中点时,求 AE 与平面PDB 所成的角的大小. 5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。 求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多 面体ABCDEF 的体积。 7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球 面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 O A P B M D

(完整版)2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距离均为3,那么P 到平面ABC 的距离为 . 答案: 2 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,3PC PF ==,可得出1CF =,同理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,2OC =,222PO PC OC =-= (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=o , ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . Q ,,E M N 分别是11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由MN ?Q 平面NGHM ,于是得到//MN 平面1C DE

(2)E Q 为BC 中点,ABCD 为菱形且60BAD ∠=o DE BC ∴⊥,又1111ABCD A B C D -Q 为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又12,4AB AA ==Q , 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题 【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理 图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题 一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面

文字语言 图形语言 符号语言 性质定理 垂直于同一个平面的 两条直线平行 4.直线和平面垂直的常用性质 ①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个平 面垂直 2.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 性质定理 两个平面垂直,则一个 平面内垂直于交线的直线垂直于另一个平 面 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点, 且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 M D A P B C

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高考文科数学立体几何试题汇编

图 2 俯视图 侧视图 正视图1.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1 的矩形,则该正方体的正视图的面积等于 A . B.1 C. 1 2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 2 B . C .13 2 D .B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( A ) 23 (B (C (D )1 3 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

(A )棱柱 (B )棱台 (C )圆柱 (D )圆台 9. (全国新课标9)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1), (0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( ) (A) (B) (C) (D) 10.(浙江卷4)设m 、n 是两条不同的直线,α、β是两个不同的平面, A 、若m ∥α,n ∥α,则m ∥n B 、若m ∥α,m ∥β,则α∥β C 、若m ∥n ,m ⊥α,则n ⊥α D 、若m ∥α,α⊥β,则m ⊥β 11.(浙江卷5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是 A 、108cm 3 B 、100 cm 3 C 、92cm 3 D 、84cm 3 12. (重庆卷8)某几何体的三视图如题(8)所示,则该几何体的表面积为( ) (A )180 (B )200 (C )220 (D )240 13. (辽宁卷13)某几何体的三视图如图所示,则该几何体的体积是 . 14.(安徽15)如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的 是 (写出所有正确命题的编号)。 ①当1 02 CQ << 时,S 为四边形

高三文科数学立体几何专题练习加详细答案

高三文科数学专题立体几何 1. (2013汕头二模)设I、m是不同的两条直线, 题中为真命题的是() A ?若I ,,则I// C .若I m, // ,m ,则1 【答案】D 【解析】T I ,// ,?- I ,- .■ m D .若I , // ,m ,则I m 2. (2013东城二模)给出下列命题: ①如果不同直线m、n都平行于平面,则m、n—定不相交; ②如果不同直线m、n都垂直于平面,则m、n—定平行; ③如果平面、互相平行,若直线m ,直线n ,则m//n ; ④如果平面、互相垂直,且直线m、n也互相垂直,若m 则n 则真命题的个数是() A . 3 B . 2 C. 1 D. 0 【答案】C 【解析】只有②为真命题. 3. 设I为直线,,是两个不同的平面,下列命题中正确的是 A .若I // ,I// ,贝U // B.若1 ,I ,则// C .若1 ,I// ,贝U // D .若,I// ,则I 【解析】B 4. (2013 东莞 -模)如图,平行四边形ABCD 中,CD 1, BCD 60,且BD CD ,正方形ADEF和平面ABCD垂直,G, H是DF ,BE的中点. (1)求证:BD 平面CDE ; (2)求证:GH //平面CDE ; (3)求三棱锥D CEF的体积. C 是不重合的两个平面,则下列命 B.若I// , ,则I//

【解析】(1)证明:平面 ADEF 平面ABCD ,交线为AD , ?/ ED AD , ? ED 平面 ABCD , ?- ED BD ? 又 BD CD , ?- BD 平面 CDE . (2) 证明:连接 EA ,则G 是AE 的中点, ??? EAB 中,GH//AB , 又 AB//CD , ? GH // CD , ? GH // 平面 CDE ? (3) 设Rt BCD 中BC 边上的高为h , 是棱PA 上的动点. (1) 若Q 是PA 的中点,求证: PC // 平面BDQ CQ ; (2) PC , PB PD ,求证:BD 解析:证明:(1)连结AC ,交BD 于O ,如图: 若 PB 3, ABC 60°,求四棱锥P ABCD 即:点C 到平面 DEF 的距离为 … V D CEF V C DEF _3 2 _3 3 5.(2013丰台二模)如图所示,四棱锥P ABCD 中, 底面ABCD 是边长为2的菱形,Q

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何 第一讲 空间几何体 1.棱柱、棱锥 (1)棱柱的性质 侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质 侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图 (1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长. (2)柱、锥的内切球找准切点位置,化归为平面几何 问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l ); ③圆台的表面积S =π(r ′2 +r 2 +r ′l +rl ); ④球的表面积S =4πR 2 . (2)体积公式 ①柱体的体积V =Sh ; ②锥体的体积V =1 3 Sh ;

③台体的体积V =1 3(S ′+SS ′+S )h ; ④球的体积V =43 πR 3 . 1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A .4 B.143 C.16 3 D .6 答案 B 解析 由三视图知四棱台的直观图为 由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=14 3. 2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )

2018高考文科立体几何大题

立体几何综合训练1、证明平行垂直 1.如图,AB 是圆O 的直径,PA⊥圆O 所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC; (2)若Q 为PA的中点,G为△AOC 的重心,求证:QG∥平面PBC.2.如图,在四棱锥P﹣ABCD 中,AB ∥ CD,AB⊥AD ,CD=2AB ,平面PAD⊥ 底面ABCD ,PA⊥ AD .E和F分别 是CD 和PC 的中点,求证:(Ⅰ) PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD .

3.如图,四棱锥P﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD ,点E在线段AD 上,且CE∥AB . (Ⅰ)求证:CE⊥平面PAD ; (Ⅱ)若PA=AB=1 ,AD=3 ,CD= , ∠ CDA=45 °,求四棱锥P﹣ABCD 的体4.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形.已知 .M 是PD 的中点. Ⅰ)证明PB∥平面MAC Ⅱ)证明平面PAB⊥平面ABCD Ⅲ)求四棱锥p ﹣ABCD 的体积.

Ⅲ)若M 是PC 的中点,求三棱锥M ﹣ACD 的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD 中,底面ABCD 是直角梯形,AB ∥DC,∠ ABC=45 °,DC=1 ,AB=2 ,PA⊥平面ABCD ,PA=1 . (Ⅰ)求证:AB∥平面PCD; Ⅱ)求证:BC⊥平面PAC;

6.(2011? 辽宁)如图,四边形ABCD 为正方形,QA⊥平面ABCD , PD∥QA, OA=AB= PD. (Ⅰ)证明PQ⊥平面DCQ ; (Ⅱ)求棱锥Q﹣ABCD 的体积与棱锥P ﹣DCQ 的体积的比值.7.如图,四棱锥P﹣ABCD 的底面ABCD 是边长为 2 的菱形,∠ BAD=60 °,已知 PB=PD=2 ,PA= . (Ⅰ)证明:PC⊥ BD (Ⅱ)若E为PA 的中点,求三棱锥P ﹣ BCE的体积.

2017届文科数学立体几何大题训练 (1)

2017届文科数学立体几何大题训练 1. 如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形. (Ⅰ)求证:DM 如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示. (Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ; (Ⅲ)证明:平面PFC ⊥平面PCD . 3. 如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1 ,2 DF AB PH =为PAD ?中AD 边上的高. (Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥; (Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB 说明理由. F A D P C H

4. 如图,在四棱锥中,底面为菱形,,为的 中点。 (1)若 ,求证:平面 ; (2)点在线段上, ,试 确定的值,使; 5. .如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点, 2 43 AB AE AD ===,现将ABE ?沿BE 边折至PBE ?位置,且平面PBE ⊥平面 BCDE . ⑴ 求证:平面PBE ⊥平面 PEF ; ⑵ 求四棱锥P BEFC -的体积. P B C E D F E

6. 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD , 90ABC BCD ∠=∠=,PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD 中点. (Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积. 7. 如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求异面直线BS 与AC 所成角的大小. S

《立体几何》专题(文科)

高三文科数学第二轮复习资料 ——《立体几何》专题 一、空间基本元素:直线与平面之间位置关系的小结.如下图: 二、练习题: 1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是 A .平行 B .相交 C .异面 D .平行、相交、异面都有可能 2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A . V 21 B .V 31 C .V 41 D .V 3 2 3.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是 A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥ C .,,m αγβγα⊥⊥⊥ D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 D 1 B 1

线A C 1上的点,若 a PQ= 2 ,则三棱锥P BDQ -的体积为 A3 B3 C3 D.不确定 5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1 2Q B 2 3 Q C 2 π Q D 2 3π Q 6.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证: (1)EG∥平面BB1D1D; (2)平面BDF∥平面B1D1H; (3)A1O⊥平面BDF; (4)平面BDF⊥平面AA1C. 7.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形, 侧棱长为 b,侧棱AA’与底面相邻两边AB、AC都成450角,求 此三棱柱的侧面积和体积. 8.在三棱锥P—ABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积V P-ABC.

届高三文科数学立体几何空间角专题复习

届高三文科数学立体几何空间角专题复习 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2015届高三文科数学立体几何空间角专题复习 考点1:两异面直线所成的角 例1.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 例2.(2010全国卷1文数)直三棱柱111ABC A B C -中,若 90BAC ∠=?,1AB AC AA ==,则异面直线1BA 与1AC 所成的 角等于( C ) (A) 30° (B) 45° (C) 60° (D) 90° 变式训练: 1.(2009全国卷Ⅱ文)已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( C ) (A ) 1010 (B) 15 (C ) 31010 (D) 35 2.如图,直三棱柱111ABC A B C -,90BCA ?∠=,点1D 、1F 分别是11A B 、11A C 的中点, 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B .21 C .15 30 D . 10 15 3.(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱 111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( ) A . 55 B . 53 C . 5 5 D .35 第3题图 第4题图 第5题图 4.(2007全国Ⅰ·文)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线 1A B 与1AD 所成角的余弦值为( )

高科文科数学立体几何真题解析

专题07 立体几何 立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题中,我们将首先复习空间点、直线、平面之间 的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题. §7-1 点、直线、平面之间的位置关系 【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:异面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交. 直线在平面内,记作:a?α . 直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥α . (3)空间两个平面: ①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:α ∥β . 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.

高考真题立体几何文科

文科立体几何

4、如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且 ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//; (Ⅲ)求三棱锥BGF C -的体积. B C

5、如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分 别为1DD 、DB 的中点. (Ⅰ)求证://EF 平面11ABC D ; (Ⅱ)求证:1EF B C ⊥; (III )求三棱锥EFC B V -1的体积. 6、如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD , 1==DC PD ,E 是PC 的中点,作PB EF ⊥交PB 于点F . (I) 证明: PA ∥平面EDB ; (II) 证明:PB ⊥平面EFD ; (III) 求三棱锥DEF P -的体积. A B D E F A 1 B 1

1 A 1B 1C A B D C 7、 如图, 在三棱柱中,, 1CC ⊥平面ABC ,,,, 点是的中点, (1)求证:; (2)求证:; (3)求三棱锥的体积。 8. 如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点, 且BF ⊥平面ACE . (1)求证:AE ⊥BE ; (2)求三棱锥D -AEC 的体积; (3)设M 在线段AB 上,且满足AM =2MB ,试 在线段CE 上确定一点N ,使得MN ∥平面DAE. 111ABC A B C -3AC =4BC =5AB =14AA =D AB 1AC BC ⊥11AC CDB 平面11C CDB -

高考大题规范解答立体几何大题(文科)

高考大题规范解答——立体几何(文) 考点1线面位置关系与体积计算 例1(2017·全国卷Ⅲ)如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比. 【分析】①看到证明线线垂直(AC⊥BD),想到证明线面垂直,通过线面垂直证明线线垂直. ②看到求四面体ABCE与四面体ACDE的体积比,想到确定同一平面,转化为求高的比.【标准答案】——规范答题步步得分 (1)取AC的中点O,连接DO,BO.1分得分点① 因为AD=CD,所以AC⊥DO. 又由于△ABC是正三角形, 所以AC⊥BO. 又因为DO∩BO=O, 从而AC⊥平面DOB,3分得分点② 故AC⊥BD.4分得分点③ (2)连接EO.5分得分点④ 由(1)及题设知∠ADC=90°,所以DO=AO. 在Rt△AOB中,BO2+AO2=AB2, 又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2, 故∠DOB=90°.7分得分点⑤ 由题设知△AEC为直角三角形,

所以EO =1 2 AC . 8分得分点⑥ 又△ABC 是正三角形,且AB =BD , 所以EO =1 2 BD .故E 为BD 的中点, 9分得分点⑦ 从而E 到平面ABC 的距离为D 到平面ABC 的距离的1 2, 四面体ABCE 的体积为四面体ABCD 的体积的1 2, 11分得分点⑧ 即四面体ABCE 与四面体ACDE 的体积之比为1︰1. 12分得分点⑨ 【评分细则】 ①作出辅助线,并用语言正确表述得1分. ②得出AC ⊥DO 和AC ⊥BO 得1分,由线面垂直的判定写出AC ⊥平面DOB ,再得1分. ③由线面垂直的性质得出结论得1分. ④作出辅助线,并用语言正确表述得1分. ⑤由勾股定理逆定理得到∠DOB =90°得2分. ⑥由直角三角形的性质得出EO =1 2AC 得1分. ⑦由等边三角形的性质得出E 为BD 的中点,得1分. ⑧得出四面体ABCE 的体积为四面体ABCD 的体积的1 2得2分. ⑨正确求出体积比得1分. 【名师点评】 1.核心素养:空间几何体的体积及表面积问题是高考考查的重点题型,主要考查考生“逻辑推理”及“直观想象”的核心素养. 2.解题技巧:(1)得步骤分:在立体几何类解答题中,对于证明与计算过程中的得分点的步骤,有则给分,无则没分,所以,对于得分点步骤一定要写,如第(1)问中AC ⊥DO ,AC ⊥BO ;第(2)问中BO 2+DO 2=BO 2+AO 2=AB 2=BD 2等. (2)利用第(1)问的结果:如果第(1)问的结果对第(2)问的证明或计算用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题就是在第(1)问的基础上得到DO =AO . 〔变式训练1〕 如图,在正三棱柱ABC -A 1B 1C 1中,点E ,F 分别是棱CC 1,BB 1上的点,且EC =2FB . (1)证明:平面AEF ⊥平面ACC 1A 1;

相关文档
相关文档 最新文档