文档库 最新最全的文档下载
当前位置:文档库 › 目前制动现状及制动方式比较

目前制动现状及制动方式比较

目前制动现状及制动方式比较
目前制动现状及制动方式比较

机械制动的优点就是简单,实用,电制动一般都是反向制动。

机械制动一般采用电磁抱闸制动,体积大,占用一定空间,抱闸阻力材料容易磨损。选用能耗制动效果较佳,制动晨间极短。

能耗制动与反接制动都属于电动机快速停车的电气制动方法,它们都是当电动机停止时,在电动机上外接一个电源,产生一个与原转动方向相反的电磁制动转矩,迫使电动机迅速停转。

区别:

(1)定义:能耗制动是在切除三相交流电源之后,定子绕组通入直流电流,在定转子之间的气隙中产生静止磁场,惯性转动导体切割该磁场,形成感应电流,产生与惯性转动方向相反的电磁力矩而制动。制动结束后将直流电源切除。

反接制动靠改变定子绕组中三相电源的相序,产生一个与转子惯性转动方向相反的电磁转矩,使电动机迅速停下来,制动到接近零转速时,再将反相序电源切除。

(2)优缺点:

反接制动制动转矩大,制动效果显著,但制动时有冲击,制动不平稳,而且能量损耗大。

能耗制动与反接制动相比,制动平稳,准确,能量消耗小,但制动力矩较弱,特别在低速时制动效果差,并且还需要提供直流电源。

太原煤炭气化公司是一个大型煤化工企业,移动的生产设备使用的比

较多。例如3座焦炉就有14台大型电机车,且走行机构均为双电机进行,由于生产工艺的要求,这些生产设备均需要制动迅速、对位准确,但现行的停车手段有机械制动和电气制动,以后者居多,却只有电磁抱闸和反接制动,实际生产中制动的效果与工艺的要求存在着差距,有必要对电气制动进行研究改进。

制动方式的比较分析

机械制动:机械制动的优点是它的安全性和可靠性较高,不会因电网电源的中断或电气线路的故障而影响到制动;缺点是制动装置的体积比较大,要求制动时间愈短,冲击振动就愈大,停位准确性低。反接制动:反接制动的优点是没有抱闸机构,制动转矩大且迅速,实现制动比较容易;缺点是制动时冲击大,对机构的传动部件损坏大,且制动电流是电机额定电流的3-5倍,对定子绕组、接触器主触头和配电线路的危害很大,增加维护量并严重缩短电器设备使用寿命,频繁制动对位时能量损耗也相当大。

能耗制动:能耗制动的优点是制动转矩平滑,能随时改变制动转矩,可以使生产机械可靠停止,最适合用于经常起动、频繁逆转并要求迅速停车的生产机械;缺点是能量不能回馈电网,还需增加一直流电源。

据测试结果,电动机能耗制动过程的电能损耗仅为反接制动过程的三分之一左右,对于起制动频繁的异步电机,如果采用反接制动时会发热严重,甚至能烧毁电机,而能耗制动和机械制动能保证电机在正常运转时的发热在允许范围之内。综合比较后知道,能耗制动具有机械

制动和反接制动所不具备的优越性,用于生产会更经济和实用。

2 能耗制动原理

2.1 能耗制动

就是立即把转子贮存的机械能转变为电能,再消耗在转子电阻或绕线式异步电机的外接电阻上的一种电气制动方式。

2. 2 原理

在电机断电瞬时,电机定子的二相绕组中通入一直流电流,产生一静止磁场,而电机转子因惯性作用仍按原来方向旋转,同时转子回路中出现感应电流,此感应电流的方向与电机正常运行时的感应电流方向相反,就产生了与转子惯性旋转方向相反的制动转矩。制动转矩与制动电流(励磁电流)成正比的关系,即与静止磁场的强弱、转子串接电阻的大小有关。由能耗制动机械特性曲线可看出,当电机转速下降为零时,其制动转矩也同时降为零,能够使生产机械实现准确停车。

3 具体能耗制动电路的设计

a) 生产机械的双电机运行实际上普遍是共用正、反转接触器来工作,因此可当作1台电机来对待,只是实际容量要翻倍。

b) 能耗制动时所使用的直流电源由整流装置实现,整流装置使用单相桥式整流电路。电路中的降压变压器不允许在电机正常运行时长期处于空载运行状态。

c) 能耗制动电路的短路保护必须要与控制回路的短路保护分开。

制动系统发展历史与趋势

现代汽车制动系统的发展历史与趋势 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装臵向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装臵对机械制动器来说已显得十分必要。这时,开始出现真空助力装臵。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装臵。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克

莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装臵一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装臵,控制装臵进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装臵专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS 制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装臵。这些早期的ABS装臵性能有限,可靠性不够理想,且成本高。 1979年,默〃本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装臵。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装臵。随着大规模集成电路和超大规模集成电路技

提升机制动系统计算

提升机制动系统计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

提升机制动系统的验算 一、副井最大静张力、静张力差的验算: 副井技术参数: 绞车型号:2JK —20 罐笼自重:3450kg 一次提物载重量:6332kg 提人重量:1275kg 提升高度:540m 每米绳重m 最大静张力:17000kg 最大静张力差:11500kg 变位质量:64228(kg s2/m ) 楔形连接器:227 kg 盘形制动器型号:TS-215(闸瓦面积749cm 2,摩擦半径1.7m ,油缸作用面积138cm 2,液压缸直径15.4cm,活塞杆直径7.0cm ,一个油缸产生的最大正压力6300kg )。 液压站型号:GE131B 型(制动油最大压力,最大输油量:9L/min,油箱储油量:500L ,允许最高油温:65℃)。 1、最大静张力的验算: PH Q Q Q F Z j +++=21m ax = 718+2448+3450+227+3569 =10413kg<18000kg 式中: Q 1—矿车重量 Q 2—碴重量 Q Z —罐笼自重(包括楔形连接器) P — 钢丝绳自重 H — 提升高度

通过计算,提升机最大静张力10413kg 小于提升机允许的最大静张力18000kg ,符合《煤矿安全规程规程》第382条规定要求。 2、最大静张力差的验算: PH Q Q F c ++=21m ax =3166+3443 =6609kg 〈12500kg 式中:Q 1—矿车重量, kg Q 2—碴重量, kg 通过计算,提升机最大静张力差6609kg ,小于提升机允许的12500kg ,符合《煤矿安全规程》第382条规定要求。 二、安全制动力矩的验算: 1、安全制动力矩: 式中: M Z —安全制动力矩 μ — 闸瓦与制动盘摩擦系数, R m — 摩擦半径,1.7m n — 制动闸副数,8副 N — 制动盘正压力 N=)/(C K F n l +?- K — 碟形弹簧刚度,4100kg/mm ?— 闸瓦最大间隙,2mm n l — 一组碟形弹簧片数,8片 C — 制动器各运动部分的阻力,

汽车制动性能测试方法分析

编号:SY-AQ-06715 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 汽车制动性能测试方法分析Analysis on test method of automobile braking performance

汽车制动性能测试方法分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 汽车制动性能是汽车性能检测中极其重要的指标,关系着汽车行驶安全,为此应加强汽车制动性能测试方法研究,为更好的检测汽车制动性能奠定基础。本文着重探讨了汽车制定性能检测方法,以期为汽车制动性能的检测提供参考。 截止去年年底我国汽车保有量已达到2.4亿辆,由此引发的汽车安全问题越来越引起人们的重视,不断提高汽车制动性能检测水平,对减少汽车事故保证行车安全具有重要意义。 汽车制动性能指标 汽车制动性能指汽车在短距离内能够稳定停车,以及在长坡时维持一定车速的能力。用于评判汽车制动性能优劣的重要参数称为汽车制动性能指标,包括制动稳定性、制动效能恒定性以及制动效能,下面逐一对其进行阐述。 1.1.制动效能

制动效能即汽车的制动减速度或制动距离,其优劣与否常用汽车在路面良好的条件下,以一定的速度行驶制动至完全停止的距离评定。汽车制动后行驶的距离越短,表示制动性能越佳。另外,为保证交通安全,国家对不同车型的制动减速度和制动距离做了明确规定,如表1所示: 表1不同车辆类型制动距离和速度 机动车类型 制动初速度/(km·h-1 ) 满载减速度/(m·s-2 ) 满载制动距离/m 空载减速度/(m·s-2 ) 空载制动距离/m 空载t1/s

2020版汽车制动性能与行车安全

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版汽车制动性能与行车安 全 Safety management is an important part of production management. Safety and production are in the implementation process

2020版汽车制动性能与行车安全 制动性能主要指汽车按照驾驶员的指令,减速以至停车的能力。汽车动力性能越好,对其制动性能要求也越高。资料统计表明,重大交通事故中,隐制动距离太长或紧急制动时侧滑失控等情况而产生的占40%-50%。只有良好的制动性才能保证在安全行车的条件下提高行车速度,获得较高的运输效率。 汽车制动性能的评价包括: (1)制动效能,即制动距离或者制动减速运动。制动距离最直接影响行车安全,是人们最关心的指标。但是,制动距离受车速影响,也受道路条件、驾驶员反应灵敏程度等非汽车本身结构因素的影响。检测汽车制动距离和制动减速度需要较高的道路条件,检测效率较低,很难适应大量汽车的检测。制动减速度是由地面制动力产生的,故可以利用车轮的地面制动力来计算出汽车的减速度,即可以用制动力的检测来代替汽车制动减速度的测量。

(2)制动效能的恒定性。主要检查连续制动后,汽车制动效能下降的程度,这对连续下坡的汽车的安全也很重要。 (3)制动时的方向稳定性。这是指制动时汽车不能跑偏,侧滑及失去转向的能力。 以上三个方面对汽车行驶安全又影响,是汽车制动性能的重要指标,其中制动效能的影响是最经常、最重要的。随着道路的改善,汽车动力性能的提高,制动跑偏、侧滑对安全的影响也十分突出,因此方向稳定性也是一个必须保证的重要指标。新型的轿车制动系统要求在制动时不抱死跑偏,其制动系装有车轮制动自动防抱死装置,可在保证一定制动效能的前提下紧急制动而不会侧滑,并且驾驶员还有一定的方向控制能力。 云博创意设计 MzYunBo Creative Design Co., Ltd.

制动器现状

1、汽车制动系统历史 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50 年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。1979年,默.本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。 2.制动控制系统的现状 当考虑基本的制动功能量,液压操纵仍然是最可靠、最经济的方法。即使增加了防抱制动(ABS)功能后,传统的“油液制动系统”仍然占有优势地位。但是就复

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

汽车制动性能

第一节制动性能的评价指标 制动性能:指汽车行驶时,能在短时间内停车,并维持行驶方向稳定。下长坡时能维持一定车速的能力。 评价指标: 1、制动效能:即制动距离与制动减速度。 2、制动效能的恒定性:抵抗制动效能的热衰退和水衰退的能力。 3、制动时,汽车方向的稳定性:即制动时,不跑偏、侧滑,即失去转向能力的性能。 第二节制动时车轮受力 一、地面制动力(T——车轴的推力;W——车轮垂直载荷)FXb=Tu/r?N 因为:FXb受到轮胎与地面附着力,Fφ=Fzφ的限制。 所以:FXb=Tu/r≤Fzφ,当FXb=Fzφ(Xb=zφ)时,Tu上升,则FXb不再上升,即:FXbmax=Fzφ 二、制动器制动力:在轮胎周缘克服制动器摩擦力矩所需的力Fu(Fu=Tu/r)。 取决于制动器的型式,结构尺寸、摩擦片摩擦系数、车轮半径与踏板力——制动系的油压(气压)成 正比。 三、地面制动力FXb,制动器制动力Fu及附着力Fφ之间的关系。 1、当FXb小于Fφ时,踏板力上升则Fu上升。 2、当Xb=Fφ时,踏板力上升,则Fu上升,而FXb=Fφ,此时,车轮抱死不转而出现滑拖现象。如果要提高地面制动力FXb,只有提高附着系数φ。即:FXbmax=Fzφ 所以:地面制动力FXb首先取决于Fu,同时又受Fφ的限制,只有Fu、Fφ都足够大时,FXb才比较大。 例:Fu很大,但在结冰路上FXb几乎为0。 四、硬路面上的附着系数φ,φ与车轮的运动状况(滑动程度)有关。 1、滑动率S:S=Vw-rωw/Vw Vw——车轮中心速度 ωw——车轮角速度 r——不制动时的滚动半径 (1)车轮纯滚动时:Vw≈rωw,S=0,制动印痕与胎纹基本一致。 (2)车轮边滚边滑时,Vw大于rωw,0小于S小于100%,胎迹逐渐模糊。 (3)车轮纯滑动时,ωw=0,Un>>roωw,S=100%,制动印痕形成粗黑的印痕。 S的数值说明了制动过程中,滑动成分的多少,S越大,滑动越多,S不同时,φb不同(obi=制动系数)。 2、φb——S关系曲线 (1)纵向φ,沿车轮旋转平面方向。因为:FXb=Fzφb,所以:φb=FXb/Fz (2)φb峰值附着系数S=15——20%时,纵向φ的最大值——φp。 (3)φs滑动附着系数S=100%时的纵向φ——φs。(滑动附着系数) 干路面φp与φs相差不大; 湿路面φp与φs相差很大。 r =φs/φp=1/3——1

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 1608070421 指导教师:李同杰 日期: 2010年12月

盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:1608070421 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。 盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经

制动系统计算说明书

制动器的计算分析 整车参数 2、制动器的计算分析 2.1前制动器制动力 前制动器规格为?310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。当工作压力为P=6×105Pa时,前制动器产生的制动力: F1=2*A c*L/a*BF*?*R/R e*P 桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为F1=3255kgf

以上各式中:A c—气室有效面积 L—调整臂长度 a—凸轮基圆直径 BF—制动器效能因数 R—制动鼓半径 R e—车轮滚动半径 ?—制动系效率 P—工作压力 2.2后制动器制动力 后制动器规格为?310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。当工作压力为P=6×105Pa时,前制动器产生的制动力: F2=2*A c*L/a*BF*?*R/R e*P 桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为 F2 =3467kgf

2.3满载制动时的地面附着力 满载制动时的地面附着力是地面能够提供给车轮的最大制动力,正常情况下制动气制动力大于地面附着力是判断整车制动力是否足够的一个标准。地面附着力除了与整车参数有关之外,还与地面的附着系数有关,在正常的沥青路面上制动时,附着系数?值一般在0.5~0.8之间,我们现在按照路面附着系数为0.7来计算前后地面附着力:F?前=G满1×?+G×? 2 =2200×0.7+6000×× =2002kgf F?后=G满2×?-G×? 2 3800×0.7-6000×× = =1487kgf

因为前面计算的前后制动器最大制动力分别为 F1=3255kgf F2=3467kgf 3、制动器热容量、比摩擦力的计算分析 3.1单个制动器的比能量耗散率的计算分析 前制动器的衬片面积A1=2×πR1××L1= 式中(L1=100mm摩擦片的宽度 w1=110°) 后制动器的衬片面积A2=2×πR2××L2= 式中(L2=100m m 摩擦片的宽度w2=) 比能量耗散率 e1=β= e2=β= 上式中:G—满载汽车总质量 V1—制动初速度,计算时取V1=18m/s β—满载制动力分配系数 t—制动时间,计算时取t=3.06s 鼓式制动器的比能量耗散率以不大于1.8W/mm2为宜,故该制动器的比能量耗散率满足要求。 3.2单个制动器的比摩擦力计算分析 计算时取制动减速度j=0.6g

汽车制动性能评价指标

汽车制动性能评价指标 Final approval draft on November 22, 2020

3-2 汽车制动性能评价指标 导入新课:制动性能的评价指标包括制动效能、制动效能的恒定性、制动时的方向稳定性三个方面。 一、制动效能 制动效能是指汽车迅速降低行驶速度直至停车,或在下坡时维持一定车速及坡道驻车的能力,是制动性能最基本的评价指标。一般用制动减速度、制动力、制动距离等来评价。 1、制动减速度 是指制动时单位时间内车速的变化量。它反映了地面制动力的大小,与制动器制动力及附着力有关。 2、制动力 1)地面制动力 2)制动器制动力 3)地面制动力、制动器制动力和附着力之间的关系 汽车的地面制动力越大,制动减速度越大,制动距离越短;而地面制动力首先取决于制动器制动力,同时受地面附着条件的限制。因此只有汽车具有足够的制动器制动力,同时地面又能提供高的附着力时,才能获得足够的地面制动力 3、制动距离 是指车辆在规定的出速度下,以规定踏板力急踩制动踏板时,从驾驶员右脚接触到制动踏板到车辆停止时车辆所使的距离。 影响制动距离的主要因素:制动器起作用的时间、最大制动减速度

(有附着力和制动器制动力决定)、制动出速度。因此及时维护车辆能缩短制动器起作用时间以及制动性能的稳定。 二、制动效能的恒定性 1)热衰退性 制动效能的稳定性是指汽车制动的抗热衰退性,是指汽车高速制动、短时间重复制动或下长坡连续制动时制动效能的热稳定性。因为制动产生大量的热量,使制动器温度上升,制动器在热状态下能否保持有效的制动效能是衡量制动性能的重要指标。 2)水衰退性 当制动器被水浸湿时,应在汽车涉水后多踩几次制动踏板,是制动蹄和制动鼓摩擦生热迅速干燥。 三、制动时的方向稳定性 制动时方向的稳定性是指汽车制动时不发生跑偏、侧滑及失支转向能力。 1、制动跑偏 主要是由于左、右轮(尤其是前轴)制动器制动力不相等。为限制制动跑偏,要求前轴左、右制动力之差不大于该轴符负荷的5%,后轴为8% 2、制动侧滑与制动时转向能力的丧失 侧滑是指制动时汽车的某一轴或两轴发生横向滑移。 制动时转向能力丧失是指弯道制动时。汽车不再按原来的弯道行驶而沿前线方向驶出,或直线行驶制动时转动转向盘不能改变方向的现象。原因是转向轮抱死。

第4章 汽车的制动性

第4章 汽车的制动性 一、单项选择题(在每小题列出的四个备选项中,只有一项是最符合题目要求的, 请将其代码写在该小题后的括号内) 1、 峰值附着系数 p φ与滑动附着系数s φ的差别( ) 。 A .在干路面和湿路面上都较大 B .在干路面和湿路面上都较小 C .在干路面较大,在湿路面上较小 D .在干路面较小,在湿路面上较大 2、 峰值附着系数对应的滑动率一般出现在( )。 A .1.5%~2% B .2%~3% C .15%~20% D .20%~30% 3、 滑动附着系数对应的滑动率为( )。 A .100% B .75% C .50% D .20% 4、 制动跑偏的原因是( )。 A .左、右转向轮制动器制动力不相等 B .制动时悬架与转向系统运动不协调 C .车轮抱死 D .A 和B 5、 制动侧滑的原因是( )。 A .车轮抱死 B .制动时悬架与转向系统运动不协调 C .左、右转向轮制动器制动力不相等 D .制动器进水 6、 最大地面制动力取决于( )。 A .制动器 制动力 B .附着力 C .附着率 D .滑动率 7、 汽车制动性的评价主要包括( )。 A .制动效能、制动效能的恒定性、滑动率 B .制动效能、制动时汽车的方向稳定性、滑动率 C .制动效能的恒定性、制动时汽车的方向稳定性、滑动率 D .制动效能、制动效能的恒定性、制动时汽车的方向稳定性 8、 汽车制动的全过程包括( )。 A .驾驶员反应时间、制动器的作用时间和持续制动时间 B .驾驶员反应时间、持续制动时间和制动力的消除时间 C .制动器的作用时间、持续制动时间和制动力的消除时间 D .驾驶员反应时间、制动器的作用时间、持续制动时间和制动力的消除时间 9、 制动距离一般是指( )。 A .持续制动时间内汽车行驶的距离 B .持续制动时间和 制动消除时间内汽车行驶的距离 C .制动器的作用时间和 持续制动时间内汽车行驶的距离 D .驾驶员反应时间和持续制动时间内汽车行驶的距离 10、在下列制动器中,制动效能的稳定性最好的是( )。 A .盘式制动器 B .领从蹄制动器 C .双领蹄制动器 D .双向自动增力蹄制动器 11、在下列制动器中,制动效能的稳定性最差的是( )。 A .盘式制动器 B .领从蹄制动器 C .双领蹄制动器 D .双向自动增力蹄制动器

汽车制动系统的概况及作用8正文

绪论 汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力称为汽车的制动性。人们在汽车上装设专门装置,以便驾驶员根据道路和交通等情况借以使外界(主要是路面)在汽车的某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动,使驾驶员和乘客免受车祸的灾害。这一系列专门装置即称为制动系。 1.汽车制动系统的概况及作用 1.1汽车制动系统的发展概况 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气—液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。伴随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。新型动力系统的出现也要求制动系统结构型式和功能形式发生相应的改变。例如电动汽车没有内燃机,无法为真空助力器提供真空源,一种解决方案是利用电动真空泵为真空助力器提供真空。汽车制动系统的发展是和汽车性能的提高及汽车结构型式的变化密切相关的,制动系统的每个组成部分都发生了很大变化。 1.2汽车制动系统作用 使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。 2.制动器(brake staff)简介

制动器就是刹车。是使机械中的运动件停止或减速的机械零件。俗称刹车、闸。制动器主要由制动架、制动件和操纵装置等组成。有些制动器还装有制动件间隙的自动调整装置。为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。有些制动器已标准化和系列化,并由专业工厂制造以供选用。 制动器分为行车制动器(脚刹),驻车制动器(手刹)。在行车过程中,一般都采用行车制动(脚刹),便于在先进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 3.捷达汽车制动器结构分类 制动器按制动目的可分为行车制动器、驻车制动器、应急制动器和辅助制动器。制动器按耗散能量的方式可分为摩擦式、液力式、电磁式和电涡流式,目前广泛使用的是摩擦式制动器。摩擦式制动器按其摩擦副的几何形状可分为鼓式、盘式和带式,以鼓式、盘式制动器应用最广泛。 大众捷达鼓式、盘式制动器的分类如图3-1所示。

3-2 汽车制动性能评价指标

3-2 汽车制动性能评价指标 导入新课:制动性能的评价指标包括制动效能、制动效能的恒定性、制动时的方向稳定性三个方面。 一、制动效能 制动效能是指汽车迅速降低行驶速度直至停车,或在下坡时维持一定车速及坡道驻车的能力,是制动性能最基本的评价指标。一般用制动减速度、制动力、制动距离等来评价。 1、制动减速度 是指制动时单位时间内车速的变化量。它反映了地面制动力的大小,与制动器制动力及附着力有关。 2、制动力 1)地面制动力 2)制动器制动力 3)地面制动力、制动器制动力和附着力之间的关系 汽车的地面制动力越大,制动减速度越大,制动距离越短;而地面制动力首先取决于制动器制动力,同时受地面附着条件的限制。因此只有汽车具有足够的制动器制动力,同时地面又能提供高的附着力时,才能获得足够的地面制动力 3、制动距离 是指车辆在规定的出速度下,以规定踏板力急踩制动踏板时,从驾驶员右脚接触到制动踏板到车辆停止时车辆所使的距离。 影响制动距离的主要因素:制动器起作用的时间、最大制动减速

度(有附着力和制动器制动力决定)、制动出速度。因此及时维护车辆能缩短制动器起作用时间以及制动性能的稳定。 二、制动效能的恒定性 1)热衰退性 制动效能的稳定性是指汽车制动的抗热衰退性,是指汽车高速制动、短时间重复制动或下长坡连续制动时制动效能的热稳定性。因为制动产生大量的热量,使制动器温度上升,制动器在热状态下能否保持有效的制动效能是衡量制动性能的重要指标。 2)水衰退性 当制动器被水浸湿时,应在汽车涉水后多踩几次制动踏板,是制动蹄和制动鼓摩擦生热迅速干燥。 三、制动时的方向稳定性 制动时方向的稳定性是指汽车制动时不发生跑偏、侧滑及失支转向能力。 1、制动跑偏 主要是由于左、右轮(尤其是前轴)制动器制动力不相等。为限制制动跑偏,要求前轴左、右制动力之差不大于该轴符负荷的5%,后轴为8% 2、制动侧滑与制动时转向能力的丧失 侧滑是指制动时汽车的某一轴或两轴发生横向滑移。 制动时转向能力丧失是指弯道制动时。汽车不再按原来的弯道行驶而沿前线方向驶出,或直线行驶制动时转动转向盘不能改变方向的

第四章 汽车制动性能检测

第四章汽车制动性能检测 制动检验台常见的分类方法有:按测试原理不同,可分为反力式和惯性式两类;按检验台支撑车轮形式不同,可分为滚筒式和平板式两类;按检测参数不同,可分为测制动力式、测制动距离式、测制动减速度式和综合式四种;按检验台的测量、指示装置、传递信号方式不同,可分为机械式、液力式和电气式三类;目前国内汽车综合性能检测站所用制动检验设备多为反力式滚筒制动检验台和平板式制动检验台。目前国内外已研制出惯性式防抱死制动检验台但价格昂贵,短期内难以普及应用。本章内容重点介绍反力式滚筒制动试验台。 第一节制动台结构及工作原理 一、反力式滚筒制动检验台 1.基本结构 反力式滚筒制动检验台的结构简图如图2-4-1所示。它由结构完全相同的左右两套对称的车轮制动力测试单元和一套指示、控制装置组成。每一套车轮制动力测试单元由框架(多数试验台将左、右测试单元的框架制成一体)、驱动装置、滚筒组、举升装置、测量装置等构成。 图 2-4-1 反力式制动检验台结构简图 (1)驱动装置 驱动装置由电动机、减速器和链传动组成。电动机经过减速器减速后驱动主动滚筒,主动滚筒通过链传动带动从动滚筒旋转。减速器输出轴与主动滚筒同轴连接或通过链条、皮带连接,减速器壳体为浮动连接(即可绕主动滚筒轴自由摆动)。日式制动台测试车速较低,一般为0.1~0.18km/h, 驱动电动机的功率较小,为2×0.7~2×2.2kW;而欧式制动台测试车速相对较高,为2.0~5km/h,驱动电动机的功率较大,为2×3~2×11kW。减速器的作用是减速增扭,其减速比根据电动机的转速和滚筒测试转速确定。由于测试车速低,滚筒转速也较低,一般在40~100r/min范围(日式检验台转速则更低,甚至低于10r/min)。因此要求减速器减速比较大,一般采用两级齿轮减速或一级蜗轮蜗杆减速与一级齿轮减速。 理论分析与试验表明,滚筒表面线速度过低时测取协调时间偏长、制动重复性较差,过高时对车轮损伤较大,推荐使用滚筒表面线速度为2.5km/h左右的制动台。 (2)滚筒组

制动系统的发展历史和现状

汽车制动系统如何发展 d 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16 车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机

械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20 世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技 术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是 机电一体化的高技术产品。它的安装大大提高了汽车的主动安 全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规 定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进 了防抱制动系统在汽车上的应用。1969年的福特使用了真空助 力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想, 且成本高。 1979年,默·本茨推出了一种性能可靠、带有独立液压助 力器的全数字电子系统控制的ABS制动装置。1985年美国开发 出带有数字显示微处理器、复合主缸、液压制动助力器、电磁 阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路

制动系统设计流程

制动系统的开发和设计 1.设计依据和原则 1.1 根据况、使用条件及用户群体等)确定制动系统的总体方案,为系统各零部件的选型提供产品信函(或项目描述书)所描述的整车的使用情况(含道路状依据; 包括:制动形式、制动器形式、制动总、分泵(阀)形式等。 1.2 根据车型提供的整车参数,结合各项强制法规的要求,初步分析各所选制动零部件与整车匹配的合理性; 所需参数:质心距前轴a、质心高hg、总质量Ga、前轴负荷G1、前轴质量分配%、后轴负荷G2、后轴质量分配等。 1.3 根据强制法规的要求,制定试验方案进一步验证整车制动系统匹配和各制动元件选型的合理性。 2.设计方案初步规划 2.1 各主要零部件的选型及相关注意事项: 2.1.1 制动器总成 2.1.1.1 通过对所开发车型与已开发同类车型(或标杆车)的比较,初步确定系统各零部件的型式、结构和相关参数,而单纯从整车对制动力的需求方面来说,制动器的制动力越大越好,但由于制动器所产生的制动力与制动器的结构型式、制动器直径、制动器的分泵直径、制动器摩擦副的相对摩擦系数、制动管路压力等等因素有关,故在选取时应遵循以下原则; 2.1.1.2 制动器结构型式的选型原则:根据整车档次、使用地区、用户群体等确定制动器的结构型式;

2.1.1.3 制动器直径的选型原则:由于制动器的直径与轮辋直径有关,在选型时应根据整车布置及轮辋的要求,考虑制动鼓的散热问题,一般制动鼓与轮辋的间隙应不小于10mm,否则会导致制动器散热不良,引起制动鼓早期龟裂、制动衬片烧结、炭化,大大降低制动器的制动效能;另外,制动器与轮辋的间隙太小,制动过程所产生的热量也将大量传导至轮辋上,对轮胎不利。 2.1.1.4 制动器衬片摩擦系数的确定:由于制动器衬片的摩擦系数是决定制动器制动力的主要原因之一,在同型、同规格的制动器中,制动衬片的摩擦系数越高,制动器所产生的制动力越大,但对于不同结构的制动器来说,并不是摩擦系数越高越好,摩擦系数太高对制动鼓(或盘)的磨损也越大,且对于双向自增力式制动器,摩擦系数越高,制动过程越粗暴,对制动底板、制动蹄铁、制动鼓的刚性要求越高,否则在制动过程中越易产生制动器颤动、整车发抖的现象,故对于摩擦系数的选取根据本人的经验建议:双向自增力式制动器的取0.38左右,其它结构型式的制动器取0.45~0.5左右,盘式制动器取0.35左右。 2.1.1.5 制动器分泵直径的选型和确定:在上述参数选定以后,根据整车所需的各轴制动力来确定制动器分泵的直径。对于单个制动器而言,制动器所产生的制动力与制动分泵活塞的有效面积(直径的平方——液压制动器)成正比,在选取过程中应兼顾国家标准规格和社会成熟资源,液压制动器的分泵直径最大不超过32mm。

现代汽车制动系统的发展趋势

从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。

制动系统设计计算报告

制动系统设计计算 报告

文档仅供参考,不当之处,请联系改正。 目录 1 系统概述 .......................................................................... 错误!未定义书签。 1.1 系统设计说明......................................................... 错误!未定义书签。 1.2 系统结构及组成 ..................................................... 错误!未定义书签。 1.3 系统设计原理及规范 ............................................. 错误!未定义书签。 2 输入条件 .......................................................................... 错误!未定义书签。 2.1 整车基本参数......................................................... 错误!未定义书签。 2.2 制动器参数............................................................. 错误!未定义书签。 2.3 制动踏板及传动装置参数 ..................................... 错误!未定义书签。 2.4 驻车手柄参数......................................................... 错误!未定义书签。 3 系统计算及验证 .............................................................. 错误!未定义书签。 3.1 理想制动力分配与实际制动力分配...................... 错误!未定义书签。 3.2 附着系数、制动强度及附着系数利用率 .............. 错误!未定义书签。 3.3 管路压强计算......................................................... 错误!未定义书签。 3.4 制动效能计算......................................................... 错误!未定义书签。 3.5 制动踏板及传动装置校核 ..................................... 错误!未定义书签。 3.6 驻车制动计算......................................................... 错误!未定义书签。 3.7 衬片磨损特性计算 ................................................. 错误!未定义书签。 4 总结.................................................................................. 错误!未定义书签。 5 制动踏板与地毯距离....................................................... 错误!未定义书签。参考文献 ........................................................................... 错误!未定义书签。

相关文档
相关文档 最新文档