文档库 最新最全的文档下载
当前位置:文档库 › 电磁波实验报告

电磁波实验报告

电磁波实验报告
电磁波实验报告

电磁场与微波技术

实验报告

院系:

班级:

姓名:

学号:

指导老师:

实验一线驻波比波长频率的测量

一、实验目的

1、熟练认识和了解微波测试系统的基本组成和工作原理。

2、掌握微波测试系统各组件的调整和使用方法。

3、掌握用交叉读数法测波导波长的过程。

二、实验用微波元件及设备简介

1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。

3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。

图 1 隔离器结构示意图图2 衰减其结构示意图

4.谐振式频率计(波长表):

图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二

1. 谐振腔腔体 1. 螺旋测微机构

2. 耦合孔 2. 可调短路活塞

3. 矩形波导 3. 圆柱谐振腔

4. 可调短路活塞 4. 耦合孔

5. 计数器 5. 矩形波导

6. 刻度

7. 刻度套筒

电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率

满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。

5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。

6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。

8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。

三、实验内容及过程

1.微波信号源的调整:

频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.0 0.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。

2.测量线探针的调谐:

我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。

3.用波长计测频率:

(1)在测量线终端接上全匹配负载。

(2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常

高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。

(3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。

4.交叉读数法测量波导波长:

(1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。

(2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

(3)测量线终端换接短路板,使系统处于短路状态。将测量线探针移至测量线的一端。

(4)按交叉读数法测量波导波长:测量三组数据,求平均值。

d 01=(d 11+d 12)/2 d 02=(d 21+d 22)/2 则得:λg=2?|d 02-d 01|

5、测量ρ

原理:驻波系数的测量是微波测量中最基本的测量。通过驻波系数测量不仅可以了解传输线上的场分布,而且可以测量阻抗、波导波长、相位移、衰减、Q 值等其他参量。在微波能量的传输时,如果匹配不好,形成驻波,能量就不能有效地传给负载,这就增大了损耗。在大功率传输时,由于驻波的存在,驻波电场的最大点处可以产生击穿打火,因而驻波测量及匹配技术是十分重要的。 电压驻波比是传输线中电场最大值与最小值之比,表示为:

min

max E E

S = (1)

测量驻波比的方法很多,测量仪器也较多。本实验主要让同学们通过测量线法、等指示度法、功率衰减法测量一些负载的驻波比,掌握三种方法所适用的测量范围、测量原理、测量步骤。

1)小信号检波电流与电压:平方成正比,2I U U E E I ∝??→∝??→∝

max max

max

min min

min

(

)V E I V

E I ρ==

= 2)方法:左右移动测量线探针的位置找到max I 、min I 3)实验仪器框图:

测得数据如下:max I =296mA 、min I =8mA 所以得到ρ=37

信号源 隔离器 衰减器 频率计 测量线 负载

选频放大器

6、测量波导波长

g

λ(

ρ

λ)

1)原理:相邻波节(波腹)之间的距离为2ρ

λ

2)方法:(等指示法或平均法)

3412()()Z Z Z Z ρλ=+-+

测得数据如下:1Z =103+30×0.02=103.6 2Z =113+25×0.02=113.5

3Z =127+11×0.02=127.22 4Z =134+46×0.02=134.92

可得ρλ=262.14-217.1=45.04

7、测f

1)原理:当信号源频率与频率计(谐振器)谐振频率相等时,频率计吸收信号最多。

2)方法:所有元件都固定不动,只缓慢旋转频率计的短路活塞,找到选频放大器最小的位置,此时频率计的频率即为信号源输出信号的频率。信号源的频率为9.78GHz ,当旋转频率计的短路活塞至9.48GHz 时,选频放大器上示数最小,为380mA 。

四、实验心得

通过本次实验我了解了微波测试系统的基本组成和工作原理,掌握了微波测试系统各组件的调整和使用方法,我们采用直接法,方法比较简单,只是需要我们耐心读数而已。通过观察波形,记录数据,以及和组员的配合,我们顺利的完成了用交叉读数法测波导波长的过程,并得到了正确的数据。

实验二 微波上下变频器的原理与测量

一、实验目的

1. 了解微波变频模块的基本工作原理;

2. 利用实验模块各指标的实际测量以了解变频器件的特性; 3. 了解变频器件的电路构架;

二、实验原理

混频器通常被用于将不同频率的信号相乘,以便实现频率的变换。这样做的原因在于,要在众多密集分布、间隔很近的相邻信道中滤出特定的射频信号需要Q 值极高的滤波器。然而,如果能在通信系统中将射频信号的载波频率降低,或者说进行下变频,则上述任务就比较容易实现。图18-1是外差式接收机的电路原理框图,它也许是人们最熟悉的下变频系统。

图中接收到的射频信号经过低噪声前置放大器(LNA )放大后输入到混频器中,混频器实现输入射频信号f RF 与本地振荡器(LO )信号f LO 相乘。混频器的输出信号中含有0RF L f f ±的成分,经过低通滤波器可以滤出其中频率较低的所谓中频(IF )分量0RF L f f -然后再进行后续处理。

图18-1 采用混频器的外差式接收机

混频器的两个重要组成部分是信号合成单元和信号检测单元。信号合成可以用90°(或180°)定向耦合器实现。信号检测单元中的非线性元件通常是采用一个二极管。以后我们也会看到,双二极管的反平行结构及四个二极管的双平衡结构也很常用。除了二极管以外,人们已经采用BJT 和MESFET 研制出了可以工作在X 波段的低噪声、高频率混频器。

在详细讨论混频器的电路设计之前,我们先简要说明混频器为何能在输入端口接受两个信号并在输出端口产生多个频率分量。显然,一个线性的系统是不能实现这个任务的,我们必须采用诸如二极管、FET 或BJT 等非线性器件,它们可以产生丰富的谐波成分。图18-2

是一个基本的系统框图,其中混频器与射频信号V RF (t )以及本振信号V LO (t )相连,本振信号也被称为泵浦信号。

图18-2 混频器的基本原理:用两个输入信号频率

在系统的输出端口产生新的信号频率

由图可见,输入电压信号与本振信号混合后施加在具有非线性传输特性的半导体器件上,该器件可以输出电流驱动负载。二极管和BJT 都具有指数型传输特性,类似于肖特基二极管方程:

/0(1)V VT I I e =- 式(18-1)

然而,MESFET 的传输特性可近似为二次曲线:

20()(1/)DSS T I V I V V =- 式(18-2)

为了简化书写,我们省略了漏极电流和栅极-源极电压的下标。输入电压由射频信号V RF =V RF cos(ωRF t),本振信号V LO =V LO cos(ωLO t)以及偏置电压V Q 之和表示;即:

00cos()cos()Q RF RF L L V V V t V t ωω=++ 式(18-3)

此电压作用在非线性器件上所产生的电流响应可根据电压在Q 点附近的泰勒级数展开求得:

2222()(/)1/2(/)Q Q VQ VQ I V I V dI dV V d I dV I VA V B =+++

=+++

式(18-4)

其中常数A 和B 分别为(dI/dV )|VQ 和1/2 d 2I/dV 2)|VQ 。忽略直流偏置V Q 和I Q ,并将式(18-3)代入式(18-4)可得:

{}{}

2

2220000()cos()cos()cos ()cos ()RF RF L L RF RF L L I V A V t V t B V t V t ωωωω=+++

002cos()cos()RF L RF L BV V t t ωω++

式(18-5)

根据三角恒等式cos 2(ωt)=(1/2){1- cos(2ωt)},上式中包含余玄平方的项可以展开为直

流项以及包含2RF t ω和02L t ω的项。关键的是式(18-5)式中的最后一项,它变为:

[][]{}000()cos ()cos ()RF L RF L RF L I V BV V t t ωωωω=

+++- 式(18-6)

这个表达式清楚地表明,二极管或晶体管的非线性效应可以产生新的频率分量ωR F ±ω

lo ,而且其幅度与

V RF V LO 的乘积有关,其中B 是与器件有关的参数。

公式(18-6)只包含了泰勒级数展开式的前3项,因此只有2阶交调产物(2

V B )。其他高阶产物,如3阶交调产物(V 3C )都被忽略了。二极管和BJT 中的这类高阶谐波项对混频器性能的影响极大。然而,如果采用具有二次曲线传输特性的FET ,则输出信号中将只有2阶交调产物。所以,FET 不容易产生有害的高阶交调产物。

三、实验步骤:

本实验箱包含了微波上变频模块以及微波下变频模块,其原理相同。这里仅以微波上变频模块为例进行测试。实验框图如图18-11:

图18-11 上变频模块测试图

变频器转换增益的测量:

1. 将频谱分析仪中心频率设定为2017.5MH Z 并校准频谱分析仪器。

2. 测量时使用我们有源实验箱上调制模块输出信号作为中频信号,其频率为15MH Z , 输出功率为4 dBm 并接至电路IF 端。将微波锁相源输出信号仿真一个本地振荡信号,其中心频率为2GHz ,输出功率为12.5 dBm 并接至电路了L O 端。

3. 并利用频谱分析仪中之Mark 功能来测量混频器电路之RF 端口输出功率及频率;利用转换损耗之定义将混频器之转换损耗计算出来,将测量结果纪录于表18-1 中。

4. 通过微波锁相源拨码盘,依次调整L O 信号输入的频率,从1970MH Z 开始重复步骤2 与步骤3,直至L O 信号输入的频率为2030 MH Z 为止,并将测量结果记录于表18-1 中。 变频器端口隔离度的测量:

1. 将频谱分析仪之参考电平、中心频率其分别设定为0 dBm 、2017.5MH Z 并校准频谱分析仪器。

2. 将微波锁相源输出信号仿真一个本地振荡信号接于变频模块的IF 输入端,设置频率为2000MH Z ,功率为12.5 dBm 。同时将模块的RF 端接50Ω负载,而频谱仪的输入端接于模块

的L O输出端来测量混频器之IF-L O隔离度,将频谱分析仪之Marker 的频率标示在2000MHz,记录测量结果.

3.将微波锁相源输出信号接于变频模块的IF输入端,同时将模块的L O端接50Ω负载,而频谱仪的输入端接于模块的RF输出端来测量混频器之IF-RF 隔离度,将频谱分析仪之Marker 的频率标示在2000MHz,记录测量结果.

4.将微波锁相源经过功率分配器输出信号接于变频模块的L O输入端,同时将模块的IF 端接50Ω负载,而频谱仪的输入端接于模块的RF输出端来测量混频器之L O-RF隔离度,将频谱分析仪之Marker 的频率标示在2000MHz,记录测量结果.

四、实验结果:

1970 1980 1990 2000 2010 2020 2030

LO输入

频率

(MHz)

973.8 986.8 993.5 1006.5 1013.1 1021.6 1032.5 RF输出

频率

(MHz)

--53 --56 --85 --83 --46 --45 --86

RF输出

功率

(dBm)

2 4 5 10 8 4 9

转换损耗

(dB)

五、实验心得

通过本次实验我了解了微波变频模块的基本工作原理,一步一步按步骤进行实验,利用实验模块各指标的实际测量得出一组数据,从而进一步了解了变频器件的特性并了解了变频器件的电路构架。通过此次实验,我更加深刻的领悟到了动手实践的重要性,所以课程实验不仅给了我们提高动手能力的机会,同时也是对所学知识的深刻理解。

实验三 微波影音传输系统的搭建及调试

一、 实验目的

1. 掌握模拟微波通信系统的典型架构及应用; 2. 了解各微波模块在通信系统中的位置和作用; 3. 调试并理解模拟微波通信系统基本特性。

二、 实验原理

(一) 模拟微波通信系统的典型架构

微波通信技术问世已半个多世纪,它是在微波频段通过地面视距进行信息传播的一种无线通信手段。最初的微波通信系统都是模拟制式的,它与当时的同轴电缆载波传输系统同为通信网长途传输干线的重要传输手段,例如我国城市间的电视节目传输主要依靠的就是微波传输。模拟微波通信系统组成如图21-1所示。

影音

调制模块

微波接收系统

LNA

PA

混频模块

ATT

微波发送系统PA PA

混频模块

图21-1 模拟信号微波通信系统

(二) 微波发射机的重要指标:

1. 谐波抑制:

所谓谐波,是指与发射机输出信号有相干关系的信号。在频谱上反映为信号频率f 0的整数倍nf 0频率处的单根谱线(n=2,3,4,……)。谐波功率与载波功率之比称为谐波抑制。它反映了发射机抑制谐波的能力。显然我们希望该比值越小越好。

2. 杂散:

杂散是指和输出信号没有谐波关系的一些无用谱。在频谱上可能表现为若干对称边带,也可能表现为信号频率f0谱线旁存在的非谐波关系的离散单根谱线。这些谱线的幅度一般都高于噪声。杂散抑制就是指与载波频率成非谐波关系的离散频谱功率与载波功率之比。

谐波和杂散主要由发射机中的非线性元件产生,也有机内外干扰信号的影响。它们表征了信号输出谱的纯度。

3. IMD3:

通常,输出端口有用与无用功率(单位dBm )之差被定义为以dB 为单位的交调失真,

cos()cos()IF IF t t ωω-=

如图21-2所示,当频率为f1和f2的两个等幅信号同时加在放大器的输入端时,由于放大器非线性的影响,在输出端将出现互调失真的成份。其中f2±f1为二阶互调分量,而2f1±f2为三阶互调分量。除非是对于宽带的电路,一般我们不考虑二阶互调失真的影响。它是用来衡量接收系统抵抗内调变失真能力的参数。

图21-2 微波器件非线性产生邻道干扰

(三) 微波接收机的重要指标

1. 噪声系数:

由于放大器本身就有噪声,输出端的信噪比和输入端信噪比是不一样的,为此,使用噪声系数来衡量放大器本身的噪声水平,它的基本定义为:

在环境温度为标准室温(17℃)、一个网络(或收信机)输入与输出端在匹配的条件下,噪声系数NF 等于输入端的信噪比与输出端的信噪比的比值,记作

'o

i 1N S //x i x i i o i i o

o i

i N N G N N G N G N G N S N S N S F +=?+?=?=?==

式(21-1) 式中Nx 是出现在放大器的输出端,由放大器内部产生的噪声。

由公式(21-1)可以看出,网络(或收信机)的噪声系数最小值为1(合0dB )。NF=1,说明网络本身不产生热噪声,即=0,其输出端的噪声功率仅由输出端的噪声源所决定。

实际的收信机不可能NF=1,即NF>1。式(21-1)说明,接收机本身产生的热噪声功率越大,值越大。接收机本身的噪声功率要比输入端的噪声功率经放大后的值还要大很多,根据噪声系数的定义,可以说是衡量接收机热噪声性能的一项指标。

2. 镜频抑制:

为了说明镜频问题,我们可考察射频信号用给定本振信号进行下变频的情况。除了需要的信号外,我们再以IF 为间隔相对于LO 对称放置一个干扰信号(见图21-3)。射频信号的变换关系应为:

RF LO IF ωωω-=

镜频信号IM ω的变换关系则为:

()IM LO LO IF LO IF ωωωωωω-=--=-

由于cos()cos()IF IF t t ωω-=,所以这两个频率谱都移动到了相同的频段内,如图21-3所示。

图21-3 镜频映射问题

为了避免出现幅度可能大于射频信号的有害镜频信号,可以再混频器的前面增加所谓镜频滤波器来抑制镜频的影响,并提供有效的信号频谱隔离。更有效的措施是采用镜频抑制混频器。

3. 邻频抑制:

通信接收机要求尽可能高的邻频抑制,因此不得不对中频滤波器的矩形系数有所要求 4. 本振泄露:

振泄露就是指泄露到输出口或输入口的本振信号,而本振是指“本机振荡”。

超外差式接收要将接收的讯号与接收机通过振荡电路产生的频率进行“混频”,产生固定的中频讯号进行放大,这个由接收机产生的振荡称为“本振”。 5. 灵敏度:

接收机灵敏度是指在确保一定质量要求(如达到规定信噪比)的情况下,接收机输入

端所需的最小信号强度。

6.动态范围:

微波接收机的动态范围是指接收机能正常接收的微波信号的功率范围,其上、下限由下述条件确定:

(1)信号太弱时,将被噪声所淹没,由此可取信号功率的下限;

(2)信号太强时,超过最大可允许的输入功率,接收机会出现饱和或过载。

通常我们希望接收机有较大动态范围。

三、实验内容

实验设备:

项次设备名称数量备注

1 微波有源实验箱1~2台两台实验箱分别做收发系统

2 微带天线2只微波无源箱

3 摄像头1个带麦克风和电源

4 电视机1台

5 射频线若干

6 视频线2根

7 SMA—有线电视插头转接线1根

8 频谱分析仪1台

实验步骤:

(一)两台实验箱的传输实验

压控振荡器

微波锁相源功分器低噪声放大器

腔体滤波器数字调制与解

调模块

微波下变频

模块功率放大器压控衰减器

微波上变频

模块视频音频

调制模块

压控振荡器

微波锁相源功分器低噪声放大器

腔体滤波器数字调制与解

调模块

微波下变频

模块功率放大器压控衰减器

微波上变频

模块视频音频调制模块

语音视频

实验平台一

实验平台二

1.如图所示,将发实验系统接好摄像头和微波调制器的发射支路。

2.将微波锁相源设定为1970MHz ,打开实验箱电源,测量微波发射频谱特性。

3.收实验系统将接收支路连接好,同样将微波锁相源设定为1970MHz ,打开电源,在

电视机上应能看到较大的调频雪花噪声颗粒。

4.对电视机进行调谐,调出图像信号。

四、实验心得

通过本次实验我掌握了模拟微波通信系统的典型架构及应用,了解了各微波模块在通信系统中的位置和作用。按照实验要求连接电路图,并对电视机进行调谐,最后在电视机上看到了图像,在这个过程中我理解了模拟微波通信系统基本特性。这个实验整体上比较简单,只需要我们严格按照原理图连接线路,基本就可以得到正确结果。所以这只是考察我们对原理图的理解,我们按照步骤做即可。

实验四双分支定向耦合器的原理与设计

一、实验目的

1、了解双分支型定向耦合器的电路原理和设计方法;

2、学习ADS软件进行双分支型定向耦合器电路的设计仿真;

3.掌握双分支型定向耦合器的PCB制作及调试方法。

二、双分支型定向耦合器的技术指标

工作频率2010--2025MHz

驻波比小于等于1.5

隔离度大于等于20dB

耦合度为6加减1dB

方向性大于等于20dB(方向性=隔离度-耦合度)

三.双分支型定向耦合器的工作原理

定向耦合器是一种有方向性的功率耦合元件,可用于监视功率,频率和频谱;对功率进行分配和合成;还可以进行测量反射系数和功率等。

定向耦合器是四端口网络结构,如下图所示:

四.实验内容及步骤

1、新建一个工程,在默认目录下取名为”coupler”(实验时自己取名),并选择原理图中微带线的单位为mm。

2、在下拉菜单中选择无源器件“Passive Circuit DG-Microtrip Circuits”

3、在左边无源器件中选择耦合器“Blcplr”和重要的控键“MSUB”。

4、修改“MSUB”参数:基板厚度H=0.8mm,

相对介电常数Er=4.3,金属层厚度T=0.035mm。修改耦合器参数:频率F=2GHZ,

耦合度C=6dB

5、打开无源器件控制窗口,设置仿真的扫描频率“2010-2030”MHZ,间隔为100kHZ ,点Simulate开始仿真。

6、看仿真结果是否符合设计要求。

其中S11为驻波比(<1.5)S31为耦合度(6±1dB)S41为隔离度(>20dB)

7、点击耦合器,再点任务栏“向下的箭头”,可看到耦合器的内部结构。

8、删除四个端口,在下拉菜单中找到“Simulation-S_Param”,点“Term”图标表示的50欧标准阻抗接在四个端口,再接地。

9、版图仿真:选择任务栏”Layou”的第一项,在弹出的对话框中点“OK”得到版图。

10、根据版图中的尺寸制成PCB板。

五,实验心得

本次实验是一个软件实验,按照所给的实验步骤进行操作。在实验过程中,由于自己的

操作不当以及软件自身的一些问题,所以我们遇到了一些问题,通过询问助教以及与同学讨论,最终将问题顺利解决,并在实验最后得到了正确的结果。通过本次实验我了解了双分支型定向耦合器的电路原理和设计方法,学会了用ADS软件进行双分支型定向耦合器电路的设计仿真,收获很大。

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

2017-2018学年高中物理第三章电磁振荡电磁波第1节电磁振荡教学案教科版选修3-4

第1节 电_磁_振_荡 对应学生用书 P37 电 磁 振 荡 [自读教材·抓基础] 1.振荡电流和振荡电路 (1)振荡电流:大小和方向都随时间做周期性迅速变化的电流。 (2)振荡电路:产生振荡电流的电路。 (3)LC 振荡电路:由线圈L 和电容器C 组成的电路,是最简单的振荡电路。 2.电磁振荡的过程 (1)放电过程:由于线圈的自感作用,放电电流由零逐渐增大,电容器极板上的电荷逐渐减小,电容器里的电场逐渐减弱,线圈的磁场逐渐增强,电场能逐渐转化为磁场能,振荡电流逐渐增大,放电完毕,电流达到最大,电场能全部转化为磁场能。 (2)充电过程:电容器放电完毕后,由于线圈的自感作用,电流保持原来的方向逐渐减小,电容器将进行反向充电,线圈的磁场逐渐减弱,电容器里的电场逐渐增强,磁场能逐渐转化为电场能,振荡电流逐渐减小,充电完毕,电流减小为零,磁场能全部转化为电场能。 此后,这样充电和放电的过程反复进行下去。 3.电磁振荡的分类 (1)无阻尼振荡: 1.振荡电流是大小和方向都随时间做周期性迅速变化的电流。能够产生振荡电流的电路叫振荡电路,最简单的振荡电路是LC 振荡电路。 2.电容器放电过程中,极板上电量减少,电流增大,电场能逐渐转化为磁场能;电容器充电过程中,极板上电量增多,电流减小,磁场能逐渐转化为电场能。这种电场能和磁场能周期性相互转化的现象叫电磁振荡。 3.LC 振荡电路的振荡周期T =2πLC ,振荡频率f =1 2πLC 。

在LC 振荡电路中,如果能够及时地把能量补充到振荡电路中,以补偿能量损耗,就可以得到振幅不变的等幅振荡。 (2)阻尼振荡: 在LC 振荡电路中,由于电路有电阻,电路中有一部分能量会转化为内能,另外还有一部分能量以电磁波的形式辐射出去,使得振荡的能量减小。 [跟随名师·解疑难] 1.各物理量变化情况一览表: 工作过程 q E i B 能量转化 0→T 4 放电 q m →0 E m →0 0→i m 0→B m E 电→E 磁 T 4→T 2 充电 0→q m 0→E m i m →0 B m →0 E 磁→E 电 T 2 →3T 4 放电 q m →0 E m →0 0→i m 0→B m E 电→E 磁 3T 4→T 充电 0→q m 0→E m i m →0 B m →0 E 磁→E 电 2.振荡电流、极板带电荷量随时间的变化图像: (a)以逆时针方向电流为正 (b)图中q 为上极板的电荷量 图3-1-1 3.变化规律及对应关系: (1)同步同变关系:

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:2 01 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σε ρρ-= 二、 选择题 1、 电磁波波动方程22222222110,0E B E B c t c t ???-=?-=?? ,只有在下列那种情况下 成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() =+(式1) 010log/0 PL d dB PL d n d d 即平均接收功率为: ()[][]()()()[]() =--=- Pr010log/0Pr010log/0 d dBm Pt dBm PL d n d d d dBm n d d (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

电磁波动方程和平面电磁波

电磁波动方程和平面电磁波 电工基础教研室周学

本节的研究目的 掌握无源空间线性各向同性均匀介质中波动方程的推导; 掌握等相面,平面波,均匀平面波概念;掌握均匀平面电磁波的基本特征。 本节的研究内容 一、电磁波动方程 二、均匀平面电磁波

波动是电磁场的基本属性当时,电场和磁场相耦合,相互为源,可以脱离电荷、电流,以波的形式存在于空间中。 0/≠??t 0≠??t B 0≠??t E E B 电磁波 ???????=??-?=??-?010******* 22t E c E t H c H

电磁波的波段划分及其应用名称频率范围波长范围典型业务 甚低频VLF[超长波] 3~30KHz100~10km导航,声纳低频LF[长波,LW] 30~300KHz10~1km导航,频标中频MF[中波, MW] 300~3000KHz1km~100m AM, 海上通信高频HF[短波, SW] 3~30MHz100m~10m AM, 通信 甚高频VHF[超短波] 30~300MHz10~1m TV, FM, MC 特高频UHF[微波] 300~3000MHz100~10cm TV, MC, GPS 超高频SHF[微波] 3~30GHz10~1cm通信,雷达 极高频EHF[微波] 30~300GHz10~1mm通信, 雷达 光频[光波] 1~50THz300~0.006 m光纤通信

研究电磁波在空间的传播规律和特性,就是讨论由电磁场基本方程组导出的电磁波动方程在给定条件下的解。

00E H E t H E t H E γεμ????=+???????=-?????=????=?D E B H J E εμγ?=?=??=?在无源空间中,假设媒质是各向同性、线性、均匀的,则 2 2222200H H H t t E E E t t μγμεμγμε????--=?????????--=????无源空间的电磁波动方程,研究电磁波问题的基础

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 2 04q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 122 101 4n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量) (1-3) 电位为 12101 4n i n i i q r ????πε==+++= ∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

电磁场与电磁波实验报告

中南大学信息科学与工程学院 课题名称: 电磁场与电磁波实验报告 信息科学与工程学院 通信工程1201 学 班 学 姓 院: 级: 号: 名: 0909120927 苏文强 指导老师: 陈宁

实验一电磁波反射实验 一实验目的 1. 掌握微波分光仪的基本使用方法; 2. 了解3cm 信号源的产生、传输及基本特性; 3. 验证电磁波反射定律。 二预习内容 电磁波的反射定律 三实验原理 微波与其它波段的无线电波相比具有:波长极短,频率很高,振荡周期极短 的特点。微波传输具有似光特性,其传播为直线传播。电磁波在传播过程中如遇到障碍物,必定要发生反射。本实验以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即:反射电磁波位于入射电磁波和通过入射点的法线所决定的平面上反射电磁波和入射电磁波分别位于法线两侧;反射角θr 等于入射角θi。原理如图1.1所示。

图1.1 四实验内容与步骤 1. 调整微波分光仪的两喇叭口面使其互相正对,它们各自的轴线应 在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180 刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。 2. 将反射全属板放到支座上,应使金属板平面与支座下面的小圆盘 上的90-90 这对刻线一致,这时小平台上的0 刻度就与金属板的法线方向一致。将金属板与发射、接收喇叭锁定,以保证实验稳定可靠。 3. 打开信号源开关,将三厘米固态信号源设置在:“电压”和“等幅”档。 4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。

5.3电磁振荡与电磁波

§5、3电磁振荡与电磁波 5.3.1、电磁振荡 电路中电容器极板上的电荷和电路中的电流及它们相联系的电场和磁场作周期性变化的现象,叫做电磁振荡。在电磁振荡过程中所产生的强度和方向周期性变化的电流称为振荡电流。能产生振荡电流的电路叫振荡电路。最简单的振荡电路,是由一个电感线圈和一个电容器组成的LC 电路,如图5-3-1所示。 在电磁振荡中,如果没有能量损失,振荡应该永远持续下去,电路中振荡电流的振幅应该永远保持不变,这种振荡 叫做自由振荡或等幅振荡。但是,由于任何电路都有电阻,有一部分能量要转变成热,还有一部分能量要辐射到周围空间中去,这样振荡电路中的能量要逐渐减小,直到最后停止下来。这种振荡叫做阻尼振荡或减幅振荡。 电磁振荡完成一次周期性变化时需要的时间叫做周期。一秒钟内完成的周期性变化的次数叫做频率。 振荡电路中发生电磁振荡时,如果没有能量损失,也不受其它外界的影响,即电路中发生自由振荡时的周期和频率,叫做振荡电路的固有周期和固有频率。 LC 回路的周期T 和频率f 跟自感系数L 和电容C 的关系是:. LC f LC T ππ21 ,2==。 5.3.2、电磁场 任何变化的电场都要在周围空间产生磁场,任何变化的磁场都要在周围空间产生电场。变化的电场和磁场总是相互联系的,形成一个不可分割的统一的场,这就是电磁场。麦克斯韦理论是描述电磁场运动规律的理论。 L 图5-3-1

变化的磁场在周围空间激发的电场,其电场呈涡旋状,这种电场叫做涡旋电场。涡旋电场与静电场一样对电荷有力的作用;但涡旋电场又与静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。 当导体作切割磁感线运动时,导体中的自由电子将受到洛仑兹力而在导体中定向移动,使这段导体两端分别积累正、负电荷,产生感应电动势,这种感应电动势又叫做动生电动势。它的计算公式为 θεsin Blv = 当穿过导体回路的磁通量发生变化时(保持回路面积不变),变化的磁场周围空间产生涡旋电场,导体中的自由电子在该电场的电场力作用下定向移动形成电流,这样产生的感应电动势又叫感生电动势。它的计算公式为 t B S ??=ε 5.3.3、电磁波 如果空间某处产生了振荡电场,在周围的空间就要产生振荡的磁场,这个振荡磁场又要在较远的空间产生新的振荡电场,接着又要在更远的空间产生新的振荡磁场,……,这样交替产生的电磁场由近及远地传播就是电磁波。 电磁波的电场和磁场的方向彼此垂直,并且跟传播方向垂直,所以电磁波是横波。 电磁波不同于机械波,机械波要靠介质传播,而电磁波它可以在真空中传播。电磁波在真空中的传播速度等于光在真空个的传播速度8 1000.3?=C 米/秒。 电磁波在一个周期的时间内传播的距离叫电磁波的波长。电磁波在真空中的波长为:.

电磁振荡和电磁波

电磁振荡和电磁波 一、教法建议 抛砖引玉 本章教材的核心内容是麦克斯韦的电磁理论,但由于考查重心以电磁振荡的过程和电磁波特性为主,所以教学时这方面内容应详讲重练,而其它则简单地阐述。 指点迷津 教材对电磁振荡产生过程的分析是从能量转换着眼,重点放在电路中电场能和磁场能的相互转化上。教学时可引导学生逐步分析教科书中图6-2甲、乙、丙、丁、戊所示的电磁振荡过程要使学生明确何时电场能转化为磁场能,何时磁场能转化为电场能;何时电场能最大,何时磁场能最大。电场能与磁场能间的转化条件是电感线圈的自感作用和电容器的充放电作用。要启发学生从电磁感应的角度搞清楚:为什么充好电的电容器开始放电时电路里的电流不能立刻达到最大值,电场能为什么不能转化为磁场能,为什么电容器放电完毕时电路里的电流还要继续流动。 电磁振荡产生的物理过程比较抽象,为了帮助学生理解可用单摆的摆动作类比,电容器充完电时相当于把摆球从平衡位置拉到最高点,电场能相当于摆球势能,磁场能相当于摆球动能。电容器在放电过程中电场能转化为磁场能,相当于摆球由最高点向平衡位置运动。摆球势能转化为动能。电容器放电完毕电场能全部转化为磁场能,相当于摆球到达平衡位置时摆球势能全部转化为动能。 如果想使学生建立起较完整的电磁振荡概念,就要使学生明确“电”不仅指电容器两极板上的电荷,也指该电荷产生的电场,“磁”不仅指电感线圈中的电流,也指该电流产生的磁场。电磁振荡是指这些电荷、电场、电流、磁场都随时间做周期性的正弦变化的现象,为了使学生分清振荡电流与前章所讲的交变电流的区别,要指出振荡电流是一种频率很高的交变电流,很难用交流发电机产生,一般用LC回路产生。可说明在演示实验中我们有意加大电感线圈的电感L和电容器的电容C使振荡电流周期变大(频率减小)以便观察,无线电技术中所应用的振荡电流频率约1兆赫左右或几十兆赫。 阻尼振荡和无阻尼振荡除了按教材内容介绍外,可与单摆的摆动进行对比说明,还可用示波器演示LC回路产生阻尼振荡时的情形,让同学观察振幅衰减的情况,并用示波器观察补充能量后产生的无阻尼振荡波形,看到振幅一定的情况,通过观察示波器的波形能对教科书中图6-3的图象留下深刻的印象。 教科书在解释什么叫振荡电路的固有周期和固有频率后,通过演示实验改变LC回路中的电感L或电容C,使同学看到电路的振荡周期、频率随之变化,由实验中得出电感L大(小)、电容C大(小)、周期长(短的结论,要启发学生体会到:LC回路的周期频率由电路本身的特性(L,C值)决定,所以把电路的周期、频率叫做固有周期、固有频率,教材没有做进一步的分析和证明,直接给出了周期公式和频率公式,这两个公式的证明在中学不易讲清楚。我们的目的是让学生通过实验现象的观察了解公式内容,能应用公式对有关总是进行简单的分析、计算。教材强调了公式中各个物理量的单位,这是有的学生容易出错的地方,课堂上可以让学生做一些简单的基本练习。 (1)电磁场和电磁波:从理论上说,是磁学的核心内容就是电磁场的概念和麦克斯韦的电磁场方程,但这些内容非常抽象,在中学阶段还没有很好的方法让学生接受,只能要求学生对电磁场的理论有一个初步的定性的了解,教材突出了电磁场理论中最核心的内容:变化的电场产生磁场,变化的磁场产生电场,变化的电场和磁场交替产生传播出去形成电磁波。 电磁场理论建立的历史过程是对我们有极大启发的激动人心的过程,适当介绍这一历史过程对学生有教育作用,在思想方法上也会受益。我们可简单介绍法拉第关于场的要领和法拉第的一些设想,介绍麦克斯韦的追求和电磁理论的提出、电磁波设想的提出,介绍赫兹对电磁波存在的实验验证。 电磁场理论的核心之一是:变化的磁场产生电场,教材从电磁感应用现象中随时间变化的磁场在线圈中产生感应电动势谈起,为了使学生容易接受,可做一个演示实验,实验装置如图6-1所示,当穿过螺线管的磁场随时间变化时,上面的线圈中产生感应电动势,引起感应电流使灯泡发光,我们可提出问题,线圈中产生感应电动势说明了什么?指出麦克斯韦认为变化的磁场在线圈中产生电场,正是这种电场在线圈中引起了感应电流,我们又提出问题:如果用不导电的塑料线绕制线圈、线圈中还会有电流、电场吗?(有电场,无电流)。再问:想像线圈不存在时线圈所在处的空间还有电

电磁场与电磁波实验报告-

电磁场与电磁波实验报告-

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βω λν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λ π π2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院:电子工程学院 班级: 组员: 撰写人:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 1、金属板全反射实验 2、观察介质板(玻璃板)上的反射和折射实验 将金属换做玻璃板,观察、测试电磁波在该介质板上的反射和折射现象,自行设计 实验步骤和表格,计算反射系数和透射系数,验证透射系数和反射系数相加是否等 于1 。

电动力学复习总结第四章 电磁波的传播2012答案

电动力学复习总结第四章电磁波的传播2012答案 第四章电磁波的传播 一、填空题 1、色散现象是指介质的( )是频率的函数. 答案:?,? ???s2、平面电磁波能流密度和能量密度w的关系为( )。答案:S?wv ???3、平面电磁波在导体中传播时,其振幅为( )。答案:E0e???x 4、电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案:???1, 0, ?? 6、波导管尺寸为0.7cm×0.4cm,频率为30×109HZ的微波在 该波导中能以 ( )波模传播。答案:TE10波 ?E7、线性介质中平面电磁波的电磁场的能量密度(用电场表示)为 ( ),它对时间的平均值为( )。答案:?E2, 12?E0 2 8、平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。答案:E?vB,相等 9、在研究导体中的电磁波传播时,引入复介电常数???( ),

其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 ???????????xi(??x??t)答案:?????i,传导电流,E(x,t)?E0ee, ? ??10、矩形波导中,能够传播的电磁波的截止频率 c,m,n( ),当电磁 波的频率?满足( )时,该波不能在其中传播。若b>a,则最低截止频率为( ),该波的模式为( )。 答案:?c,m,n?? ??mn?()2?()2,?<?c,m,n,,TE01 abb?? 1 11、全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、自然光从介质1(?1,?1)入射至介质2(?2,?2),当入射角等于( ) 时,反射波是完全偏振波.答案:i0?arctgn2 n1 13、迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:???0e?t? ? 二、选择题 ??22??1?E1?B1、电磁波波动方程?2E?22?0,?2B?22?0,只有在下列那种情况下c?tc?t

电磁场与电磁波实验报告

电磁场与电磁波实验报告 实验一:电场 实验时间:2010年12月19日1.2节实验地点:耘慧210 一.实验目的 1.熟悉电介质的极化过程; 2.了解传导电流的流向;

3.掌握点电荷相互作用力的方向; 4.掌握电场力的功和环路定理; 5.掌握电流及电流的形成; 6.理解电通量; 7.验证高斯定理、库仑定律1; 二、实验内容 利用flash制作极化分子和非极化分子在有无电场情况下的正负电荷的移动方向、传导电流和位移电流的流向、两个点电荷的电场和电场力的情况、点电荷的电场、带电体的电场、电电荷系的电场、电流的形成过程和条件、电通量及电通量的定义、高斯定理及其推导过程等。 三、实验体会 通过本次电磁场实验,对电场有了更深刻的理解,不再是自己凭空想象电场力的作用,而是可以通过观看flash看到空间电场的相互作用,为以后的学习奠定基础。 实验二:极化与边界条件 实验时间:2010年12月19日3.4节实验地点:耘慧210 一、实验目的 1.掌握静电场的边界条件; 2.掌握恒定电场的边界条件;

3.掌握时变电场的边界条件; 4.了解介质磁化的过程; 5.了解介质极化的过程; 6.了解平面波的极化特性; 二、实验内容 制作静电场的边界条件、恒定电场的边界条件、时变电场的边界条件、介质的磁化过程、介质的极化过程、平面波德极化特性、以及极化的三个种类:位移极化、圆极化、椭圆极化。 三、实验体会 通过本次实验,掌握了静电场的边界条件、恒定电场的边界条件、时变电场的边界条件以及三者的区别,同时,我对介质的磁化和极化有了更深的认识,巩固了课本上学到的知识,让自己学到的知识变得更加生动形象。 实验三:电磁波 实验时间:2010年12月21日1.2节实验地点:耘慧210 一、实验目的 1.掌握电磁波在真空中的传输; 2.掌握平面波在真空中的传输;

电磁振荡和电磁波

[科目] 物理 [关键词] 教案/电磁振荡和电磁波 [年级] 高二 [文件] jan30.doc [标题] 电磁振荡和电磁波 [内容] 电磁振荡和电磁波 【教学结构】 一、电磁磁场 ⒈LC振荡电路:如图1所示,由电感线圈和电容器组成的电路。 ⒉振荡电流:由LC振荡电路产生的大小和方向作周期性变化的交流电,振荡电流是一种频率很高的交流电,很难用交流发电机产生,一般用LC振荡电路产生,与前一章讲的交流电不同。 ⒊电磁振荡的产生,是本章的重要内容,电磁振荡产生的物理过程比较抽象,也是本章教材的难点,必须多下功夫。 ⑴振荡产生条件:如图1当电键K与b接通,电源给电容器充电,充电结束,电容器带电,电容器储存电场能,为LC振荡电路的全部能量。 ⑵振荡过程 放电:电键K接通a,电容器开始放电,由于自感放电电流逐渐增大,电流方向如图2所示,逆时针方向。电容器电量逐渐减少,电场能逐渐减少转化为电感线圈中的磁场能,而且逐渐增大,放电结束时,电流最大,电容器带电量为零,全部电场能转化为磁场能。 充电:如图3所示,给电容器反向充电,电流仍为逆时针方向,电流强度逐渐减小,

电容器带电量逐渐增大,磁场能逐渐减小,转化为电场能,且逐渐增大,充电结束时,充电电流为零,电容器带电量最大,全部磁场能转化为电场能。 放电:如图4所示,放电电流逐渐增大,其方向为顺时针,电容器电量逐渐减小,电场能逐渐减小,转化为磁场能,磁场能逐渐增大,当放电结束时,放电电流最大,电容器带电量为零,全部电场能转化为磁场能。 充电:如图5所示,给电容器充电,电流仍为顺时针方向,电流强度逐渐减小,电容器带电量逐渐增大,磁场能逐渐减小,转化为电场线,且逐渐增大。充电结束时,充电电流为零,电容器带电量最大,全部磁场能转化为电场能。又回复到初始状态,再重复上述振荡过程。上述振荡过程即为一个完整电磁振荡过程。 为了有助于电磁振荡过程的理解,可用单摆的摆动类比,电源给电容器充电相当把摆球从平衡位置拉至最高点,做为振动的开始条件。电场能相当于重力势能,磁场能相当动能,电容器从图2到图3的放电过程电场能转化为磁场能相当单摆摆球从最高点摆至平衡位置重力势能转化为摆球动能。电容器放电结束,电场能全部转化为磁场能相当摆球的重力势全部转化动能,放电结束,电流强度最大,相当于单摆达平衡位置时速度最大。依此类比可加深对电磁振荡过程的理解,注意关键是抓住放电,充电结束的时刻的特点。 从上述物理过程的分析,应认识到电荷与电场,电场能,电流与磁场,磁场能是密切联系在一起的,电磁振荡过程实际是电荷,电场,电流强度,磁场随时做周期性正弦变化的。 ⒋无阻尼振荡和阻尼振荡 ⑴无阻尼振荡:在自由振荡中,没有能量损失。振荡过程中振荡电流强度的振幅不随时间发生变化,又称等幅振荡。如图6所示。 ⑵阻尼振荡:在振荡过程中,有能量损失,振荡电流的振幅逐渐减小,最后停止。又称为减幅振荡。如图7所示。 振荡过程中,在电路电阻上产生热量而损失,线路还要向外幅射能量,使LC 振荡电路中能量很快损失掉而停止振荡。要维护振荡必须不断给振荡电路补充能量。振荡器就是不断补充损失的能量保证等幅振荡。 二、电磁振荡的周期和频率 ⒈周期:电磁振荡完成一次周期性变化的时间,用T表示,单位为秒(S) LC电路中振荡周期由电容和电感大小决定,实验证明,LC Tπ2 =,当C用法拉(F)、L用享利(H)为单位时,T的单位为秒(S),使用此公式计算周期时注意因为比较麻烦,一定要仔细。

相关文档
相关文档 最新文档