文档库 最新最全的文档下载
当前位置:文档库 › Linux内核结构详解教程

Linux内核结构详解教程

Linux内核结构详解教程
Linux内核结构详解教程

Linux内核结构详解教程

─────Linux内核教程

linux内核就像人的心脏,灵魂,指挥中心。

内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等.

严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux.

一个Linux内核很少1.2M左右,一张软盘就能放下.

内容基础,语言简短简洁

红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。

红联Linux门户: https://www.wendangku.net/doc/1213160941.html,

红联Linux论坛: https://www.wendangku.net/doc/1213160941.html,/bbs

红联Linux 论坛大全,所有致力点都体现在这

https://www.wendangku.net/doc/1213160941.html,/bbs/rf/linux/07.htm

目录

Linux内核结构详解

Linux内核主要五个子系统详解

各个子系统之间的依赖关系

系统数据结构

Linux的具体结构

Linux内核源代码

Linux 内核源代码的结构

从何处开始阅读源代码

海量Linux技术文章

Linux内核结构详解

发布时间:2006-11-16 19:05:29

Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解

发布时间:2006-11-16 19:05:54

1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。

2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。

3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。

4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。

5.进程间通讯(IPC) 支持进程间各种通信机制。

处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

各个子系统之间的依赖关系

发布时间:2006-11-16 19:06:20

进程调度与内存管理之间的关系:这两个子系统互相依赖。在多道程序环境下,程序要运行必须为之创建进程,而创建进程的第一件事情,就是将程序和数据装入内存。

进程间通信与内存管理的关系:进程间通信子系统要依赖内存管理支持共享内存通信机制,这种机制允许两个进程除了拥有自己的私有空间,还可以存取共同的内存区域。

虚拟文件系统与网络接口之间的关系:虚拟文件系统利用网络接口支持网络文件系统(NFS),也利用内存管理支持RAMDISK设备。

内存管理与虚拟文件系统之间的关系:内存管理利用虚拟文件系统支持交换,交换进程(swapd)定期由调度程序调度,这也是内存管理依赖于进程调度的唯一原因。当一个进程存取的内存映射被换出时,内存管理向文件系统发出请求,同时,挂起当前正在运行的进程。

除了这些依赖关系外,内核中的所有子系统还要依赖于一些共同的资源。这些资源包括所有子系统都用到的过程。例如:分配和释放内存空间的过程,打印警告或错误信息的过程,还有系统的调试例程等等。

系统数据结构

发布时间:2006-11-16 19:06:52

在linux的内核的实现中,有一些数据结构使用频度较高,他们是:

task_struct.

Linux内核利用一个数据结构(task_struct)代表一个进程,代表进程的数据结构指针形成了一个task数组(Linux中,任务和进程是相同的术语),这种指针数组有时也称为指针向量。这个数组的大小由NR_TASKS(默认为512),表明Linux系统中最多能同时运行的进程数目。当建立新进程的时候,Linux为新进程分配一个

task_struct结构,然后将指针保存在task数组中。调度程序一直维护着一个current指针,他指向当前正在运行的进程。

Mm_struct

每个进程的虚拟内存由一个mm_struct结构来代表,该结构实际上包含了当前执行映像的有关信息,并且包含了一组指向vm_area_struct结构的指针,vm_area_struct结构描述了虚拟内存的一个区域。

Inode

虚拟文件系统(VFS)中的文件、目录等均由对应的索引节点(inode)代表。每个VFS索引节点中的内容由文件系统专属的例程提供。VFS索引节点只存在于内核内存中,实际保存于VFS的索引节点高速缓存中。如果两个进程用相同的进程打开,则可以共享inade的数据结构,这种共享是通过两个进程中数据块指向相同的inode完成。

Linux的具体结构

发布时间:2006-11-16 19:07:17

所谓具体结构是指系统实现的结构。

Linux的具体结构类似于抽象结构,这种对应性是因为抽象结构来源于具体结构,我们的划分没有严格依照源代码的目录结构,且和子系统的分组也不完全匹配,但是,它很接近源代码的目录结构。

尽管前面的讨论的抽象结构显示了各个子系统之间只有很少的依赖关系,但是具体结构的5个子系统之间有高度的依赖关系。我们可以看出,具体结构中的很多依赖关系并没有在抽象结构中出现。

Linux内核源代码

发布时间:2006-11-16 19:07:44

目前,较新而又稳定的内核版本是2.4.x和2.6.x,因为版本不同稍有差别,因此如果你想让一个新的驱动程序既支持2.4.x,又支持2.6.x,就需要根据内核版本进行条件编译,要作到这一点,就要支持宏

LINUX_VERSION_CODE,假如内核的版本用a.b.c来表示,这个宏的值就是216a+28b+c。要用到指定内核版本的值,我们可以用KERNEL_VERSION宏,我们也可以自己去定义它。

对内核的修改用补丁文件的方式发布的。Patch实用程序用来用来对内核源文件进行一系列的修改。例如:你有2.2.9的源代码,但想移到2.2.10。就可以获得2.2.10的补丁文件,应用patch来修改2.2.9源文件。例如:

$ cd /usr/src/linux

$ patch -pl < patch-2.2.10

Linux 内核源代码的结构

发布时间:2006-11-16 19:08:05

Linux内核源代码位于/usr/src/linux目录下。

/include子目录包含了建立内核代码时所需的大部分包含文件,这个模块利用其他模块重建内核。/init 子目录包含了内核的初始化代码,这是内核工作的开始的起点。

/arch子目录包含了所有硬件结构特定的内核代码。如:i386,alpha

/drivers子目录包含了内核中所有的设备驱动程序,如块设备和SCSI设备。

/fs子目录包含了所有的文件系统的代码。如:ext2,vfat等。

/net子目录包含了内核的连网代码。

/mm子目录包含了所有内存管理代码。

/ipc子目录包含了进程间通信代码。

/kernel子目录包含了主内核代码。

从何处开始阅读源代码

发布时间:2006-11-16 19:08:23

在Internet,有人制作了源代码导航器,为阅读源代码提供了良好的条件,站点为lxr.linux.no/source。

下面给出阅读源代码的线索:

系统的启动和初始化:

在基于Intel的系统上,当loadlin.exe或LILO把内核装入到内存并把控制权传递给内核时,内核开始启动。关于这一部分请看,arch/i386/kernel/head.S,head.S进行特定结构的设置,然后跳转到init/main.c的main()例程。

内存管理:

内存管理的代码主要在/mm,但是特定结构的代码在arch/*/mm。缺页中断处理的代码在/mm/memory.c ,而内存映射和页高速缓存器的代码在/mm/filemap.c 。缓冲器高速缓存是在/mm/buffer.c 中实现,而交换高速缓存是在mm/swap_state.c和mm/swapfile.c。

内核:

内核中,特定结构的代码在arch/*/kernel,调度程序在kernel/sched.c,fork的代码在kernel/fork.c,内核例程处理程序在include/linux/interrupt.h,task_struct数据结构在inlucde/linux/sched.h中。

PCI:

PCI伪驱动程序在drivers/pci/pci.c,其定义在inclulde/linux/pci.h。每一种结构都有一些特定的PCI BIOS代码,Intel的在arch/alpha/kernel/bios32.c中。

进程间通信:

所有的SystemVIPC对象权限都包含在ipc_perm数据结构中,这可以在include/linux/ipc.h中找到。SystemV消息是在ipc/msg.c中实现。共享内存在ipc/shm.c中实现。信号量在ipc/sem.c中,管道在/ipc/pipe.c中实现。

中断处理:

内核的中断处理代码几乎所有的微处理器特有的。中断处理代码在arch/i386/kernel/irq.c中,其定义在

include/asm-i386/irq.h中。

海量Linux技术文章

发布时间:2006-11-15 11:32:55

下面是linux技术文章快速入口。需要联网:

Linux技术交流

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-3-1.html

Linux应用

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=1 Linux安装及学习指导

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-45-1.html

Linux系统安装

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=45&filter=type&typeid=11 Linux学习指导

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=45&filter=type&typeid=12 Linux软件安装

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=45&filter=type&typeid=13 shell

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=3 Linux壁纸

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=4红旗

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=5 Redhat

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=6 SuSE

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=7

Linux认证

https://www.wendangku.net/doc/1213160941.html,/bbs/forumdisplay.php?fid=3&filter=type&typeid=9 Linux下载分享{酷件、书籍、视频分享}

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-6-1.html

服务器应用

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-7-1.html

数据库应用

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-8-1.html

Linux编程与内核

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-9-1.html

UniX技术文章

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-32-1.html

Linux业界声音、新闻

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-11-1.html

Linux人才招聘信息

https://www.wendangku.net/doc/1213160941.html,/bbs/forum-46-1.html

制作:红联Linux论坛祝您阅读愉快!

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.wendangku.net/doc/1213160941.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

linux 内核参数修改

linux 内核参数修改 配置 Linux 内核参数(2种方法),修改后不用重启动更新: /sbin/sysctl -p 第一种:打开/etc/sysctl.conf 复制如下内容 kernel.shmall = 2097152 kernel.shmmax = 2147483648 kernel.shmmni = 4096 kernel.sem = 250 32000 100 128 fs.file-max = 65536 net.ipv4.ip_local_port_range = 1024 65000 net.core.rmem_default=262144 net.core.wmem_default=262144 net.core.rmem_max=262144 net.core.wmem_max=262144 第二种:打开终端 cat >> /etc/sysctl.conf< kernel.shmall = 2097152 kernel.shmmax = 2147483648 kernel.shmmni = 4096 kernel.sem = 250 32000 100 128 fs.file-max = 65536 net.ipv4.ip_local_port_range = 1024 65000 net.core.rmem_default=262144 net.core.wmem_default=262144 net.core.rmem_max=262144 net.core.wmem_max=262144 EOF 这里,对每个参数值做个简要的解释和说明。 (1)shmmax:该参数定义了共享内存段的最大尺寸(以字节为单位)。缺省为32M,对于oracle来说,该缺省值太低了,通常将其设置为2G。(2)shmmni:这个内核参数用于设置系统范围内共享内存段的最大数量。该参数的默认值是 4096 。通常不需要更改。 (3)shmall:该参数表示系统一次可以使用的共享内存总量(以页为单位)。缺省值就是2097152,通常不需要修改。(共享内存段的数量,以页为主,每个页是4K) (4)sem:该参数表示设置的信号量。一般大于maxproc的一点就行了。 (5)file-max:该参数表示文件句柄的最大数量。文件句柄设置表示在linux系统中可以打开的文件数量。 修改好内核以后,执行下面的命令使新的配置生效。 [root @linux1 /root]# /sbin/sysctl -p 以 root 用户身份运行以下命令来验证您的设置: /sbin/sysctl -a | grep shm /sbin/sysctl -a | grep sem /sbin/sysctl -a | grep file-max /sbin/sysctl -a | grep ip_local_port_range 例如: # /sbin/sysctl -a | grep shm kernel.shmmni = 4096 kernel.shmall = 2097152 kernel.shmmax = 2147483648

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

linux内核的网络配置

文章来源 https://www.wendangku.net/doc/1213160941.html,/p/2088592067 第9节, Networking support 关于网络支持 上图 讲解; RF switch subsystem support 这个一般是要的,因为有些无线和蓝牙放在一张卡上 选m,wireless(无线)里面的一些选项随之会自动选m,上图 注意: cfg80211 wireless extensions compatibility 这个兼容选项要选择,3.7默认是没有选择

如果没有选择,iwconfig会报告没有扩展 Bluetooth subsystem support 蓝牙,可以自己选择,如果有m就行 还有子选项自己看下 如果还有红外线,无线电,对应选择,这个设备应该是很少networking option最上面的,全局网络选项,上图

Packet socket和Unix domain sockets 备必,而且不能成模块,不然udev会报一段信息给你 Transformation user configuration interface 选m,其实也很少用,像ipsec,下面的ipsec也可以选成模块 TCP/IP networking 要的,要的,子选项大部分不用,你也可以选上 IP: multicasting 多播 IP: advanced router 高级路由 你需要选上 IP: TCP syncookie support ~~sync flooding,同时还必须。。。个人没什么意义Large Receive Offload提高网络的东西,这个Y,如果你觉得现在不用,先m TCP: advanced congestion control这个你也可以Y The IPv6 protocol 很多要用到,虽然在兲现在没用,像systemd就要了 Security Marking和Network packet filtering framework (Netfilter) 个人没什么意义,你可以试下

Linux设置内核参数的方法

Linux设置内核参数的方法 1内核参数的查看方法 使用“sysctl -a”命令可以查看所有正在使用的内核参数。内核参数比较多(一般多达500项),按照前缀主要分为以下几大类:net.ipv4、net.ipv6、net.core、vm、fs、dev.parport、dev.cdrom 、dev.raid、kernel等等。相同的linux,安装的组件和使用的方式不一样,正在使用的内核参数是不一样的。 所有的内核参数的说明文档是放到/usr/src/linux/Documentation/sysctl中的,如果想知道对内核参数的说明,可以到该目录下查看相应的说明文档。 2内核参数的的设置方法 由于Linux的内核参数信息都存在内存中,因此可以通过命令直接修改,并且修改后直接生效。也可以通过文件的方式进行设置。下面就介绍这两种修改方法。 2.1命令设置的方式 可以用两种方法实现。 1、使用“sysctl -w 参数名=值”的方式 假设我们把net.ipv4.ip_forward的值修改为1,使用命令“sysctl -w net.ipv4.ip_forward=1”。 2、修改内核参数对应的proc文件 内核参数位于/proc/sys/之下,参数名称是以文件所在的路径,并将“/”以“.”来取代。举例来说,/proc/sys/net/ip_forward的参数名称为net.ipv4.ip_forward。 同样把net.ipv4.ip_forward的值修改为1,使用命令“echo “1”> /proc/sys/net/ipv4/ip_forward”。 注意,这里proc文件跟普通的文件不一样。一般一个文件用echo写入内容之后,会变成一个文本文件,但echo修改proc文件之后还是个空文件。 2.2文件设置的方式 更改的内核参数默认保存在/etc/sysctl.conf文件中。修改的时候可以直接用vi编辑sysctl.conf文件,增加要修改的内核参数内容,修改的格式为:参数名=值。例如,把net.ipv4.ip_forward的值修改为1,在sysctl.conf中增加下面这行内容:net.ipv4.ip_forward=1 文件修改好后,进行保存。然后使用“sysctl -p 配置文件名”来使配置生效,如果配置文件是默认的,可以不用输配置文件名,即使用“sysctl -p”。 通过文件设置的方式修改的内核参数是在系统重启后将失效(我之前认为修改后的内核参数放在文件中,系统启动的时候会读这个文件,重启后设置应该不会失效。但经过验证,一般会失效,但如果把将默认的boot.sysctl服务打开,所以系统启动时就会执行这个文件的设置)。把我们修改参数的命令写入启动执行脚本文件里/etc/rc.local,这样系统重启后配置就不会失效。 文件方式的好处是内核参数设置的值可以用文件保留下来,调用“sysctl -p”可以使文

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.wendangku.net/doc/1213160941.html, 来源: https://www.wendangku.net/doc/1213160941.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.wendangku.net/doc/1213160941.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.wendangku.net/doc/1213160941.html, 红联Linux论坛: https://www.wendangku.net/doc/1213160941.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.wendangku.net/doc/1213160941.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

Linux内核配置编译与文件系统构建要点

Linux内核配置编译与文件系统构建 南京大学 黄开成101180046 2012.11.11 一:实验目的 1.了解嵌入式系统的开发环境,内核与文件系统的下载和启动; 2.了解Linux内核源代码的目录结构及各自目录的相关内容,了解Linux内核各配置选项内容和作用,掌握Linux内核的编译过程; 3.了解嵌入式操作系统中文件系统的类型和应用、了解JFFS2文件系统的优点及其在嵌入式系统中的作用、掌握利用Busybox软件制作嵌入式文件系统的方法,并且掌握嵌入式Linux文件系统的挂载过程。二:实验环境说明 1.PC机使用openSUSE 14 Enterprise 系统。 2.开发板使用深圳市武耀博德信息技术有限公司生产的基于Inter 的PXA270处理器的多功能嵌入式开发平台EELIOD。 3.PC机通过RS-232串口与开发板相连,在PC机终端上运行minicom 程序构造一个开发板上的终端,用于对开发板的控制。 4.PC机与开发板通过ethernet网络相连接,并可在开发板上通过加载网络文件系统(NFS)与PC机通信。 5.Bootloader可以通过tftp协议从PC机上下载内核镜像和根文件系统镜像。下载目录为/tftpboot 。 6.用于开发板的Linux内核源码为linux-2.4.21-51Board_EDR,

busybox版本为busybox-1.00-pre5。 7.交叉编译器的路径为/usr/local/arm-linux/bin/arm-linux。 三:实验操作过程和分析记录 1.嵌入式系统的开发环境和开发流程: 1.1启动minicom和开发板 在PC机上打开一个终端,输入: >minicom 按Ctrl+A-o进入minicom的configuration界面。对串行通信接口进行配置,串口设置为:/dev/ttyS0(串口线接在PC机的串口1上)、bps=115200、8位数据、无校验、无流控制。 然后打开开发板电源,看到屏幕有反应之后,按任意键进入配置界面,如果长时间没有按下任何键,bootloader将会自动从flash中读取内核和根文件系统并启动开发板上的Linux系统。 分析:嵌入式系统中,通常并没有像PC机中BIOS 那样的固件程序,因此整个系统的加载启动任务完全由bootloader来完成。bootloader的主要作用是:初始化硬件设备;建立内存空间的映射图;完成内核的加载,为内核设置启动参数。 按0进入命令行模式,出现51board>,可以设置开发板和PC机的IP 地址: 51board> set myipaddr 192.168.208.133(设置开发板的IP地址) 51board> set destipaddr 192.168.208.33(设置PC机的IP地址)注意IP地址的设置:使其处于同一网段,并且避免和其他系统的

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

Linux内核分析-网络[五]:网桥

看完了路由表,重新回到netif_receive_skb ()函数,在提交给上层协议处理前,会执行下面一句,这就是网桥的相关操作,也是这篇要讲解的容。 view plaincopy to clipboardprint? 1. s kb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 网桥可以简单理解为交换机,以下图为例,一台linux机器可以看作网桥和路由的结合,网桥将物理上的两个局域网LAN1、LAN2当作一个局域网处理,路由连接了两个子网1.0和2.0。从eth0和eth1网卡收到的报文在Bridge模块中会被处理成是由Bridge收到的,因此Bridge也相当于一个虚拟网卡。 STP五种状态 DISABLED BLOCKING LISTENING LEARNING FORWARDING 创建新的网桥br_add_bridge [net\bridge\br_if.c] 当使用SIOCBRADDBR调用ioctl时,会创建新的网桥br_add_bridge。 首先是创建新的网桥: view plaincopy to clipboardprint?

1. d ev = new_bridge_dev(net, name); 然后设置dev->dev.type为br_type,而br_type是个全局变量,只初始化了一个名字变量 view plaincopy to clipboardprint? 1. S ET_NETDEV_DEVTYPE(dev, &br_type); 2. s tatic struct device_type br_type = { 3. .name = "bridge", 4. }; 然后注册新创建的设备dev,网桥就相当一个虚拟网卡设备,注册过的设备用ifconfig 就可查看到: view plaincopy to clipboardprint? 1. r et = register_netdevice(dev); 最后在sysfs文件系统中也创建相应项,便于查看和管理: view plaincopy to clipboardprint? 1. r et = br_sysfs_addbr(dev); 将端口加入网桥br_add_if() [net\bridge\br_if.c] 当使用SIOCBRADDIF调用ioctl时,会向网卡加入新的端口br_add_if。 创建新的net_bridge_port p,会从br->port_list中分配一个未用的port_no,p->br会指向br,p->state设为BR_STATE_DISABLED。这里的p实际代表的就是网卡设备。 view plaincopy to clipboardprint? 1. p = new_nbp(br, dev); 将新创建的p加入CAM表中,CAM表是用来记录mac地址与物理端口的对应关系;而刚刚创建了p,因此也要加入CAM表中,并且该表项应是local的[关系如下图],可以看到,CAM表在实现中作为net_bridge的hash表,以addr作为hash值,链入 net_bridge_fdb_entry,再由它的dst指向net_bridge_port。

配置和编译Linux内核

配置和编译Linux内核 对内核进行正确配置后,才能进行编译。配置不当的内核,很有可能编译出错,或者不能正确运行。 1.1.1 快速配置内核 进入Linux内核源码数顶层目录,输入make menuconfig命令,可进入如图0.1所示的基于Ncurses的Linux内核配置主界面(注意:主机须安装ncurses相关库才能正确运行该命令并出现配置界面)。如果没有在Makefile中指定ARCH,则须在命令行中指定: $ make ARCH=arm menuconfig 图0.1基于Ncurses的Linux内核配置主界面 基于Ncurses的Linux内核配置界面不支持鼠标操作,必须用键盘操作。基本操作方法: ?通过键盘的方向键移动光标,选中的子菜单或者菜单项高亮; ?按TAB键实现光标在菜单区和功能区切换; ?子菜单或者选项高亮,将光标移功能区选中回车: ◆如果是子菜单,按回车进入子菜单; ◆如果是菜单选项,按空格可以改变选项的值: ●对于bool型选项,[*]表示选中,[ ]表示未选中; ●对于tristate型选项,<*>表示静态编译,表示编译为模块,<>表示未 选中。 ◆对于int、hex和string类型选项,按回车进入编辑菜单。 ?连按两次ESC或者选中回车,将退回到上一级菜单; ?按斜线(/)可启用搜索功能,填入关键字后可搜索全部菜单内容。

配置完毕,将光标移动到配置界面末尾,选中“Save an Alternate Configuration File”后回车,保存当前内核配置,默认配置文件名为.config,如图错误!文档中没有指定样式的文字。.2所示。 图错误!文档中没有指定样式的文字。.2保存内核配置为.config文件 保存完毕,选择退出内核配置界面,回到终端命令行。 当然,也可以将配置文件命名为其它文件名,如config-bak等,但该配置不会被Makefile 文件使用,Makefile默认使用文件名为.config的配置文件,所以重新命名配置文件通常在保留或者备份内核配置信息时使用。 也可以不用“Save an Alternate Configuration File”操作,连按ESC或选择退出内核配置界面,将会出现如图错误!文档中没有指定样式的文字。.3所示的保存配置提示信息,选择后回车,内核配置将会被保存为.config文件。 图错误!文档中没有指定样式的文字。.3保存内核配置提示信息 备份内核配置,在命令行下将.config文件复制为其它文件名来得更简单快捷: $ cp .config config-bak 装载某个配置文件,可在配置界面选中“Load an Alternate Configuration File”,然后填入已存在的配置文件名称。也可在命令行下将配置文件复制为.config: $ cp config-bak.config 在目录下有很多*_defconfig文件,这些都是内核的预设配置文件,分别对应各种不同的参考板。如果要使用其中的配置文件作为内核编译配置,可用“make xxx_defconfig”命令来完成。对于已经设定好的内核配置,也可以命名为某个文件名,放到目录下,在以后直接用make来调用该配置即可。例如将当前配置命名为m3352_defconfig并放到目录下,后续只需执行下列命令即可使用当前配置: $ make m3352_defconfig或者 $ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-m3352_defconfig

实例解析linux内核I2C体系结构(2)

实例解析linux内核I2C体系结构(2) 华清远见刘洪涛四、在内核里写i2c设备驱动的两种方式 前文介绍了利用/dev/i2c-0在应用层完成对i2c设备的操作,但很多时候我们还是习惯为i2c设备在内核层编写驱动程序。目前内核支持两种编写i2c驱动程序的方式。下面分别介绍这两种方式的实现。这里分别称这两种方式为“Adapter方式(LEGACY)”和“Probe方式(new style)”。 (1)Adapter方式(LEGACY) (下面的实例代码是在2.6.27内核的pca953x.c基础上修改的,原始代码采用的是本文将要讨论的第2种方式,即Probe方式) ●构建i2c_driver static struct i2c_driver pca953x_driver = { .driver = { .name= "pca953x", //名称 }, .id= ID_PCA9555,//id号 .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备 .detach_client= pca953x_detach_client,//让设备脱离适配器 }; ●注册i2c_driver static int __init pca953x_init(void) { return i2c_add_driver(&pca953x_driver); } module_init(pca953x_init); ●attach_adapter动作 执行i2c_add_driver(&pca953x_driver)后会,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下: static int pca953x_attach_adapter(struct i2c_adapter *adapter) { return i2c_probe(adapter, &addr_data, pca953x_detect); /* adapter:适配器 addr_data:地址信息 pca953x_detect:探测到设备后调用的函数 */ } 地址信息addr_data是由下面代码指定的。 /* Addresses to scan */ static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END}; I2C_CLIENT_INSMOD;

相关文档
相关文档 最新文档