文档库 最新最全的文档下载
当前位置:文档库 › PIFA天线问题总结

PIFA天线问题总结

PIFA天线问题总结
PIFA天线问题总结

PIFA天线是从倒F 天线发展出来的,通常有一个馈电脚和一个接地脚,也有的人在设计PIFA 天线时会再加另外一个单独的接地脚在馈电脚附近,为了拓宽带宽。PIFA 天线通常要求天线下面的PCB 上有地,辐射体与地之间形成电场,当天线距离PCB 有一定高度时,会形成辐射场,辐射电磁波。

单极天线通常由四分之一波长的辐射体形成。没有地脚,只有馈电脚。对PCB 上的地要求不如PIFA严格,比如FMA天线,要求天线必须距离PCB有一定距离,否则天线效率很难很好的发挥出来。

对于做在PCB板子上的天线来讲,PIFA天线时需要正下方有地参考平面的,而且对地面积要有要求。一般来说双频的需要面积在600mm2左右,垂直高度7-8mm。而单极天线来说PCB板子的天线下面部分是地要挖空的。双频一般是8*30,高度在5mm左右。以上只是参考!

天线形式一般由手机公司根据结构决定。从天线原理上讲:

1.翻盖机、滑盖机、旋盖机:PIFA天线适用。如采用monopole天线要放在手机尾部。

2.直板机:PIFA、monopole天线都适用。

3.超薄翻盖机、滑盖机、旋盖机:monopole天线适用,但要放在手机尾部。PIFA天线基本不适用(视整机厚度和天线高度)。

4.超薄直板机:monopole天线适用,PIFA天线基本不适用(视整机

厚度和天线高度)。

原则上PIFA也可以只有单溃点, 加地馈点是为了拓展带宽

这个认识是有问题的!

PIFA的接地主要目的是两个:

1.增加天线在低频(8~9百兆的)特性阻抗。如果没有接地,天线的阻抗就太低,大约一般就20~30欧姆,根本无法匹配。但是阻抗的频率特性比较平缓。这也就是为什么只有一个馈点的天线低频谐振浅,但是曲线变化平缓的道理。加了接地后,相位图上就会发生从很低的阻抗在很少的频率范围内猛然上升至千、万量级,这中间自然有一个范围围绕50欧姆的。所以有接地的天线谐振可以调得很深,但频率带宽就比较窄了。

2.微带天线通过在馈电点后方加接地壁,使得1/2波长的天线变成了1/4,天线就小型化了,但是代价就是理论上少了3dBi增益(少了一个等效狭缝天线的增益)。PIFA天线的接地脚同样也起到缩小天线尺度的作用。

所以,PIFA的接地脚拓宽不了天线带宽。相反是限制了带宽。因此,PIFA的带宽一直以来是焦点问题之一。

外置天线:GSM900一般能作到55%,好一点能作到70%,GSM1800一般50%,好一点能做到60%。

内置天线:GSM900一般30%~40%,好一点能作到50%以上,

GSM1800一般30%左右。这个和手机的结构,天线空间有很大关系,但基本范围应该如上所述。

[原创]手机内置天线基本要求

内置天线材料为铍铜、不锈钢等其他材料,具体支撑视结构而定。铍铜(外面镀金)天线的RF性能比较好,但是价格稍高于不锈钢材料。内置天线性能的保证对结构要求较严,基本的要求如下,否则天线性能将受到较大影响,具体影响程度视天线的类型而定。

一般认为,PIFA天线体积大、性能好;滑盖机应该首选此种天线进行设计。具体要求如下:

PIFA的高度应该不小于6.5mm;

LCM 的connector应该布局在主板的键盘面;

天线的宽度应该不小于20mm;

从射频测试口到天线馈点的引线的阻抗保持在50欧姆;PIFA天线的附近的器件应该尽量做好屏蔽;

馈点的焊盘应该不小于2mm*3mm;

馈点焊盘(pad)应该居顶靠边;

如果测试座布局有困难,也可以放在天线区域;

天线区域可适当开些定位孔。

匹配包括阻抗匹配和极化匹配,

阻抗匹配要求天线的输入阻抗和下级电路共轭匹配,这样能达到最大

的功率传输效率,即无反射传输,电磁波呈行波状态.一般来讲都定义五十欧,所以天线的输入阻抗为五十欧能达到最高效率的传输, 有的主板馈电点的阻抗不是标准的,这时天线的阻抗应相应的变化(天线的阻抗包括损耗阻抗和辐射阻抗,损耗阻抗是天线本身的损耗,通过改变材质和体积能改变,辐射阻抗反应天线的辐射能力,这是我们需要的,一般天线设计要求辐射阻抗越大越好,天线的效率就是辐射阻抗除以损耗阻抗和辐射阻抗的和)-----极化匹配即场的指向与通信天线场的指向一致即通达到最佳的传输.

方向性和增益

手机天线一般对定向的方向性要求较小,天线是无源器件,它的辐射功率等于输入功率减去损耗功率,为什么存在增益不相同呢,主要也是方向性的原因,它是牺牲某些方向的辐射从而达到某些方向辐射增强的目的.增益一般是相同输入功率同一点和元天线辐射功率的比较DBI,理想元天线是无向性的,辐射是一个等圆面,我们一般测试比较用的一般是标准偶极天线DBD,其与DBI有一定转换关系.其为无源器件,怎么样提高增益呢,一般要求天线的方向图最好呈一个扁的苹果状态,即水平面辐射较强,上下辐射稍弱.手机天线方向最好是能指向偏离打电话时头部的方向,PIFA下边是地,能起到屏蔽作用,有这个效果.在设计手机天线对方向性的要求一般就这点吧,同时也能适应SAR的测试.

射灯天线覆盖效果测试报告(室外向下对打)--钟陈生

茂南财富新城射灯覆盖(室外向下对打)效果测试报告 测试人:钟陈生、申卫报告撰写:钟陈生测试日期:2013年7月17 1.概述 1.1站点描述 基础信息 1.2射灯覆盖图及环境描述:

项目总负责人 单项负责人设 计 人校 审 人 审 核 人单 位比 例日 期 mm 2013.4图号 中国移动通信集团设计院有限公司 2011YBGS0130-WX-MNCHXCF-02-5 注:本系统图中器件红色为新增,黑色为原有, 蓝色为更换,黄色为利旧。 茂南财富新城F-安装点位图 二功分器 ″馈线7/8″馈线1/2″超柔馈线 全向天线 三功分器 双频合路器 电桥 22栋 28栋29栋 30栋31栋 23栋 27栋 25栋 38栋 26栋 17栋 ANT1-20F 下倾角51.84° ANT1-18F 下倾角37.15°ANT2-18F 下倾角47.39° ANT3-18F 下倾角47.39° ANT4-18F 下倾角47.39° ANT7-18F 下倾角47.39° ANT10-18F 下倾角47.39° ANT11-18F 下倾角42.27°ANT9-18F 下倾角43.88° ANT8-18F 下倾角40° ANT13-18F 下倾角45° ANT14-18F 下倾角45° ANT15-18F 下倾角47.39° ANT12-18F 下倾角43.88° ANT5-18F 下倾角47.39° ANT6-18F 下倾角37.13° ANT16-18F 下倾角47.39°ANT17-18F 下倾角37.13° 16栋 10栋 PS1-18F PS2-18F PS3-18F PS4-18F PS5-18F PS6-18F PS7-18F 38栋,共 19层 26栋,共18层 约高57米 约高54米 射灯天线

XX天线性能测试报告

基站天线性能综合评估报告 (XX分公司网络优化中心) XX分公司为了改善弱覆盖、提高用户满意度,解决网络中的隐形问题,同时借鉴发达省份的成功经验,历时两个多月的时间,选择了使用不同年限、品牌的天线进行综合性能测试。通过对三阶互调、使用年限、前后比和第一上旁瓣抑制性等指标综合分析,借助更换对比,DT测试、话务KPI综合分析,为网络优化中天线故障排查、是否需要更换和更换标准、以及更换后达到的效果提供了参考依据。 1.本次测试选取的场景、天线、基站数量如下: 场景天线数量/根基站数量 1.农村弱覆盖投诉183 2.高速公路带状覆盖488 3.市区干扰点掉话279 4.库房新天线抽查10/ 2.天线性能测试 本次采用德国Rosenberger 三阶互调测试仪和扫频仪对天线性能进行测试,同时结合话务统计指标、DT测试数据进行综合分析,最后得出结论。 2.1 天线性能测试结果 本次主要对天线自身的主要参数指标:三阶互调(IM)、驻波比(VSWR)、前后比、第一上旁瓣抑制进行测试。

2

2.1.1 三阶互调合格率 参数说明:三阶互调是反映天线综合性能的重要指标,该指标从一定程度上反映了天线的优劣。目前国标要求≤-107dbm。本次判定合格的标准如下: 三级互调测试标准(dbm) 等级大于‐90大于‐107且小于等于‐90小于等于‐107 评测不合格可用优良 三阶互调测试结果 不合格合格优良 11% 28% 61% 说明:通过本次对天线综合性能的测试,发现较多天线三阶互调不合格(本次测试把IM≤-90dbm的均视为合格,远低于国标要求),这和目前集成度越来越高的基站系统难以匹配。 3.网络KPI指标综合分析 本次网络KPI指标的分析是建立在:老天线→集采新天线→KATHREIN高性能天线,分别提取相同时段的话务统计数据,进行多次分析基础之上的。

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

哈工大天线原理实验报告

Harbin Institute of Technology 天线原理实验报告 课程名称:天线原理 院系:电信学院 班级: 姓名: 学号: 指导教师: 实验时间: 实验成绩: 哈尔滨工业大学 一、实验目的 1.掌握喇叭天线的原理。

2.掌握天线方向图等电参数的意义。 3.掌握天线测试方法。 二、实验原理 1.天线电参数 (1).发射天线电参数: a.方向图:天线的辐射电磁场在固定距离上随空间角坐标分布的图形。 b.方向性系数:在相同辐射功率,相同距离情况下,天线在该方向上的辐射功率密度Smax与无方向性天线在该方向上的辐射功率密度S0之比值。 c.有效长度:在保持该天线最大辐射场强不变的条件下,假设天线上的电流均匀分布时的等效长度。 d.天线效率:表征天线将高频电流或导波能量转换为无线电波能量的有效程度。 e.天线增益:在相同输入功率、相同距离条件下,天线在最大辐射方向上的功率密度Smax与无方向性天线在该方向上的功率密度S0之比值。 f.输入阻抗:天线输入端呈现的阻抗值。 g.极化:天线的极化是指该天线在给定空间方向上远区无线电波的极化。 h.频带宽度:天线电参数保持在规定的技术要求范围内的工作频率范围。 (2).接收天线电参数: 除了上述参数以外,接收天线还有一些特有的电参数:等效面积和等效噪声温度。 a.等效面积:天线的极化与来波极化匹配,且负载与天线阻抗共轭匹配的最佳状态下,天线在该方向上所接收的功率与入射电波功率密度之比。 b.等效噪声温度:描述天线向接收机输送噪声功率的参数。 2.喇叭天线 由逐渐张开的波导构成,是一种应用广泛的微波天线。按口径形状可分为矩形喇叭天线与圆形喇 叭天线等。波导终端开口原则上可构成波导辐射器,由于口径尺寸小,产生的波束过宽;另外, 波导终端尺寸的突变除产生高次模外,反射较大,与波导匹配不良。为改善这种情况,可使波导 尺寸加大,以便减少反射,又可在较大口径上使波束变窄。 (1).H面扇形喇叭:若保持矩形波导窄边尺寸不变,逐渐张开宽边可得H面扇形喇叭。

RFID天线安装与调试实训报告

实训报告 姓名学号 系部 专业物联网应用技术 班级 _ 指导教师 实训名称天线安装与调试 完成时间: 2013年月日 目录

1 物联网常用天线简介 (3) 2 物联网天线常见参数 (3) 3 物联网常用器件安装测量记录及分析 (4) 4 标签天线制作及测量分析 (13) 参考文献 (15) 1 物联网常用天线简介

物联网(The Internet of things)的定义: 通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网就是“物物相连的互联网”。 天线的基本功能: 将由发射机(或传输线)送来的高频电流(或导波)能量转变为无线电波并传送到空间;在接收端,则将空间传来的无线电波能量转变为向接收机传送的高频电流能量,因此,天线可认为是导波和辐射波的变换装置,是一个能量转换器。 天线种类: 首先按天线用途分:可分为基地台天线和移动台天线 (1) 按天线的辐射方向可划分:可为全向天线和定向天线 (2) 按工作性质划分:可分为接收天线和发射天线 (3) 按天线的极化方向分还分为水平极化天线及垂直极化天线 (4) 按频率分类:长波天线,中波天线,短波天线,超短波天线,微波天线 2 物联网天线常见参数 (1)天线的增益:天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 (2)带宽:这也是一个重要但容易被忽略的问题。天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。这个范围就是带宽。 (3)输入阻抗:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。 (4)反射系数(Г): 反射电压/入射电压,为标量。

OTA天线测试的能力及测试标准

OTA测试能力 OTA测试能力: 1:有源部分 辐射功率 (TRP) 灵敏度性能 (TIS) 2:无源部分 天线增益测试(Gain) 天线接口阻抗测试(Input Impedance) 天线驻波比/回波损耗测试(VSWR/RL) 天线方向图测试(Radiation Pattern) 方向性(Directivity) 波束宽带/前后比(3Db BW/FB Ratio) 交叉极化比/隔离度(Cross Polar/Isolation) 支持的无线制式:GSM,CDMA,WCDMA,TDSCDMA产品的有源或者无源测试;蓝牙,WIFI,DVB等天线的无源测试; 目前支持的测试规范: 1:CTIA的OTA测试规范(Test Plan for Mobile Station Over the Air Performance V2.2.2)2:GCF 的OTA测试规范(GCF CC V3.33最新规定) 3:3GPP/ETSI OTA antenna performance conformance testing (TS 34.114,TS25.144) 4:中国工信部在2008年强制执行的OTA进网规定(YDT 1484-2006) 5:无源天线测试标准(Passive antenna test:IEEE149-1979)

TRP全称Total Radiated Power,即总辐射功率。其含义是手机在空间三维球面上的射频辐射功率的积分值,反应了手机在所有方向上的发射特性。打个比方,就如同一盏灯泡在所有方向上的辐射的光的总和。那么越亮就代表其发射的能量越多,越暗就代表其发射的能量越少。但是辐射功率是有上限的,手机本身对最大的辐射功率进行了限制,任何手机的射频模块输出功率不会超过2W(33dBm)。越是接近这个值,说明信号发射能力越好,也说明辐射更大。该指标通常与SAR指标(反映人体吸收的辐射的指标)相互制约,一部合格的手机既要有好的发射能力,又要有较低的SAR 值。 我国的标准YD1484-2006<<移动台空间射频辐射功率和接收机性能测量方法>>是对手机进行TRP测量的规范性文件,其中约定了TRP的最低值,对于GSM手机而言,900频段不能低于26dBm,1800频段不能低于25dBm;对于CDMA手机而言TRP 不能低于20dBm,与北美的CTIA要求是一致的,而与欧洲的3GPP标准比较则有一些测量方式上的差异。 目前无线产品对人体辐射大小的衡量方法被广泛接受的标准是SAR (Specific Absorption Rate)值. SAR的实际意义就是对人体的辐射能量的大小, 它是指辐射被人体头部或身体各部位组织吸收的比率,单位是W/kg。国际非电离性辐射保护委员会(ICNIRP)和欧洲规定的SAR值上限标准为2W/kg,美国联邦通讯委员会( FCC)规定的最大SAR值为1.6W/kg,我国目前SAR的主要标准为YD/T 1644.1 《手持和身体佩戴使用的无线通信设备对人体的电磁照射》。在这里特别要注意的是SAR的测试数值是指峰值水平, 也就是要求被测手机处于最大功率发射模式下进行测量和评估!

天线测试报告112305

东莞市晖速天线技术有限公司DongGuan HuiSu Antenna Technologies Co.,Ltd ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅测试报告 Test Report 共 13页 试验名称 112305 Description 低频排气管型一体化美化天线 试验类别天线辐射性能测试 Sort 承试单位东莞市晖速天线技术有限公司品质保证部 Customer 拟制万林涛 Organizer 批准 Approver 报告日期 2010年 12月20日 Issued date

1.测试时间 2010年12月18日 2.测试环境 测试地点:东莞市晖速天线技术有限公司远场测试场 测试设备:天线转台和标准增益天线等 测试人员:万林涛黄财茂 3.测试内容 3.1 测试项目 3.1.1方向图测试 测试天线的水平和垂直方向图。频点选取820、824、896MHz等频点进行测试。从方向图中得出以下指标: 水平波束宽度、交叉极化比、前后比,以及垂直波束宽度、上旁瓣抑制等辐射性能参数。 3.2 被测天线 天线型号:112305 频段:820-960MHz 4.测试结果 4.1 测试结果统计表(3页) 4.2产品说明书(4页) 4.3 方向图图片(5-12页) 4.4测试方法(13页)

4.2.2 测试结果统计表 E面波瓣宽度、抑制不合格,H面波瓣宽度、前后比,增益以及交叉极化60°不合格,3dB瓣宽偏宽。

排气管型一体化美化天线 电气性能Electrical Specifications 频率范围Frequency Range 820~960MHz 增益Gain14.5±0.5 dB i 驻波比VSWR <1.5 极化形式Polarization ±45° 端口隔离度Isolation Between Two Ports ≥28dB 交叉极化鉴别率Cross-Polar Discrimination >10dB(@ 60°) 上旁瓣抑制Upper Sidelobe Suppresslon≤-15dB 前后比Front to back ratio≥25dB 水平波瓣宽度Horizontal beamwidth 65°±5° 垂直波瓣宽度Vertical beamwidth 15°±3° 主瓣下倾Electrical downtilt 0°~ 18° 三阶互调IM.3rd order(2×43dbm)≤-107dBm 输入阻抗Input Impedance 50Ω 功率容量Max Input Power 200W 接口形式Connector 2*7/16 DIN Female 雷电保护Lighting Protection Direct ground 机械性能Mechanical Specification s 尺寸(净天线) Dimensions Φ180mm,长度:1650mm 重量(净天线) Weight≤8Kg 辐射体材料Radiator Material Copper 天线罩材料Radome Material Fiberglass 天线罩颜色Radome Color White

SR801整机天线射频测试报告V300

SR801整机天线射频测试报告V300 版本:V3.0.0 项目:SR801

版本历史:

目录 1.测试总结 (4) 2.测试内容 (5) 3.测试外表与连接框图 (5) 3.1耦合测试 (5) 3.2测试数据及结果 (6)

1.测试总结 表1 测试总结

2.测试内容 耦合测试 3.测试外表与连接框图 测试需要的仪器和设备如表2所示: 仪器设备名称 规格/型号/配置 稳压电源 Agilent 66309B/66309D 综测仪 Agilent 8960 射频电缆 屏蔽箱 测试SIM 卡 图1手动测试连线示意图 图2屏蔽箱测试连线图 耦合测试 测试仪器:Agilent 8960、屏蔽房 GSM 890.2MHz -20dB 935.2MHz -21dB 902.4MHz -19dB 947.4MHz -20dB 914.6MHz -19.5dB 959.6MHz -21dB DCS 1710.2MHz -22dB 1805.2MHz -27dB 1747.4MHz -24dB 1842.4MHz -25dB 1784.8MHz -29dB 1879.8MHz -24dB 测试信道: GSM900 (1、62、123)、DCS1800(512、698、885) 测试地点:实验室 。 综测仪8960 射频电缆 平板天线 屏蔽房

3.2测试数据及结果 .3.3 天线位置评估 1.Speaker金属电镀装饰件正下方不能有天线,以幸免静电通过天线损 坏射频PA。 2 .天线弯折以后的部份不能露在前壳和后壳相连结处的缝隙之间,以 幸免静电通过天线损坏射频PA 结论:Speaker金属电镀装饰件正下方没有天线,天线弯折以后的部份没有露在前壳和后壳相连结处的缝隙之间 2.. 3.4 附图

天线实验报告(DOC)

实验一 半波振子天线的制作与测试 一、实验目的 1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。 2、掌握半波振子天线的制作方法。 3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。 4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。 二、实验原理 (1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1): )ex p(||0 11θj Z Z Z Z S A A Γ=+-= (1-1) 根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述: | |1| |1Γ-Γ+= ρ (1-2) |)lg(|20Γ-=RL [dB] (1-3) 对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。 表1-1 工程上对天线的不同要求(供参考) 天线带宽 驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下) ρ≤1.2或1.5 |Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33 ≥14dB 或10dB 超宽带 ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43 ≥10dB (2)同轴电缆的特性阻抗 本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。其特性阻抗计算公式如下: 060ln r b Z a ε?? = ??? (1-4) 式中 a ——内芯直径; b ——外皮内直径。

天线的方向图测量(设计性试验)

中国石油大学近代物理实验报告 班级:材料物理10-2 姓名:同组者:教师: 设计性实验不同材质天线的方向图测量【实验目的】 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 【预习问题】 1.什么是天线? 2.AT3200天线实训系统有那几部分组成,分别都有什么作用? 3.与AT3200天线实训系统配套的软件有几个,分别有什么作用? 【实验原理】 一.天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。要能够有效地辐射或者接收电磁波,天线在 结构和形式上必须满足一定的要求。图B1-1给出 由高频开路平行双导线传输线演变为天线的过程。 开始时,平行双导线传输线之间的电场呈现驻波分 布,如图B3-1a。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长,它们所激发 的电磁场在两线外部的大部分空间由于相位相反 而互相抵消。如果将两线末端逐渐张开,如图B3-1b 所示,那么在某些方向上,两导线产生的电磁场就 不能抵消,辐射将会逐渐增强。当两线完全张开时, 如图B3-1c所示,张开的两臂上电流方向相同,它 们在周围空间激发的电磁场只在一定方向由于相 位关系而互相抵消,在大部分方向则互相叠加,使 辐射显著增强。这样的结构被称为开放式结构。由 末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 图B3-1 传输线演变为天线a. 发射机 c. b.

天线方向图测试系统操作说明

大连理工大学实验预习报告 姓名:牛玉博班级:电通1202 学号:201201203 实验六天线方向图测试 本系统主要用于线天线E面方向图测试,可动态、实时绘制极坐标和直角坐标系方向图曲线,保存测试数据用于后续分析处理。 系统使用步骤示意如图0.1所示。 图0.1 系统使用步骤示意图 1系统连接 测试系统由发射装置、接收装置和控制器三大部分组成,三部分的连接示意如图1.1所示。连接时注意信号线要根据待测工作频率接至对应端子,并将接收装置方向调整到正确姿态。

图1.1 系统连接示意图 发射装置包含400MHz 和900MHz 两个频点的发射电路和天线,如图1.2所示。接收装置包含400MHz 和900MHz 两个频点的接收电路和天线,并具有天线旋转机构,如图1.3所示。控制器利用触摸屏完成所有测试操作和方向图曲线的实时绘制,如图1.4所示。 图1.2 发射装置 图1.3 接收装置 此处少一图(图1.4 测试控制器)、待发。 2 控制器操作 2.1 打开控制器电源,等待系统启动,进入提示界面,如图2.1所示。 发射装置 接收装置 控制器 电机线 信号线

图2.1 方向图测试系统提示界面 2.2点击界面任意位置,进入“实测方向图”界面,如图2.2所示。 图2.2 实测方向图界面 2.3点击图2.2中的“频率选择”按钮,选择与硬件链接对应的工作频率。 2.4点击“天线长度”数字框,输入实际天线长度(单位为毫米),并按“确 定”确认,如图2.3所示。

图2.3 天线长度输入界面 2.5点击“机械回零”按钮,接收天线旋转,当到达机械零点基准点时,自 动停止旋转,如图2.4所示。注意:机械回零完成之前不要做其它操作! 图2.4 机械归零界面 2.6点击“归一化”按钮,接收天线旋转,搜索信号最大值,并提示“归一 化进行中”。当到天线旋转一周时,搜索结束,如图2.5所示。注意:归

双极化天线测试报告

TD-LTE室内双极化天线 测试报告

目录 1概述 (3) 1.1背景描述 (3) 1.2测试内容 (3) 2实施方案 (4) 2.1测试地点 (4) 2.2测试环境搭建 (7) 2.3测试预置条件 (8) 2.4测试说明 (9) 3测试准备 (10) 3.1测试设备 (10) 3.2测试人员联系方式..................................................................... 错误!未定义书签。 4项目测试 (11) 4.1室内单极化天线2×2MIMO效果测试 (11) 4.2TD-LTE单通道覆盖效果测试 (11) 4.3室内双极化天线2×2MIMO效果测试 (12) 5数据记录 (14) 6测试结果分析与结论: (21) 6.1测试结果分析............................................................................. 错误!未定义书签。 6.2测试结论 (25)

1 概述 1.1 背景描述 TD-LTE的魅力在于高速数据与多媒体业务,而视频电话、视频流、游戏等高速数据业务一般都发生在室内环境中,这些业务功能都需要较大的系统容量和良好的网络质量。由于室内分布系统是解决室内覆盖的主要方式,TD-LTE室内分布系统将是TD-LTE整个网络建设的重点之一。 LTE系统中引入了MIMO技术,多天线技术不仅能有效地改善系统容量及其性能,而且还可以显著地提高网络的覆盖范围和可靠性。TD-LTE室内覆盖要实现MIMO功能,需增加一路天馈线,不管是新建一套分布系统或者共用原有分布系统,实施难度较大。室内双极化天线的引入是实现TD-LTE实现MIMO 的一个新的建设方法,本次测试的目的即为了验证室内双极化天线实现MIMO 功能的效果和质量。 1.2 测试内容 TD-LTE室内双极化天线测试主要是通过和单极化天线的效果对比来验证其性能,测试将从以下几个方面进行: 1.室内单极化天线实现2×2MIMO方式的效果测试; 2.TD-LTE单通道覆盖效果测试; 3.室内双极化天线实现2×2MIMO方式的效果测试; 测试和记录以上4种实现方式的无线信号质量指标和上传下载速率等业务指标,通过进行分析和比较,最后得出室内双极化天线实现TD-LTE的MIMO方式的效果评价。

射灯天线覆盖效果测试报告(室外向下对打)

茂南财富新城射灯覆盖(室外向下对打)效果测试报告 测试人:钟陈生、申卫 报告撰写:钟陈生 测试日期:2013年7月17 1. 概述 1.1 站点描述 1.2 射灯覆盖图及环境描述: 项目总负责人 单项负责人设 计 人校 审 人 审 核 人单 位比 例日 期 mm 2013.4图号 中国移动通信集团设计院有限公司 2011YBGS0130-WX-MNCHXCF-02-5 注:本系统图中器件红色为新增,黑色为原有, 蓝色为更换,黄色为利旧。 茂南财富新城F-安装点位图 二功分器 ″馈线7/8″馈线1/2″超柔馈线 全向天线 三功分器 双频合路器 电桥 22栋 28栋29栋 30栋31栋 23栋 27栋 25栋 38栋 26栋 17栋 ANT1-20F 下倾角51.84° ANT1-18F 下倾角37.15°ANT2-18F 下倾角47.39° ANT3-18F 下倾角47.39° ANT4-18F 下倾角47.39° ANT7-18F 下倾角47.39° ANT10-18F 下倾角47.39° ANT11-18F 下倾角42.27°ANT9-18F 下倾角43.88° ANT8-18F 下倾角40° ANT13-18F 下倾角45° ANT14-18F 下倾角45° ANT15-18F 下倾角47.39° ANT12-18F 下倾角43.88° ANT5-18F 下倾角47.39° ANT6-18F 下倾角37.13° ANT16-18F 下倾角47.39°ANT17-18F 下倾角37.13° 16栋 10栋 PS1-18F PS2-18F PS3-18F PS4-18F PS5-18F PS6-18F PS7-18F

某天线测试报告

1. Test 1) JIG Test Descriptions 1. Center Frequency GSM: 1100MHz DCS: 2060MHz 2. Frequency Variation Generally, in case of built-in test case (BAR Type). GSM Center Frequency decrease about 50MHz compare to zig test. DCS Center Frequency decreases about 150MHz~200MHz compare to zig test. So, Mobinus antenna’s design frequency is GSM: around 1000~1100MHz DCS: around 1950~2100MHz

2) Built-in Test A. No Matching Case Description: Frequency Variation (C.F) GSM: -150MHz -50MHz DCS:

3) Issues A. Lack of component: Camera module z It is impassible to estimate Impedance and frequency variations. z Impedance Variations are related to radiation pattern, gain z Frequency Variations are related to Center Frequency. B. LCM: It is connected to ground. So, it make antenna worse. 4) Solutions Frequency tuning : New Design z GSM : around 1150MHz z DCS: around 1950MHz 5) Supplementation data A. Passive Test Data z Efficiency z Radiation Pattern, Gain (2D) B. Active Test Data z Efficiency : Tx/Rx z Radiation Pattern, Gain(3D) z TRP z TIS 2. Proposal 1) Spec’s Item GSM DCS VSWR 3:1 2.5:1 Passive GAIN (Peak) -1dBi 0dBi TRP 40% 40% Active Efficiency TIS 40% 40% 2) Sample After we receive the set (Batt. includes). We submit about 20 samples in 15 days later. If you want Active test, TRP/TIS test, you must provide us with active phone and extra Battery.

GPS天线可靠性测试报告

深圳中聚泰光电有限公司 GPS天线可靠性测试报告工作环境 工作温度: -45 to +85oC 贮藏温度: -55 to +100oC 湿热 温度:40oC 相对湿度: 10 to 95% 天线低噪声放大器指标 项目指标 中心频率1575. 42±1MHz 增益28 dB typ (DC=3V) 噪声系数 2.0±0.1dB max (DC=3V) 电压3±0.5V 电流(DC=3±0.5V) 4±1mA 天线低噪声放大器增益测试图

天线低噪声放大器噪声系数测试图 天线网分测试图

可靠性实验报告 可靠性测试测试内容及标准试验结果 高温老化试验试验设备:TX-ZK-600 试验依据:GB2423.02高温实验方法 试验标准:高温工作50℃,通电7天,常温恢复1~2H后测试 试验结果:(1)外观无变化;(2)?S21不大于2.0dB;(3)?S22不大于0.2;(4)?I 不大于1.0mA 符合试验标准,合格 跌落试验试验设备:跌落台 试验依据:GB2423.08-1995自由跌落实验方法 试验标准:在100cm高度处按X.Y.Z三个面分别自由跌落在钢性地板上共3次后测试 试验结果:(1)外观无变化;(2)?S21不大于2.0dB;(3)?S22不大于0.2;(4)?I 不大于1.0mA 符合试验标准,合格 盐雾试验试验设备:TX-SST-1000 试验标准:将样品置于温度为35+1.1/-1.7℃,盐溶液为4-6%(溶液PH值6.5~7.2), 湿度为95~98%的盐喷雾室中12小时 试验结果:外表表面无腐蚀符合试验标准,合格 高温工作试验试验设备:TX-ZK-600 试验依据:GB2423.02高温实验方法 试验标准:高温工作85℃,通电放置2H后立即测试 试验结果:(1)外观无变化;(2)?S21不大于2.0dB;(3)?S22不大于0.2;(4)?I 不大于1.0mA 符合试验标准,合格 高温存储试验试验设备:TX-ZK-600 试验依据:GB2423.02高温实验方法 试验标准:高温存储85℃,放置16H,常温恢复1~2H后测试 试验结果:(1)外观无变化;(2)?S21不大于2.0dB;(3)?S22不大于0.2;(4)?I 不大于1.0mA 符合试验标准,合格 低温工作试验试验设备:TX-ZK-600 试验依据:GB2423.01低温实验方法 试验标准:低温工作-40℃,通电放置2H后立即测试 试验结果:(1)外观无变化;(2)?S21不大于2.0dB;(3)?S22不大于0.2;(4)?I 不大于1.0mA 符合试验标准,合格

天线测量报告

天线测量报告 一、简介 天线参量是描述天线特征的量,可用实验的方法测定。天线参量的测量(简称为天线测量)是设计天线和调整天线的重要手段。因为天线的特征是多方面的,所以一个天线有很多个参量。在这些参量中,大多数情况下要着重测量的是方向图、输入阻抗和增益。 超宽带(UWB) 是一项快速发展的技术,它用于传输大带宽(>500 MHz) 范围内的信息,以便进行短距离、宽带宽通信。通过使用近期由管理机构批准的极低的发射电平,UWB技术作为个人局域网(PAN) 连通性(例如无线USB) 所使用的核心技术正在引起人们的关注。近来,用于PAN应用的商用器件正逐渐应用到小于10.6 GHz的频率范围。对于商用天线(例如WLAN) 或那些在蜂窝系统中使用的天线来说,矢量网络分析仪(VNA)的射频型号(例如E5071C ENA (4.5 GHz/8.5 GHz) 和E5061/62A ENA-L (1.5 GHz/3 GHz) 网络分析仪)已广泛应用于设计流程和生产线上,以测量回波损耗或VSWR。然而,由于UWB系统使用更宽的频率范围,UWB 天线测量需要在生产线上使用更高频率的VNA。本文讨论了使用20 GHz ENA网络分析仪进行UWB天线测量的优势,并给出了使用ENA 选通功能的测量实例。 二、二、测量注意事项 1、20 GHz ENA可最大程度地降低测试成本 在2008年8月,安捷伦推出了一款频率高达20GHz的ENA。秉承该系列产品的优良传统,20 GHz ENA在同类产品中具有出色的性能和测量速度,可最大程度地降低测试成本。例如,ENA在所

有频率范围内的迹线噪声仅为传统VNA (例如8719或8720 (10 MHz 至20 GHz,51 pts,IFBW 1 kHz) 的十分之一,而测量速度却是传统VNA的十倍。 2、快速利用您当前的ENA程序 20 GHz ENA提供与当前ENA (4.5 GHz/8.5 GHz选件)一样的用户界面和编程命令,有效地保护您的软件投资。现有的测量应用软件程序可以很轻松地得以利用。例如,如果生产线上已经安装了ENA,您可以将20 GHz ENA简单地“合并”到现有的生产环境中。而且,E5071C ENA网络分析仪的所有选件均具有升级功能。例如,8.5 GHzE5071C可以升级为20 GHz的选件1。这使您在生产线上的VNA 投资计划变得更加灵活。 3、通过ENA的选通特性, 获得一致的回波损耗测量结果 我们总是希望生产线上的测量结果是一致的。因为天线对测试系统周围的环境非常敏感,因此获得一致的和可重复的回波损耗测量结果非常困难。ENA具有一个选通特性,可以通过软件仿真消除测量结果中的干扰响应。(要求时域选件010。) 这个特性能够降低测量环境中的干扰,使您获得一致的和可重复的测量结果,从而可以在生产线上实现高产出和较小的防护频带。 这里给出了一个UWB被测天线(AUT) 的测量实例。图1显示的是测量设臵。AUT是一个特定的平板偶极天线,具有10 dB回波损耗,频率范围为3 GHz到10.6 GHz。

监控系统运行测试报告

图像模块测试报告 1概述 XX系统图像模块主要实时采集舱外设备的视频图像,集中在视频监视主机监视器显示并存储监视画面,是确保设备安全运行的一种辅助手段。图像模块包括摄像头、视频网关、工控机等单元。 2测试依据 技术指标测试需要按照《XX系统数字监控设备技术协议》。 3测试项目和技术指标 3.1安装IE插件 打开随机光盘里名为IE Plugin的文件夹,然后双击里面的xdview文件。在弹出的画面上点击“install”按钮,将会出现如下图示: 点击“close”或者直接关掉此对话框完成安装。 3.2制式和帧率及其调用方式 3.2.1技术指标 本软件可采用PAL和NTSC两种制式,建议采用PAL制式。帧率为每秒25帧。3.2.2测试仪器和工具 序号名称型号数量备注 1 工控机2U-380 1 注:以上仪器设备可以用同等功能、精度的仪器设备代用 3.2.3测试简单原理及框图 图 1测试框图 3.2.4测试方法和步骤 a)如图1所示将设备连接好; b)摄像机、视频服务器、监控主机分别加电; c)监控主机开机启动数字监控软件并登录客户端; 图 2测试框图 d)登录后即进入如下界面。 图 3软件主界面 点击【DVS 设置】按钮或在图像窗口上单击鼠标右键,选择【DVS 设置】,将弹出DVS 参数设置界面,如下图所示:

图 4 DVS 参数设置界面 【DVS时钟】可以设置DVS的日期和时间,点击“与PC同步”,则DVS的日期和时间 会自动与电脑的日期和时间同步。【DVS】可设置DVS的名称和制式,查看DVS的路数,设备ID,软件版本等。【制式】提供PAL和NTSC两种视频格式。 3.3视频图像采集测试 3.3.1技术指标 实时采集舱外设备的视频图像,集中在视频监视主机监视器显示。 3.3.2测试仪器和工具 表 1测试工具和仪器 序号名称型号数量备注 1 显示器DELL 1 注:以上仪器设备可以用同等功能、精度的仪器设备代用 3.3.3测试简单原理及框图 图 4测试框图 3.3.4测试方法和步骤 a)如图1所示将设备连接好; b)摄像机、视频服务器、监控主机分别加电; c)监控主机开机启动数字监控软件并登录客户端; 图 5登录界面 d)登录后进入即可显示视频画面。 图 6监控软件主菜单

无线测试报告

中石油安徽销售公司 防爆无线组网系统项目汇报

2010年销售公司下发了《关于上报第一批卡机连接加油机实施方案》的通知 ,同年安徽公司卡机连接试点站正式上线运行。 卡机连接站点施工标准要求每台加油机敷设2条超六类屏蔽网线,每条枪一根 RVVP6*1.0信号线,距离建议不超过70米。从实际项目应用效果来看存在以下问题: 1、 过度使用网络信号放大器这种安全系数较低,质量较差的补充设备。 2、 线路敷设杂乱、维护性较低。 3、 线路过长、或质量不过关导致信号丢包严重、通讯故障频发。 4、 加油站增添终端设备需重新开槽布线,费时、费力、费钱。 5、 施工线路距离有严格限制,面积较大加油站无法进行卡机连接安装。 针对以上几点问题,信息化处经过多次项目可行性分析,市场调研、技术摸索,于2012年9月开始研发“防爆无线组网系统”,并于2013年2月完成项目产品安装、测试。 图1:敷设物理线路站级接线图 图2:防爆无线组网系统站点 配电室办公室营业室机 柜 办公桌 柜台 加油机油 岛 加油机油 岛 加油机油 岛 加油机油岛车道 车道 车道 车道 电源管线 通讯管线 1、从机柜引到营业室柜台的电源线为一条;引出的超五类以太网线 为六条。 2、 从机柜引到室外支 付终端的电源线为每个室外支付终端各一条,从配电室引到室外支付终端的电源线为一条, 图例应为八条;引出的 超五类屏蔽以太网线是 每个室外支付终端各二 条,图例为八条。3、从机柜引到加油机的信息线为每个加油机 的每块主板一条,根据主板数确定所需用的线 缆数量。4、从机柜引到加油机 的超5类屏蔽以太网线 为每台加油机两条。配电室办公室 营业室机柜 办公桌 柜台加油机油岛加油机油岛加油机油 岛加油机油岛 车道车道车道车道基站接受端1、机房设立一个基站 2、终端设立一个接受

相关文档
相关文档 最新文档