文档库 最新最全的文档下载
当前位置:文档库 › 【最高考】2015届高考数学二轮专题突破课堂讲义 第30讲 概率统计、计数原理

【最高考】2015届高考数学二轮专题突破课堂讲义 第30讲 概率统计、计数原理

【最高考】2015届高考数学二轮专题突破课堂讲义 第30讲 概率统计、计数原理
【最高考】2015届高考数学二轮专题突破课堂讲义 第30讲 概率统计、计数原理

第30讲 概率统计、计数原理

江苏高考考这部分内容时,一般第1问考概率的计算,第2问考分布列、期望的计算.重点考查随机变量的分布列与期望,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复事件的概率等,同时考查数学分类思想,难度可能有所提升.

概率统计考试说明

序号 内容

要求

A B C

1 离散型随机变量及其分布列 √

2 超几何分布 √

3 条件概率及相互独立事件 √

4 n 次独立重复试验的模型及二项分布 √

5 离散型随机变量的均值和方差 √

计数原理考试说明

序号 内容

要求

A B

C 1 加法原理与乘法原理 √ 2 排列与组合 √ 3 二项式定理 √

例1 如图,设P 1,P 2,…,P 6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.

(1) 求S =3

2

的概率;

(2) 求S 的分布列及数学期望E(S).

解:(1) 从六个点任选三个不同点构成一个三角形共有C 3

6种不同选法,其中S =3

2

的为有一个角是30°的直角三角形(如△P 1P 4P 5),共6×2=12种,所以

P ?

?

???S =32=12C 36=35.

(2) S 的所有可能取值为34,32,33

4

. S =

34的为顶角是120°的等腰三角形(如△P 1P 2P 3),共6种,所以P ?

?

???S =34=6C 36=310. S =334

的为等边三角形(如△P 1P 2P 5),共2种,

所以P ?

????S =334=2C 36=110.

又由(1)知P ?

?

???S =32=12C 36=35,故S 的分布列为

S 34 32 33

4 P

310

35

110

所以E(S)=

34×310+32×35+334×110=9320

.

设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.

(1) 求概率P(ξ=0);

(2) 求ξ的分布列,并求其数学期望E(ξ).

解:(1) 从正方体的八个顶点中任取四个点,共有C 4

8=70种不同取法. 其中共面的情况共有12种(6个侧面,6个对角面),

则P(ξ=0)=1270=6

35

.

(2) 任取四个点,当四点不共面时,四面体的体积只有以下两种情况:

① 四点在相对面且异面的对角线上,体积为1-4×16=1

3

,这样的取法共有2种.

② 四点中有三个点在一个侧面上,另一个点在相对侧面上,体积为1

6

.这样的取法共有70

-12-2=56种.

∴ ξ的分布列为

ξ 0 13 1

6

P 635 135 28

35

数学期望E(ξ)=13×135+16×2835=1

7

.

例2 口袋中有n(n∈N *

)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X ,若P(X

=2)=7

30

.求:

(1) n 的值;

(2) X 的概率分布与数学期望.

解:由题知P(X =2)=A 13×A 1n A 2n +3=3n (n +3)(n +2)=7

30

即7n 2

-55n +42=0, 即(7n -6)(n -7)=0,

因为n∈N *

,所以n =7.

(2) 由题知,X 的可能取值为1、2、3、4,所以

P(X =1)=A 1

7A 110=7

10

P(X =2)=7

30,

P(X =3)=A 23A 1

7A 310=7

120,

P(X =4)=1-710-730-7120=1

120

所以X 的概率分布表为

X 1 2 3

4 P 710 7

30 7120

1120

所以E(X)=1×710+2×730+3×7120+4×1120=11

8.

故X 的数学期望是11

8

.

袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为5

12

.现甲、乙两

人从袋中轮流摸球,甲先取,乙后取,然后甲再取,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数.

(1) 求袋中原有白球的个数;

(2) 求随机变量X 的概率分布及数学期望E(X).

解:(1) 设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为C 2n

C 29

由题意知C 2

n C 29=512,即n (n -1)

29×82

=5

12

化简得n 2

-n -30=0.

解得n =6或n =-5(舍去),故袋中原有白球的个数为6. (2) 由题意,X 的可能取值为1,2,3,4.

P(X =1)=69=23;P(X =2)=3×69×8=1

4;

P(X =3)=3×2×69×8×7=1

14;

P(X =4)=3×2×1×69×8×7×6=1

84

.

所以取球次数X 的概率分布列为

X 1 2 3 4

P 23 14 114 184

所求数学期望为E(X)=1×23+2×14+3×114+4×184=10

7

.

例3 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为2

3

,且各

次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.

(1) 求甲同学至少有4次投中的概率;

(2) 求乙同学投篮次数ξ的分布列和数学期望. 解:(1) 设甲同学在5次投篮中,恰有x 次投中,“至少有4次投中”的概率为P ,则 P =P(x =4)+P(x =5)

=C 45? ????234? ????1-231+C 55? ????235? ????1-230=112243. (2) 由题意ξ=1,2,3,4,5.

P(ξ=1)=23,P(ξ=2)=13×23=2

9,

P(ξ=3)=13×13×23=2

27,

P(ξ=4)=? ????133×23=281, P(ξ=5)=? ????134=181

. ξ的分布列为

ξ 1 2 3 4 5

P 23 29 227 281 181

ξ的数学期望E(ξ)=1×23+2×29+3×227+4×281+5×181=121

81.

在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率q 1=0.25,在B 处的命中率为q 2.该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为

ξ 0 2 3 4 5 p 0.03 p 1 p 2 p 3 p 4

(1) 求q 2的值;

(2) 求随机变量ξ的数学期望E ξ;

(3) 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

解:(1) 设该同学在A 处投中为事件A ,在B 处投中为事件B ,则事件A 、B 相互独立,

且P(A)=0.25,P(A -)=0.75,P(B)=q 2,P(B -

)=1-q 2.

根据分布列知:ξ=0时,P(A -B -B -)=P(A -)P(B -)P(B -)=0.75(1-q 2)2

=0.03, 所以1-q 2=0.2,q 2=0.8,

(2) 当ξ=2时,P 1=P(A -B B -+A -B -B)=P(A -B B -)+P(A -B -

B)=0.75q 2(1-q 2)×2=1.5q 2(1-q 2)=0.24,

当ξ=3时,p 2=P(A A -B -)=P(A)P(B -)P(B -)=0.25(1-q 2)2

=0.01,

当ξ=4时,p 3=P(A -BB)=P(A -)P(B)P(B)=0.75q 2

2=0.48,

当ξ=5时,p 4=P(A B -B +AB)=P(A B -B)+P(AB)=P(A)P(B -

)P(B)+P(A)P(B)=0.25q 2(1-q 2)+0.25q 2=0.24,

所以随机变量ξ的分布列为

ξ 0 2 3 4 5

p 0.03 0.24 0.01 0.48 0.24

随机变量ξ的数学期望E ξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63. (3) 该同学选择都在B 处投篮得分超过3分的概率为 P(B -BB +B B -B +BB)=P(B -BB)+P(B B -B)+P(BB)=2(1-q 2)q 22+q 2

2=0.896, 该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72, 由此看来该同学选择都在B 处投篮得分超过3分的概率大.

例4 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.

(1) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;

(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列及数学期望.

解:(1) 设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,

则P(A)=C 12C 23=23,P(B)=C 24C 35=3

5

.∵ 事件A 与B 相互独立,∴ 观众甲选中3号歌手且观众乙未

选中3号歌手的概率为P(A B -)=P(A)·P(B -)=P(A)·[1-P(B)]=23×25=415

(或P(A B -

)=

C 12·C 3

4C 23·C 35=

4

15

). (2) 设C 表示事件“观众丙选中3号歌手”,则P(C)=C 2

4C 35=3

5

.

∵ X 可能的取值为0,1,2,3,且取这些值的概率分别为

P(X =0)=P(A -B -C -

)=13×25×25=475

P(X =1)=P(A B -C -)+P(A -B C -)+P(A -B -

C) =23×25×25+13×35×25+13×25×35 =2075=415

, P(X =2)=P(AB C -)+P(A B -C)+P(A -

BC) =23×35×25+23×25×35+13×35×35 =3375=1125

, P(X =3)=P(ABC)=23×35×35=1875=6

25

∴ X 的分布列为

X 0 1 2 3

P 475 415 1125 625

∴ X 的数学期望E(X)=0×475+1×415+2×1125+3×625=14075=28

15

.

现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (1) 求张同学至少取到1道乙类题的概率;

(2) 已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都

是35,答对每道乙类题的概率都是4

5,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.

解:(1) 设事件A =“张同学所取的3道题至少有1道乙类题”,则有A -

=“张同学所取的3道题都是甲类题”.

因为P(A -)=C 3

6C 310=16,所以P(A)=1-P(A -)=5

6

.

(2) X 所有的可能取值为0,1,2,3.

P(X =0)=C 0

2·? ????350·? ????252·15=4125

P(X =1)=C 1

2·? ????351·? ????351·15+C 02? ????350·? ????252·45=28125;

P(X =2)=C 2

2·? ????352·? ????250·15+C 12? ????351·? ????251·45=57125;

P(X =3)=C 2

2·? ????352·? ????250·45=36125

.

所以X 的分布列为

X 0 1 2 3

P 4125 28125 57125 36

125

所以E(X)=0×4125+1×28125+2×57125+3×36

125

=2.

1. (2014·江苏卷)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.

(1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;

(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3,随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E(X).

解:(1) 取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球.

所以P =C 24+C 23+C 2

2C 2

9=6+3+136=5

18

. (2) 随机变量X 所有可能的取值为2,3,4.

X =4表示的随机事件是“取到的4个球是4个红球”,故P(X =4)=C 4

4C 49=1

126

X =3表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和

1个其他颜色的球”,故P(X =3)=C 34C 15+C 33C 1

6C 4

9=20+6126=13

63

; 于是P(X =2)=1-P(X =3)-P(X =4)=1-1363-1126=11

14

.

所以随机变量X 的概率分布如下表:

X 2 3 4

P 1114 1364 1126

因此随机变量X 的数学期望为

E(X)=2×1114+3×1363+4×1126=20

9

.

2. 某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%.生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元.设生产各种产品相互独立.

(1) 记X(万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2) 求生产4件甲产品所获得的利润不少于10万元的概率. 解:(1) 由题设知,X 的可能取值为10、5、2、-3,且 P(X =10)=0.8×0.9=0.72, P(X =5)=0.2×0.9=0.18, P(X =2)=0.8×0.1=0.08, P(X =-3)=0.2×0.1=0.02. 由此得X 的分布列为

X 10 5 2 -3 P 0.72 0.18 0.08 0.02

(2) 设生产的4件甲产品中一等品有n 件,则二等品有(4-n)件.

由题设知4n -(4-n)≥10,解得n≥14

5

又n∈N ,得n =3或n =4.

所求概率为P =C 34×0.83×0.2+0.84

=0.8192.

故生产4件甲产品所获得的利润不少于10万元的概率为0.8192.

3. 设整数n≥4,P(a ,b)是平面直角坐标系xOy 中的点,其中a 、b∈{1,2,3,…,n},a >b.

(1) 记A n 为满足a -b =3的点P 的个数,求A n ;

(2) 记B n 为满足1

3

(a -b)是整数的点P 的个数,求B n .

解:(1) 点P 的坐标满足条件1≤b=a -3≤n-3,所以A n =n -3. (2) 设k 为正整数,记f n (k)为满足条件以及a -b =3k 的点P 的个数.只要讨论f n (k)≥1的情形.

由1≤b=a -3k≤n-3k 知f n (k)=n -3k ,且k≤n -13

,设n -1=3m +r ,其中m∈N *

,r

∈{0,1,2},则k≤m,所以B n =∑ m k =1f n (k)=∑ m

k =1(n -3k)=mn -3m (m +1)2=m (2n -3m -3)

2

,将m =n -1-r 3代入上式,化简得B n =(n -1)(n -2)6-r (r -1)

6

,所以B n =

?

????n (n -3)6,n

3

是整数,(n -1)(n -2)6,n

3

不是整数.

点评:本题主要考查计数原理,考查探究能力,B 级要求,是难题.

4. 设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.

(1) 求概率P(ξ=0);

(2) 求ξ的分布列,并求其数学期望E(ξ).

解:(1) 若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3

条棱,∴ 共有8C 2

3对相交棱.

∴ P(ξ=0)=8C 2

3C 212=8×366=4

11

.

(2) 若两条棱平行,则它们的距离为1或

2,其中距离为2的共有6对,∴ P(ξ=2)

=6C 212=666=1

11

,P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=6

11.

∴ 随机变量ξ的分布列是

ξ 0

1 2 P(ξ) 4

11

611

111

∴ 其数学期望E(ξ)=1×611+2×111=6+2

11

.

(本题模拟高考评分标准,满分10分)

(2014·南京、盐城模考)某中学有4位学生申请A 、B 、C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.

(1) 求恰有2人申请A 大学的概率;

(2) 求被申请大学的个数X 的概率分布列与数学期望E(X). 解:(1) 记“恰有2人申请A 大学”为事件A ,

P(A)=C 24×22

34=2481=827

.

答:恰有2人申请A 大学的概率为8

27

.(4分)

(2) X 的所有可能值为1,2,3.

P(X =1)=334=1

27,

P(X =2)=C 34×A 23+3×A 2

334

=4281=14

27, P(X =3)=C 24×A 3

334=3681=4

9

.

X 的概率分布列为

X 1 2 3

P 127 1427 49

(8分)

所以X 的数学期望E(X)=1×127+2×1427+3×49=65

27.(10分)

(1) 用红、黄、蓝、白四种不同颜色的鲜花布置如图1所示的花圃,要求同一区域上用同一种颜色的鲜花,相邻区域用不同颜色的鲜花,问共有多少种不同的摆放方案?

图1

(2) 用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图2所示的花圃,要求同一区域

上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.

图2

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望E(ξ).

图3

解:(1) 根据分步计数原理,摆放鲜花的不同方案有4×3×2×2=48种.

(2) ①设M表示事件“恰有两个区域用红色鲜花”,

如图3,当区域A、D同色时,共有5×4×3×3=180种;

当区域A、D不同色时,共有5×4×3×2×2=240种;

因此,所有基本事件总数为180+240=420种.

(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A35+2A45+A55=420种.)

又A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;

因此,事件M包含的基本事件有36+36=72种.

所以,P(M)=72

420=

6

35

.

②随机变量ξ的分布列为

0 1 2

P

6

35

23

35

6

35

所以E(ξ)=0×6

35+1×

23

35

+2×

6

35

=1.

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

()P A = A μμΩ 。 五、互斥事件的概率 1、互斥事件 在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则 ()()() P A B P A P B =+U 。 2、对立事件 事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。 ()() 1P A p A =- 。 3、互斥事件与对立事件的联系 对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。 题型归纳及思路提示 题型176 古典概型 思路提示 首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算 ()A P A = 包含基本事件数 基本事件总数。 例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果; (2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。 分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上 (),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。 解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 , ()()() 1,2,1,3,1,4, ()()()() 2,1,2,2,2,3,2,4, ()()()() 3,1,3,2,3,3,3,4, ()()()()4,1,4,2,4,3,4,4 共16个。 (2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得 ()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高考数学第二轮备考指导及复习建议

2019年高考数学第二轮备考指导及复习建 议 首先,我们应当明确为什么要进行高考第二轮复习?也就是高考数学复习通常要分三轮(有的还是分四轮)完成,对于第二轮的目的和意义是什么呢?第一轮复习的目的是 将我们学过的基础知识梳理和归纳,在这个过程当中主要以两个方面作为参考。第一个是以教材为基本内容,第二个以教学大纲以及当年的考试说明,作为我们参考的依据,然后做到尽量不遗漏知识,因为这也是作为我们二轮三轮复习的基础。 对于高三数学第二轮复习来说,要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和把握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经把握的知识转化为实际解题能力;三是要把握各题型的特点和规律,把握解题方法,初步形成应试技巧。 高三数学第二轮的复习,是在第一轮复习的基础上,对高考知识点进行巩固和强化,是考生数学能力和学习成绩大幅度提高的关键阶段,我们学校此阶段的复习指导思想是:巩固、完善、综合、提高。就大多数同学而言,巩固,即巩固第一轮单元复习的成果,把巩固三基(基础知识、基本方法、基本技能)放在首位,强化知识的系统与记忆;完善,就是通过此轮复习,查漏补缺,进一步建立数学思想、知识规律、方法

运用等体系并不断总结完善;综合,就是在课堂做题与课外训练上,减少单一知识点的试题,增强知识点之间的衔接,增强试题的综合性和灵活性;提高,就是进一步培养和提高对数学问题的阅读与概括能力、分析问题和解决问题的能力。因此,高三数学第二轮的复习,对于课堂听讲并适当作笔记,课外训练、自主领悟并总结等都有较高要求,有“二轮看水平”的说法!是最“实际”的一个阶段。 要求学生就是“四个看与四个度”:一看对近几年高考常考题型的作答是否熟练,是否准确把握了考试要求的“度”--《考试说明》中“了解、理解、掌握”三个递进的层次,明确“考什么”“怎么考”;二看在课堂上是否紧跟老师的思维并适当作笔记,把握好听、记、练的“度”;三看知识的串连、练习的针对性是否强,能否使模糊的知识清晰起来,缺漏的板块填补起来,杂乱的方法梳理起来,孤立的知识联系起来,形成系统化、条理化的知识框架,控制好试题难易的“度”;四看练习或检测与高考是否对路,哪些内容应稍微拔高,哪些内容只需不降低,主次适宜,重在基础知识的灵活运用和常用数学思想方法的掌握,注重适时反馈的“度”。在高考一轮复习即将结束、二轮复习即将开始这样一个承上启下的阶段,时间紧,任务重,往往是有40天左右时间(我们学校是3月中旬到4月底)。如何做到有条不紊地复习呢?现结合我最近的学习及多年的做法谈下面几点意见,供同行们参考。

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

高考数学概率与统计

高考数学概率与统计 SANY GROUP system office room 【SANYUA16H-

第16讲概率与统计 概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一“非等可能”与“等可能”混同 例1 掷两枚骰子,求所得的点数之和为6的概率. 错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为 P=1 11 剖析以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36 种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=5 36 . 类型二“互斥”与“对立”混同 例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是() A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对 错解A 剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在: (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对 立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.

类型三 “互斥”与“独立”混同 例3 甲投篮命中率为O .8,乙投篮命中率为,每人投3次,两人恰好都命中2次的 概率是多少? 错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中 两次为事件A+B ,P(A+B)=P(A)+P(B): 22223 30.80.20.70.30.825c c ?+?= 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰 好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指 两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个 事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关 系是根本不同. 解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独 立, 则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同 例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次, 求第二次才取到黄色球的概率. 错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球” 为事件C,所以P(C)=P(B/A)=6293 =. 剖析 本题错误在于P(A ?B)与P(B/A)的含义没有弄清, P(A ?B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的 A 已经发生的条件下事件 B 发生的概率。 解: P (C )= P(A ?B)=P (A )P (B/A )= 46410915 ?=. 备用

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

2020高考数学第二轮通用(文)板块二专题五 第2讲

第2讲圆锥曲线的方程与性质(小题) 热点一圆锥曲线的定义与标准方程 1.圆锥曲线的定义 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|). (2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|). (3)抛物线:|PF|=|PM|,点F不在定直线l上,PM⊥l于点M. 2.求圆锥曲线标准方程“先定型,后计算” 所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值. 例1(1)(2019·梅州质检)已知双曲线C:x2 a2-y2 b2=1(a>0,b>0)一个焦点为F(2,0),且F到双曲线C的渐近线的距离为1,则双曲线C的方程为________. 答案x2 3-y 2=1 解析根据题意,双曲线C的中心为原点,点F(2,0)是双曲线C的一个焦点,即双曲线的焦点在x轴上,且c=2, 双曲线C:x2 a2-y2 b2 =1(a>0,b>0), 其渐近线方程为y=±b a x,即ay±bx=0,

又点F 到渐近线的距离为1,则有|-b ×2|a 2 +b 2 =1, 解得b =1,则a 2=c 2-b 2=3, 所以双曲线的方程为x 23 -y 2 =1. (2)(2019·南充模拟)P 是双曲线x 23-y 2 4=1的右支上一点,F 1,F 2分别为双曲线的左、右焦点, 则△PF 1F 2的内切圆的圆心横坐标为( ) A. 3 B .2 C.7 D .3 答案 A 解析 如图所示F 1(-7,0),F 2(7,0), 设内切圆与x 轴的切点是点H ,与PF 1,PF 2的切点分别为M ,N , 由双曲线的定义可得|PF 1|-|PF 2|=2a =23, 由圆的切线长定理知,|PM |=|PN |,|F 1M |=|F 1H |,|F 2N |=|F 2H |, 故|MF 1|-|NF 2|=23, 即|HF 1|-|HF 2|=23, 设内切圆的圆心横坐标为x ,即点H 的横坐标为x , 故(x +7)-(7-x )=23, ∴x = 3. 跟踪演练1 (1)(2019·银川质检)已知P 是抛物线y 2=4x 上一动点,定点A (0,22),过点P 作

18题-高考数学概率与统计知识点

18题-高考数学概率与统计知识点

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)= ) ()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)= k n k k n p p C --)1(. 其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结

的概率P (i x =ξ)=i P ,则称下表. 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++2 1 P P (1) ②常见的离散型随机变量的分布列: (1)二项分布 n 次独立重复试验中,事件A 发生的次数ξ是一个 随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的 分布列如下: 称这样随机变量ξ服从二项分布,记作),(~p n B ξ ,其中n 、p 为参数,并记:) ,;(p n k b q p C k n k k n =- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机

高考数学压轴题汇编

高考数学压轴题汇编 1.〔本小题满分12分〕设函数在上是增函数.求正实数的取值范围; 设,求证:1 ,0>>a b .ln 1b b a b b a b a +<+<+ 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习4 4.设函数3 2 2 ()f x x ax a x m =+-+(0)a > 〔1〕若时函数有三个互不相同的零点,求的范围; 〔2〕若函数在内没有极值点,求的范围; 〔3〕若对任意的,不等式在上恒成立,求实数的取值范围. 高考数学压轴题练习5 5.〔本题满分14分〕 已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. 〔Ⅰ〕求椭圆的方程; 〔Ⅱ〕设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P ,线段 PF2的垂直平分线交于点M ,求点M 的轨迹C2的方程; 〔Ⅲ〕若AC 、BD 为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD 的面积的最小值. 高考数学压轴题练习6 6.〔本小题满分14分〕 已知椭圆+=1〔a>b>0〕的左.右焦点分别为F1.F2,离心率e =,右准线方程为x =2. 〔1〕求椭圆的标准方程; 〔2〕过点F1的直线l 与该椭圆相交于M .N 两点,且|+|=,求直线l 的方程. 高考数学压轴题练习7 7.〔本小题满分12分〕 已知,函数,〔其中为自然对数的底数〕. 〔1〕判断函数在区间上的单调性; 〔2〕是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

高考数学第二轮复习策略与重点

2019年高考数学第二轮复习策略与重点 ?数学第二轮复习阶段是考生综合能力与应试技巧提高的阶段。在这一阶段,老师将以“数学思想方法”、解题策略和应试技巧为主线。老师的讲解,不再重视知识结构的先后次序。首先,着重提高考生采用“配方法、待定系数法、换元法、数形结合、分类讨论、数学模型”等方法解决数学问题的能力。其次,考生要注意用一些解题的特殊方法,特殊技巧,以提高解题速度和应对策略。要在这一阶段得到提高,应做到以下几点: 首先,要加强基础知识的回顾与内化。由于第一轮复习时间比较长,范围也比较广,前面复习过的内容容易遗忘,而临考前的强化训练,对遗忘的基本概念,基本思维方法又不能全部覆盖,加上一模的试题起点不会很高,这就要求同学们课后要抽出时间多看课本,回顾基本概念、性质、法则、公式、公理、定理;回顾基本的数学方法与数学思想;回顾疑点,查漏补缺;回顾老师教学时或自己学习时总结出来的正确结论,联想结论的生成过程与用法;回顾已往做错的题目的正确解法以及典型题目,以达到内化基础知识和基本联系的目的。 其次,要紧跟老师的复习思路与步骤。课堂上要认真听讲,力图当堂课内容当堂课消化;认真完成老师布置的习题,同时要重视课本中的典型习题。做练习时,遇到不会的或拿不准的题目要打上记号。不管对错都要留下自己的思路,等老师讲评时心中就有数了,起码能够知道当时解题时的思维偏差在何处,对偶尔做对的题目也不会轻易放过,还能够检测出在哪些地方复习不到位,哪些地方有疏忽或漏洞。

另外,在做题过程中,还要注意几点:1、不片面追求解题技巧,如果基础不好,则不要过多做难题,而要把常用的解法掌握熟练。2、提高准确率,优化解题方法,提高解题质量,这关系考试的成败。 第一轮复习重在基础,指导思想是全面、系统、灵活,在抓好单元知识、夯实“三基”的基础上,注意知识的完整性,系统性,初步建立明晰的知识网络。 第二轮复习则是在第一轮的基础上,对高考知识进行巩固和强化,数学能力及学习成绩大幅度提高的阶段。指导思想是巩固、完善、综合、提高。巩固,即巩固第一轮学习成果,强化知识系统的记忆;完善是通过专题复习,查漏补缺,进一步完善强化知识体系;综合,是减少单一知识的训练,增强知识的连接点,增强题目的综合性和灵活性;提高是培养、提高思维能力,概括能力以及分析问题解决问题的能力。针对第二轮复习的特点,同学们需注意以下几个方面: 1.加强复习的计划性。由于第二轮复习的前后跨越性比较大,这就要求同学们要事先回顾基础知识,回顾第一轮中的相关内容,抓住复习的主动权,以适应大跨度带来的不适应。 2.提高听课的效率。深刻体会老师对问题的分析过程,密切注意老师解决问题时的“突破口,切入点”,及时修正自己的不到之处,在纠正中强化提高。 3.加强基础知识的灵活运用。要做到这一点,至关重要的是加强理论的内化,通过第二轮的复习,进一步有意识地强化对书本上定义、定理、公式、法则的理解,对这些东西理解水平的高低决定了你能否灵

概率与统计高考数学

辅导讲义:概率与统计 一、知识回顾: 1、总体、个体、样本、样本容量: 总体:在统计中,所有考察对象的全体。 个体:总体中的每一个考察对象。 样本:从总体中抽取的一部分个体叫做这个总体的一个样本。 样本容量:样本中个体的数目。 2、统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。 3、抽样方法:简单随机抽样、系统抽样、分层抽样。 4、简单随机抽样:一般地,从个体为N烦人总体中逐个不放回地取出n个个体作为样本(n

(3)随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的。 8、抽签法—编号、制签、搅拌、抽取,关键是“搅拌”后的随机性;随机数表法—编号、选数、取号、抽取,其中取号的方向具有任意性。 9、简单随机抽样的特点: 它的总体个数有限的; 它是逐个地进行抽取; 它是一种不放回抽样; 它是一种等概率抽样. 10、系统抽样: 将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样。也可称为“等距抽样”。 注:如果个体总数不能被样本容量整除时该怎么办? (1)随机将这1003个个体进行编号1,2,3,……1003。 (2)利用简单随机抽样,先从总体中剔除3个个体(可以随机数表法),剩下的个体数1000能被100整除,然后按系统抽样的方法进行。 11、系统抽样的步骤: (1)采用随机的方式将总体中的 N 个体编号。 (2)整个的编号分段(即分成几个部分),要确定分段的间隔k 。当 n N (为总体中的个体的个数,n 为样本容 量)是整数时,取n N k = ;当n N 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N '能被n 整 除,这时取n N k ' = ,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编号l ; (4)按照一定的规则抽取样本,通常将编号为k n l k l k l l )1(2-+++,,,, 的个体抽出。 12、简单随机抽样、系统抽样的特点是什么? 简单随机抽样:①逐个不放回抽取;②等可能入样;③总体容量较小。 系统抽样:①分段,按规定的间隔在各部分抽取;②等可能入样;③总体容量较大。 13、分层抽样:一般地,当总体由差异明显几部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较明显的几部分,然后按照各部分在总体中所占的比实施抽样,这种抽样方法 有限性

高考数学压轴题精编精解100题

个 个 高考数学压轴题精编精解 精选100题,精心解答{完整版} 1.设函数()1,12 1,23x f x x x ≤≤?=?-<≤? ,()()[],1,3g x f x ax x =-∈, 其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。 (I )求函数()h a 的解析式; (II )画出函数()y h x =的图象并指出()h x 的最小值。 2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<, ()1n n a f a +=; 数列{}n b 满足1111 ,(1)22 n n b b n b +=≥+, *n N ∈.求证: (Ⅰ)101;n n a a +<<<(Ⅱ)21;2 n n a a +< (Ⅲ)若12 ,2a =则当n ≥2时,!n n b a n >?. 3.已知定义在R 上的函数f (x ) 同时满足: (1)2 1212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0, 4x π ∈[] 时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围. 4.设)0(1),(),,(22 222211>>=+b a b x x y y x B y x A 是椭圆上的两点, 满足0),(),( 2211=?a y b x a y b x ,椭圆的离心率,23 =e 短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为: 12、1122、111222、 (111) ??????14243222n ??????14243 …… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .

相关文档
相关文档 最新文档