文档库 最新最全的文档下载
当前位置:文档库 › 道岔曲线浏览指导意见

道岔曲线浏览指导意见

道岔曲线浏览指导意见
道岔曲线浏览指导意见

道岔曲线浏览分析指导

1.目的

通过监测监控设备的浏览分析,及时发现道岔设备缺点及隐患,同时在道岔发生故障时提供处理依据。

2.内容及要求

每日对管内所有道岔动作曲线和功率曲线进行浏览,每次浏览要三次不同时间段的曲线(温差变化大季节每天10:00—15:00每小时浏览一次)。

3 . 标准

(1)技术指标:

动作时间:S700K≤6.6S; ZD(J)-9≤5.8S。

启动电流和动作电流:

正常情况下启动电流S700K≤3A、ZD(J)-9≤3A;动作电流S700K≤2A、ZD(J)-9≤2A

(2)标准曲线:

图1所示是良好的动作电流曲线,平滑,无凹凸不平及毛刺。图1-1是故障曲线,可能密贴过紧或其它原因造成的卡缺口或30”不到位。

图1-1

图3

4. 案例分析

(1)如图2所示道岔动作曲线小台阶正常时是两格,下降一半,原因可能是室外表示电压并联电阻半开路。

(2)图3曲线。发生道岔不良反应,一定要看回扳曲线,根据回扳曲线动作的时间及电流判断故障原因。

(3) 如图4曲线动作时间变长,通过浏览视频缺口监测,发现缺口变化很大。此种现象可能是天气昼夜温差大,钢轨爬行厉害,造成缺口变化较大,最终还可能导致卡缺口。因此在温度变化较大季节,道岔曲线的浏览要结合道岔视频缺口监测的浏览,预防道岔故障的发生。

(4) 图5所示曲线如果设备正常,就能判断为监测采集问题,可能原因是采集线接触不良,采集模块故障,机柜内采集板不良等。

4

图5

(5)图6中所示道岔曲线凸凹不平,说明该道岔在动作当中肯定有阻力,一般是勾头缺油、滚轮作用不良、吊板等原因造成。此类问题虽然短时间内不会造成设备不良反应,但是不引起重视,长时间不处理,也有可能导致道岔故障。因此发现此类曲线也要及时通知工区查明原因,采取有效措施。

总之,道岔曲线浏览注意几个要点:动作时间,启动电流值,动作电流值,曲线是否平滑,最好结合缺口监测统一评价该道岔运用质量。发生道岔故障不要慌张,一定要看回扳曲线,再做判断。发现道岔动作电流异常曲线时: 30秒切断要看回扳,回扳1秒是不解锁,回扳4秒是不锁闭,回扳不变是卡缺口。小台阶偏高到四格,室外去更换整流堆,小台阶偏高到6格,室外去更换大电阻,小台阶偏低到框底,室外去检查密检器。

6

圆锥曲线的统一焦半径公式在解题中的应用

圆锥曲线的统一焦半径公式 在解题中的应用 宜昌二中 黄群星 我们在解决有关直线与圆锥曲线的关系问题时,经常会用到焦半径公式。解决这类问题,我们可以用到的公式有:平面上两点之间的距离公式,弦长公式,三种圆锥曲线的焦半径公式,和圆锥曲线的统一焦半径公式。最后一个公式往往被大家忽视,现在我想专门谈谈这个公式的使用。 一.在椭圆中的运用: 例1:已知椭圆22221(0)x y a b a b +=>> 的离心率为2 ,过右焦点F 且斜率为k (>0)的直 线与C 相交与A,B 两点,若3AF FB =,求k 的值。 解法一:∵ 2 e = ∴12b a = 设椭圆的方程为22 221,4x y b b += 右焦点为,0), 设直线的方程为my x =,设1122(,),(,)A x y B x y 222440x y b my x ?+-=?? =? ?222 (4)0m y b ?++-= ∵3AF FB =1122,)3(,)x y x y ?--=123y y ?=-① 122 (4)y y m -+=+ ② 2 122(4) b y y m -?=+ ③ 将①带入②得 1224y y m ?=????=-?+? ∴2221222 94(4)m b b y y m m --?==++212m ?= k>0, ∴m>0, ∴2 m k ==解法二; 由题意得3AF FB = =cos 3θ?=

∴sin tan 3 k θθ= ==即 评述:解法二应用了圆锥曲线的统一焦半径公式,从而大大简化了解题的过程。那么,在什么情况下可以用这个公式呢? 先看这个公式的结构:1cos ep PF e θ = ±,其中,e 是离心率,P 为焦准距,θ是过焦点 的直线的倾斜角,正是由于倾斜角的存在,使得这个公式在解决有关过焦点的直线的斜率和倾斜角的问题时相当便捷,而且,公式是根据圆锥曲线的统一定义推导出来,对椭圆,双曲线和抛物线都适用,这是它的一大优越之处。 二.在双曲线中的运用: 例2:双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12,l l ,经过右焦点F 垂直于1l 的直线分别交12,l l 于A,B 两点,已知,,OA AB OB 成等差数列,且,BF FA 同向 ① 求双曲线的离心率 ② 设直线AB 被双曲线所截得的线段的长为4,求双曲线的方程。 解:① 如图 ∵FA=b,OF=c, ∴OA=a ,∵OF 平分角∠AOB ∴OA AF OB BF = 设FB=mb,OB=m a ,则有2AB OA OB =+ 即12(1)2b m b a ma e a +=+? =∴= ② 设直线AB 的倾斜角为θ , cos b c θ= = ∴ 41c o s 1c o s e p e p e e θθ+=+- 4p p += 2 a P c c ?=-= 有∵ 6,3c a c b a ===∴= ∴ 双曲线的方程为 2 2 1369 x y -= 评述:双曲线的焦半径公式PF =a ex ±,由于正负号和绝对值符号的存在,使得这个公式在运用起来又很多不方便,而统一焦半径公式正好巧妙的解决了这一问题。 三.在抛物线中的使用: 例3:平面上一点P 到点F (1,0)的距离与它到直线x=3的距离之和为4, ① 求点P 的轨迹方程

常用道岔的类型

常用道岔的类型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

常用道岔的类型 建国初期我国重视道岔类型的统一,形成统一标准前有53型(以年代命名类型)、55型、57型道岔,真正形成铁道部标准的是62型,后来是75型、92型、以及1996年形成的提速道岔。按行业不同,道岔类型还有工矿企业特殊类型道岔地下铁路道岔、城市轨道交通道岔、出口各类道岔等。目前我国使用最多的是75型、92型和提速道岔(以下简称3种类型道岔),现将这3种类型道岔的产生、结构特征及其品种介绍如下。 1 3种类型道岔的产生 1.1 75型道岔从70年代初开始设计,1975年先后以铁道部标准定型了43、50 kg/m 钢轨9、1 2号4种单开道岔(TB399-75等14个),道岔通用件(TB413—75等30个),道岔制造技术条件(TB412—75),高锰钢辙叉制造技术条件(TB447—74)。1977年5月泰安会议对43、50kg/m两种轨型9、12号的对称道岔、复式交分道岔、交叉渡线道岔及工矿企业用小号码(6、7号)系列道岔进行定型审查。1979年由铁三院主持完成了渡线与交分道岔组合图集的设计及审查。7O年代末期,我国生产的道岔几乎全部是75型道岔。75型道岔满足了我国各部门铁路道岔品种的需求,道岔品种空前增多,标准化程度高。直到现在,75型道岔仍是一类不可取代的道岔类型。 8O年代初,随着50AT轨的试验成功与应用,首先将75型50~ 1 2、9号两种道岔引入50AT尖轨,修改相应的垫板及跟端结构,这两种道岔(专线4103、4105)后来被称为过渡型,这两种道岔在线路上也应用不少。1981年初,随着60 kg/m钢轨的上道,当时没有相应轨型的道岔,在这种急需的情况下,设计并制造了60-12号单开道岔(图号为专线4102),这种道岔尖轨为60 kg/m 普通钢轨带补强板,长,高锰钢辙叉趾、跟端为贯通式,尖轨跟端、垫板、轨撑连接零件等都沿用75型的结构形式,后来这种道岔也被称为过渡型。由于这种道岔的尖轨、锰叉结构上的不足,以及道岔设计制造水平的提

附带曲线整正方法

岔后附带曲线正矢整正指导书 根据《铁路线路修理规则》规定,当岔后的两股道是平行的、并且线间距不大 于5.2米时,这样的连接曲线称为道岔附带曲线。由于我段在更换P60轨道岔后没 有进行过岔后附带曲线的重新定桩和正矢的重新计算,各站同一型号道岔岔后的附 带曲线正矢较为混乱,甚至存在有的工区简易的将现场测量的正矢直接标注为计划 正矢的现象,使目前我段岔后附带曲线普遍存在正矢超限、鹅头等病害。为消除病 害,确保行车安全,我段技术科根据现场调研,结合有关资料,编制了一套简明易 懂、操作性较强的岔后附带曲线整正方法。现将此套方法介绍如下,以供参考。 1、确定连接曲线半径和起终点 1.1 首先将岔后连接曲线(以下称连接曲线)两端鹅头消除拨直,再将连接曲线目 测拨顺,然后在连接曲线内用10m 弦量出不少于5个点的正矢值,计算出平均正矢 f 均作为计算本条曲线半径的依据。f 均=(f 1 +f 2+…+f n )/n 1.2 计算连接曲线半径 R=12500/f 均 1.3 确定起点(ZY )。 如图1所示,道岔中心至附带曲线交点的距离为L ,附带曲线切线长为T ,道 岔后长为b ,辙叉角为a ,岔 尾至附带曲线起点(ZY )的距离为I ,线间距为D 。 YZ 2、R 不小于道岔导曲线半径且不大于 1.5倍道岔导曲线半径 2、附带曲线分段与分桩 2.1 分段和确定桩点数量。 通常在测量道岔附带曲线时使用的弦长 L 弦为10m 桩点间距t 为5m, 则曲线分段数量n 为: n 为L 圆/t ,为便于测量曲线头尾两个桩号,需在曲线头尾向外各增 n+3个,分别为 f 0、f 1、f 2、 、 f n+1、f 0。 ②当L 圆不是5的整倍数时:门为(L 圆/t ) +1取整,则其桩点数量为 n+3个,分别为f 。、「、 f 2、 .. 、 f n+1、f 0。 2.2 分桩。岔后附带曲线分桩与正线上相同,只是桩点间距为 5m,分桩从曲线中点开始,依次 ①当L 圆为5的整倍数时: 设1个0号桩,故桩点数量为

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

道岔曲线分析

道岔曲线分析 一、正常的单动道岔电流曲线及多动道岔电流曲线 1、单动道岔动作电流曲线 T1时段看出电机刚启动时,有一个很大的启动电流。 T2时段为道岔的转换过程,在这个过程中电机经过2级减速,带动道岔平稳转换,动作电流曲线平滑,如果动作电流小,表明道岔平稳转换阻力小,如果动作电流大,表明转换阻力大,如果动作曲线波动大,则表明道岔存在电气或机诫方面的问题。 T3就是常说的最大锁闭电流,由于道岔刚密贴,道岔密贴力产生,也就是阻力增大,动作电流有所升高,如果T3很小或等于动作电流,这个道岔锁闭力不足,需要对道岔进行4毫米标调。如果锁闭最大电流大于动作电流0.3安,说明锁闭电流超标。 T4时段一般是0.4秒左右,这一时段是1DQJ缓放产生,如果无T4也是不正常曲线, 2、双动及多动道岔动作电流曲线 双动、三动及四动道岔,其动作过程是串连的,第一动转换完毕,其自动开闭器接点自动切断其动作电流,同时接通第二的动作电流,以此类推,因此其动作 电流曲线是单动的组合

3、双机多动道岔曲线 双机多动道岔曲线是两个单动曲线的叠加、特点是由于B动阻力比较小,转的快、就形成了下台阶曲线、这种曲线属于正常曲线,有时双机锁闭电流稍大一些,也就是同时锁闭时,锁闭电流应该小于0.6A。最后一动为双机牵引,形成下台阶曲线 4、提速道岔曲线 由3条曲线组成,绿色为A相,黑色为B相,红色为C相,也可以单相显示, 分别显示一条黑线或红、绿线等。

电动液压转辙机 二、特殊故障曲线分析(单动道岔故障曲线) 1、动作电流过小曲线 当道岔转换过程中,突然自己停转,控制台无表示,实际道岔在四开状态,此现象有两种原因,一是动作电流过小,小于0.7A 时,是电机特性不良,二是 1DQJ 3-6动作电

分析指南交流转辙机

目录 第一节道岔动作电流曲线分析说明 第二节交流转辙机道岔动作及采集原理一道岔动作电路原理简述 二 S700K单动多机道岔动作特殊点 三 S700K双动多机道岔动作特殊点 四 ZYJ7道岔同步电路原理简述 五信号集中监测系统采集原理简述第三节交流转辙机正常动作电流曲线剖析一 S700K道岔正常动作曲线剖析 二道岔“小尾巴”形成原理简介 三道岔曲线五条外线判别方法 四 ZYJ7道岔正常动作曲线剖析 第四节典型案例分析 一单机道岔典型案例分析 二多机牵引道岔典型案例分析

交流转辙机动作电流曲线分析 第一节道岔动作电流曲线分析说明 信号集中监测系统记录的道岔动作电流曲线能反映道岔在转换过程中道岔控制电路工作状态、转辙机运用状态,通过对道岔动作曲线的分析,能了解道岔转换时的运用质量,还能在故障时进行辅助判断,指导现场有针对性的进行故障处理。 为了保证道岔动作电流曲线分析效果,应做好以下几点: 1.熟悉《铁路信号维护规则》(以下简称《维规》)中的标准,掌握道岔工作电流大小及道岔转换时间,能及时发现道岔运用过程中特性超标现象。 ⑴S700K型转辙机工作电流不大于2A;ZYJ型电液转辙机的工作电流不大于1 .8A。 ⑵S700K型转辙机当道岔因故不能转换到位时,电流一般不大于3A。 2.了解交流转辙机控制电路工作原理。道岔功率曲线能直观反映道岔机械部分运用质量,而道岔动作电流曲线更侧重于记录道岔动作电路的工作状态。因此要做好道岔动作曲线,特别是道岔故障曲线的分析,必须掌握道岔控制电路工作原理。 3.掌握正常情况下的标准动作曲线及标准功率曲线。道岔检修完毕后将正常状态下的电流曲线在监测系统上设置为该组道岔的参考曲线。平时按规定周期调看电流曲线及功率曲线,并与参考曲线对比,发现动作时间、电流、功率与参考曲线偏差较大的及时判断处理。发现道岔动作电流曲线记录不良或电流监测不准确时记录并处理,确保监测设备运用良好。 4.当道岔发生故障后,及时将故障曲线存储,便于今后调看参考。 下面将以现场运用较多的S700K、ZYJ7两种转辙机为例,介绍交流转辙机

常用道岔技术参数及检查方法

附件17 常用道岔技术参数及检查方法 普速线路常用单开道岔基本参数 序号道岔图号道岔类型道岔全长 (m) 道岔前 长(m) 道岔后 长(m) 直尖轨 长度(m) 曲尖轨 长度(m) 直基本轨 长度(m) 曲基本轨 长度(m) 直向 护轨 (m 1 TB399.1-75 43-9号高锰钢 木枕单开道岔 28.848 13.839 15.009 6.250 6.250 12.500 12.500 3.9 2 TB399.2-75 43-12号高锰钢 木枕单开道岔 36.815 16.853 19.962 7.700 7.700 12.500 12.500 4.5 3 专线4141 50-9号固定型 木枕单开道岔 28.848 13.839 15.009 6.450 6.450 11.200 11.200 3.6 4 TB399.3-7 5 50-9号高锰钢 木枕单开道岔 28.848 13.839 15.009 6.250 6.250 12.500 12.500 3.9 5 专线(02)4151 50-9号固定型 辙叉混凝土枕单 开道岔 28.848 13.839 15.009 6.450 6.450 11.492 11.492 3.6 6 CZ2209 (CZ2209A)50-9号固定型 辙叉混凝土枕单 开道岔 28.848 13.839 15.009 6.450 6.450 11.492 11.492 3.6 7 TB399.4-75 50-12号高锰钢 木枕单开道岔 36.815 16.853 19.962 7.700 7.700 12.500 12.500 4.5 8 专线4147 50-12号固定型 木枕单开道岔 37.907 16.853 21.054 11.300 11.300 15.700 15.700 4.6

圆锥曲线焦半径

设A 11(,)x y 椭圆的焦点弦的两个焦半径倒数之和为常数(焦准距倒数的2倍) 11112||||ep AF BF +=22a b = 椭圆中(A 点靠下,过2F 类似)21||cos b AF a c θ=+,2 1||cos b BF a c θ =-,θ为焦点弦的倾斜角. 椭圆焦半径公式:2111||[()]a AF e x ex a c =--=+;2 211||()a AF e x a ex c =-=- 双曲线的焦点弦同支(异支)的两个焦半径倒数之和(之差的绝对值)为常数(焦准距倒数的2倍) AB 同支11112||||ep AF BF +=22a b = AB 异支11112||||||ep AF BF -=22a b = 双曲线中(A 点靠下,过2F 类似)同左支21||cos b AF a c θ=-,2 1||cos b BF a c θ =+, θ为焦点弦的倾斜角;异支(B 点在右支)21|||cos |b AF c a θ=+,2 1|||cos |b BF c a θ=- 双曲线焦半径公式:11||||AF a ex =+,21||||AF a ex =- A 在左支:2111||()a AF e x a ex c =--=--;2 211||()a AF e x a ex c =-=-。 A 在右支:2111||[()]a AF e x ex a c =--=+;2 211||()a AF e x ex a c =-=- 抛物线的焦点弦(A 点靠下)的两个焦半径倒数之和为常数(焦准距倒数的2倍) 111122|||| ep p AF BF +==||1cos p AF θ=- ,||1cos p BF θ=+ 抛物线焦半径公式:1||2p AF x =+

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

线路标志

线路标志、钢轨编号、整道标志及基桩设置标准 一、线路标志及警冲标: 1、线路标志应设在线路计算里程(面向里程较大)方向的左侧。 2、线路标志应设在距钢轨头部外侧不小于2M处。高度不超过钢轨顶面的标志,可设在距钢轨头部外侧不小于1.35M处。 3、警冲标设在会合线路两线间为4m的起点处中间,有曲线时按限界加宽办法加宽;两线间距不足4m时,应设在两线最大间距的起点处中间。 4、各种标志的式样应符合标准图的规定,色泽应鲜明醒目,图像端正清晰,埋设牢固。 二、钢轨编号: 1、以左股钢轨为准编号。正线和两端有道岔的站线,按里程方向分左右股,只有一端有道岔的站特线按面向终端或车挡分左右股,由起点至终点的方向顺序编号。 2、正线以公里为计算单位。自本公里第一根钢轨开始至本公里最末一根钢轨为止。遇一根钢轨跨及两个计算里程时,如钢轨长度在前一计算里程内有1M及以上时,该轨编入前一计算里程内,否则应为一计算里程的第一号。 3、道岔内的钢轨不编号。 4、无缝线路及长钢轨,按焊接前的钢轨进行编号。 5、站线以每一线别为计算单位,遇道岔时不编号,自道岔后第一根钢轨起,面向终端顺序编号。

6、钢轨编号应写在左股钢轨始端l米处的腹部内侧。 7、钢轨编号采用红底白字。刷底用高×宽尺寸为70MM×l20MM,数字式样用10号字样,尺寸为高×宽为50MM×35MM涂写。做到字体端正,字迹清晰。 三、整道标志: (一)道岔整道标志: 1、按道岔设计图标出导曲线支距检查点及检查值。在道岔直股及导曲线外股钢股外侧采用红底白色“▲”标志标出检查点,在道岔直股内侧钢轨腹部,采用红油漆打底(长200MM、高70MM),白油漆填写(数字式样用8号字样,尺寸高×宽为40MM×30MM)该支距值。 2、按道岔铺设图在轨距变化处采用红油漆打底(长120MM、高70MM),白油漆填写(数字式样用8号字样,尺寸高×宽为40MM×30MM)该点轨距值。轨距用符号“S:”涂写。 3、在道岔辙叉心(检查点)侧面采用红底白字涂写查照间隔(1391)和护背距离(1348)。 4、在道岔护轨(平直部分)内侧腹部采用红底白字涂写轮缘槽标准宽度。 (二)曲线、道岔附带曲线整道标志: 1、曲线整道标志设置(破桩法): ①首先找出曲线中心桩(QZ点),在曲线外轨相对应处钢轨轨头外侧作出标记,并以此曲中点在曲线外轨向曲线两端进行设点。

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程焦半径公式焦点弦公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.? 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.? 椭圆、双曲线、抛物线统一的极坐标方程为:θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0. 当0<e <1时,方程表示椭圆;? 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线

(2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需令0θ=, 右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义,简洁而有 力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题 若圆锥曲线的弦MN 经过焦点F ,

道岔动作电流曲线的分析

道岔动作电流曲线的分析 微机监测系统对道岔部分的电流随时间的变化进行实时监测,通过对动作电流曲线的观察、分析,可对道岔的电气特性、机械特性和时间特性进行判断,从中发现存在的问题,采取措施,可起到早期预防、消除隐患的作用。 (一)、正常动作电流曲线分析 图一单动道岔动作电流曲线 道岔的正常动作过程可分为:解锁一转换-锁闭。由于直流电动转辙机为串激电机,特点是电流越大,转矩越大,转速变慢;反之,电流越小,转矩就小,而转速加快。在一定范围内,直流电动转辙机具有电机的转速与转矩,能够随负荷的大小自动进行调整的“软特性”。 ZD6系列电机中:A型动作时间≤3.8秒,D型动作时间≤5.5秒,E、J型动作时间≤9秒.

我们可以把上图的道岔电流动作曲线分为四个时段来分析。第一时段就是道岔解锁的过程,可看出,电机刚启动时,有一个很大的启动电流,同时产生较大的转矩,这时道岔进入解锁状态,动作齿轮锁闭圆弧在动作齿条削尖齿内滑动,当动作齿轮带动齿条快动作时,与动作齿条相连的动作杆在杆件内有5mm以上空动距离,这时电机的负载很小,电流迅速回落,道岔进入转换过程. 第二时段为道岔的转换过程。在这个过程中电机经过2级减速,带动道岔平稳转换,动作电流曲线平滑。如果动作电流小,表明转换阻力小;如果动作电流大,表明转换阻力大;如果动作曲线波动大,则表明道岔存在电气或机械方面的问题。在此建议大家将道岔调整到位、滑床板不缺油情况下的道岔电流曲线设置为参考曲线,有利于及时发现问题,以便分析。 第三时段为道岔进入锁闭过程。这一过程为道岔尖轨被带动到另一侧,尖轨与基本轨密贴,动作齿轮锁闭圆弧在动作齿条削尖齿中滑动锁闭道岔,自动开闭器动接点转换,切断动作电流。其动作电流曲线为尾部平滑迅速回零,或尾部略有上翘回零.如果道岔尖轨与基本轨刚好密贴.则尾部平滑;如果道岔尖轨与基本轨密贴力较大则尾部上翘。 第四个时段为曲线尾部电流为0的阶段。我们知道,道岔电流曲线的采集是从1DQJ吸起开始,落下停止。在道岔转换完毕后,切断动作电流,1DQJ缓放(缓放时间不小于0.4秒)落下,从上述图形中尾部曲线可观察1DQJ的缓放时间是否符合要求。

道岔的分类

道岔的分类 现在随着我国的不断发展,很多科技产品的诞生为我们的生活带来了便利,其中道岔是实现股道转换的重要的设备,广泛存在于铁路线路上。道岔是一种使机车车辆从一股道转入另一股道的线路连接设备,也是轨道的薄弱环节之一,通常在车站、编组站大量铺设。那么他都有哪些分类呢?跟着小编来学习吧。 1、单开道岔 单开道岔由转辙器、辙岔、护轨及连接部分和岔枕组成。转辙器是用来引导机车车辆由正线转向侧线或由侧线转向正线的转向设备;辙岔及护轨是使机车车辆的车轮由一股钢轨越过另一股钢轨的过渡设备;转辙器和辙岔由连接部分连接。 2、带动道岔 带动道岔是为满足平行作业的需要,在排列进路时,把某些不在进路上的道岔带动到规定位置,并对其实行锁闭。但与防护道岔不同,防护道岔要由进路对其联锁条件进行检查,防护道岔不在规定防护位置时进路时不能建立的;而带动道岔则不检查开关锁条件,进路在排列过程中即使带动道岔不在规定位置也可照样建立进路开放信号。 3、对称道岔 整个道岔对称于主线的中线或彻叉角的中分线,列车通过时无直向及侧向之分。尖轨长度相同时,尖轨作用边和主线方向所成的交角约为单开道岔之半;导曲线半径相等时,对称道岔的长度要比单开道岔短,其它条件相同时,导曲线半径约为单开道岔的两倍;在曲线半径和长度保持不变时,可采用比单开道岔更小号数的辙叉。 4、三开道岔 又称复式异侧对称道岔,是复式道岔中较常用的一种型式。它相当于两组异侧顺接的单开道岔,但其长度却远比两组单开道岔的长度之和为短。因此,常用于铁路轮渡桥头引线、驱峰编组场以及地形狭窄又有特殊需要的地段。三开道岔由一组转辙器、运行条件较差,非十分困难时,不轻宜采用。 关于道岔的分类就是以上几种,大家还有哪些不清楚明白的地方,可以随时联系小编。

椭圆焦半径公式及应用

椭圆焦半径公式及应用 . 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 一、公式的推导 设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。 证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P到左、右准线的距离分别为,由椭圆的第二定义知 ,又,所以,而 。 ∴,。 二、公式的应用 例1 椭圆上三个不同的点A()、B()、C()到焦点F(4,0)的距离成等差数列,求的值。

解:在已知椭圆中,右准线方程为,设A、B、C到右准线的距离为 ,则、、。 ∵,,,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 评析:涉及椭圆上点到焦点的距离问题,一般采用焦半径公式求解,即利用焦半径公式可求出A、B、C三点到焦点的距离,再利用等差数列的性质即可求出 的值。 例2 设为椭圆的两个焦点,点P在椭圆上。已知P、、 是一个直角三角形的三个顶点,且,求的值。 解:由椭圆方程可知a=3,b=2,并求得,离心率。 由椭圆的对称性,不妨设P(,)()是椭圆上的一点,则由题意知应为左焦半径,应为右焦半径。 由焦半径公式,得,。 (1)若∠为直角,则,即 ,解得,故。 (2)若∠为直角,则,即 = ,解得,故。

评析:当题目中出现椭圆上的点与焦点的距离时,常利用焦半径公式把问题转化,此例就利用焦半径公式成功地求出值。 例3 已知椭圆C:,为其两个焦点,问能否在椭圆C上找 一点M,使点M到左准线的距离|MN|是与的等比中项。若存在,求出点M的坐标;若不存在,请说明理由。 解:设存在点M(),使,由已知得a=2,,c=1,左准线为x=-4,则,即 +48=0,解得,或。 因此,点M不存在。 评析:在涉及到椭圆上的点与其焦点的距离时,如果直接用两点间距离公式,运算将非常复杂,而选用焦半径公式可使运算简

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线

(3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题

基于道岔转辙机动作功率曲线关联分析道岔故障

2017-10 兵工自动化 36(10) Ordnance Industry Automation ·29· doi: 10.7690/bgzdh.2017.10.007 基于道岔转辙机动作功率曲线关联分析道岔故障 黄蕾 (四川绵阳维博电子有限公司技术中心,四川绵阳 621000) 摘要:为准确掌握道岔转换设备的工作状况,及时预测其故障趋势,真正实现“状态修”,提出一种基于道岔 转辙机动作功率曲线关联分析道岔故障的方法。以高速铁路用S700K交流道岔转辙机典型动作功率曲线为例,从道 岔转辙机典型动作功率曲线类型、道岔故障关联分析2方面,阐述基于道岔转辙机动作功率曲线关联分析道岔故障 的总体思路,道岔转辙机动作功率曲线的提取、数据压缩及相关性分析。结果表明:该方法能够指导关联分析道岔 故障,提高实际的道岔检修质量,减少维修成本,为实现“状态修”提供数据支撑。该方法不仅是工程可行的,而 且具有良好的应用推广价值。 关键词:道岔;转辙机;动作功率曲线;道岔故障;时序关联分析 中图分类号:TP277 文献标志码:A Association Analysis of Turnout Fault Based on Action Power Curve of Turnout Switch Machine Huang Lei (Technique Center, Mianyang Weibo Electronic Co., Ltd., Mianyang 621000, China) Abstracts: Aiming at the problem of mastering working status of turnout switch machine accurately, predicting the tendency of turnout fault timely, realize “repairing for status” really, brings forward one kind of the method of association analysis which is based on action power curve of turnout switch machine. Taking typical action power curves of S700K alternating turnout switch machine as example, this paper discussed the method from 2 aspects which were distribution of type of action power curve of turnout switch machine and association analysis of turnout fault firstly, and described extracting, data condensation and association analysis of the action power curve of turnout switch machine deeply. Result is indicated, this method is able to guide the association analysis of turnout fault successfully, can rise quality of actual check and repair, lessening design risk, cut down cost of repair thereby, and providing the data sustain of “repairing for status”. The method is result to be project feasible, it had fine application extension value also. Keywords: turnout; switch machine; action power curve; turnout fault; temporal association analysis 0 引言 轨道交通因其安全、快捷、准时、舒适、运量大、能耗低且污染轻等特点,有着其他交通工具不可比拟的优越性,成为国家交通建设的重点。大力发展高速铁路建设已经上升为国家战略,到2020年,我国的铁路网总规模将达到12万km以上,国家在铁路建设方面投资累计将超过5万亿元。 作为信号设备之一的道岔转辙机是改变道岔开通方向的一种动力装置,作用是转换道岔、锁闭道岔并给出关于道岔位置和状态的表示信息;因此,转辙机在列车到来时能否准时、可靠地实现道岔转换,关系到列车运行安全,责任重大。通过对道岔转换设备的测量参数进行纵向和横向综合分析,能够更准确地掌握道岔转换设备的工作状况,特别是及时预测其故障趋势,真正实现“状态修”。当综合分析推断预测道岔的故障趋势时,铁路信号微机监测系统认为道岔转换设备将要发生故障但目前并无故障,此时系统应该提出预警,供用户决策[1]。 道岔转换过程的工作状态可由转辙机输出工作拉力的变化情况来反映,并直接体现在转辙机的动作功率上[2]。对转辙机进行功率实时监控,能精确地反映转辙机推动道岔转换过程中各部件运动状态和负载的变化。正常情况下道岔转换是一个相对稳定的过程,功率也是一条有规律的曲线。通过监测设备分析功率波形和数值的变化,可以判别出转辙机工作是否正常,并记录其劣化趋势;或定位和分离故障,找出故障部件和位置,从而及时报警以预防事故,同时给维修工作提供科学指导[3]。 笔者所述的基于道岔转辙机动作功率曲线的道岔故障关联分析所涉及的采集单元须集成功率及开关量采集模块,使1DQJ(一启动继电器)开关量、定反位表示开关量与功率曲线模拟量之间具有联动关系,一方面可以避免错误标志转辙机动作转换曲线的方向,另一方面可以利用经验数据库进行关联分析以提供决策支持。现场应用结果表明:微机监 1 收稿日期:2017-06-18;修回日期:2017-07-24 作者简介:黄蕾(1981—),女,四川人,硕士,工程师,从事测控技术、工业自动化研究。

道岔种类

道岔(turnout, switches and crossings)的种类很多,常用的有单开道岔、对称道岔、三开道岔及交分道岔四种。 1. 单开道岔 单开道岔(simple turnout)的主线为直线,侧线由主线向左侧或右侧岔出(图1)。它由转辙器、辙叉、护轨和连接部分组成。单开道岔是线路连接中采用较多的一种道岔,约占各类道岔总数的90﹪以上。为了提高单开道岔的过岔速度,除可采用辙叉号数较大的道岔外,还可采用活动心轨辙叉,以从根本上消灭有害空间。活动心轨辙叉,以从根本上消灭有害空间。活动心轨辙叉组成部分如图2所示。

图1单开道岔

图2活动心轨单开道岔 2. 对称道岔 对称道岔(equilateral turnout)(图3)由主线向两侧分为两条线路,道岔个部件均按辙叉角平分线对称排列,两条连接线路的曲线半径相同,无直向或侧向之分,因此两侧线运行条件相同。这种道岔具有增大导曲线半径的和缩短站场长度的优点。因此,对称道岔一般可在调车场头部或尾部铺设也可在到达场、机务段好货场等处的线路上铺设。必要时可将对称道岔与单开道岔混合使用。

3. 三开道岔 三开道岔(three-way turnout)(图4)是当需要连接的线路较多,而地形又受到限制,不能在主线上连续铺设两个单开道岔时铺设的一种道岔。三开道岔是将一个道岔纳入另一个道岔内构成的。这种道岔的优点是长度较短。缺点是尖轨削弱较多,转辙器使用寿命短,同时两普通辙叉在主线内侧无法设置护轨,机车车辆沿主线不能高速运行。故这种道岔只有在地形允许以及需要尽量缩短线路连接长度的地方,如调车场的头部或尽头式车站内,连接机车走行线与相邻两到发线的连接处采用。

相关文档
相关文档 最新文档