文档库 最新最全的文档下载
当前位置:文档库 › 高中数学必修四教案-三角函数的诱导公式

高中数学必修四教案-三角函数的诱导公式

高中数学必修四教案-三角函数的诱导公式
高中数学必修四教案-三角函数的诱导公式

1.3 三角函数的诱导公式

整体设计

教学分析

本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证明问题. 本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题.

在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时的三个转化问题引入后,为什么确定180°+α角为第一研究对象,-α角为第二研究对象,正是化归思想的运用.

公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90°的非负角,但是在推导中却把α拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的怀疑,因此它成为本课时的难点所在.

课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习.

三维目标

1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.

2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.

3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.

重点难点

教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.

教学难点:六组诱导公式的灵活运用.

课时安排

2课时

教学过程

第1课时

导入新课

思路1.①利用单位圆表示任意角的正弦值和余弦值.

②复习诱导公式一及其用途.

思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(2

π到2π)范围内的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.

推进新课

新知探究

提出问题 由公式一把任意角α转化为[0°,360°)内的角后,如何进一步求出它的三角函数值? 活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题:0°到90°的角的正弦值、余弦值用何法可以求得?90°到360°的角β能否与锐角α相联系?通过分析β与α的联系,引导学生得出解决设问的一种思路:若能把求[90°,360°)内的角β的三角函数值,转化为求有关锐角α的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.

图1

讨论结果:通过分析,归纳得出:如图1. β=?????∈-∈+∈-],360,270[,360],270,180[,180],

180,90[,180

βββa a a 提出问题

①锐角α的终边与180°+α角的终边位置关系如何?

②它们与单位圆的交点的位置关系如何?

③任意角α与180°+α呢?

活动:分α为锐角和任意角作图分析:如图2.

图2

引导学生充分利用单位圆,并和学生一起讨论探究角的关系.

无论α为锐角还是任意角,180°+α的终边都是α的终边的反向延长线,所以先选择180°+α为研究对象.

利用图形还可以直观地解决问题②,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P(x,y)和P′(-x,-y).

指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:

sin(180°+α)=-sinα,cos(180°+α)=-cosα.

并指导学生写出角为弧度时的关系式:

sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.

引导学生观察公式的特点,明了各个公式的作用.

讨论结果:①锐角α的终边与180°+α角的终边互为反向延长线.

②它们与单位圆的交点关于原点对称.

③任意角α与180°+α角的终边与单位圆的交点关于原点对称.

提出问题

①有了以上公式,我们下一步的研究对象是什么?

②-α角的终边与角α的终边位置关系如何?

活动:让学生在单位圆中讨论-α与α的位置关系,这时可通过复习正角和负角的定义,启发学生思考:

任意角α和-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二的推导过程,由学生自己完成公式三的推导,即:

sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.

教师点拨学生注意:无论α是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.

讨论结果:

①根据分析下一步的研究对象是-α的正弦和余弦.

②-α角的终边与角α的终边关于x 轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.

提出问题

①下一步的研究对象是什么?

②π-α角的终边与角α的终边位置关系如何?

活动:讨论π-α与α的位置关系,这时可通过复习互补的定义,引导学生思考:任意角α和π-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二、三的推导过程,由学生自己完成公式四的推导,即:

sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.

强调无论α是锐角还是任意角,公式均成立.

引导学生观察分析公式三的特点,得出公式四的用途:可将求π-α角的三角函数值转化为求角α的三角函数值.

让学生分析总结诱导公式的结构特点,概括说明,加强记忆.

我们可以用下面一段话来概括公式一—四:

α+k·2π(k∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.

进一步简记为:“函数名不变,符号看象限”.点拨、引导学生注意公式中的α是任意角. 讨论结果:①根据分析下一步的研究对象是π-α的三角函数;

②π-α角的终边与角α的终边关于y 轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.

示例应用

思路1

例1 利用公式求下列三角函数值: (1)cos225°;(2)sin 311π;(3)sin(3

16π-);(4)cos(-2 040°). 活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题. 解:(1)cos225°=cos(180°+45°)=-cos45°=2

2-

; (2)sin 311π=sin(4π3π-)=-sin 3π=23-; (3)sin(316π-)=-sin 316π=-sin(5π+3π)

=-(-sin 3π)=23; (4)cos(-2 040°)=cos2 040°=cos(6×360°-120°)

=cos120°=cos(180°-60°)

=-cos60°=2

1-. 点评:利用公式一—四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:

上述步骤体现了由未知转化为已知的转化与化归的思想方法. 变式训练

利用公式求下列三角函数值:

(1)cos(-510°15′);(2)sin(3

17-π). 解:(1)cos(-510°15′)=cos510°15′

=cos(360°+150°15′)

=cos150°15′=cos(180°-29°45′)

=-cos29°45′=-0.868 2;

(2)sin(317-π)=sin(3π-3×2π)=sin 3π=2

3. 例2 2007全国高考,1

cos330°等于( )

A.21

B.2

1- C.23 D.23- 答案:C

变式训练

化简:

790cos 250sin 430cos 290sin 21++ 解:

790cos 250sin 430cos 290sin 21++ =)70720cos()70180sin()70360cos()70360sin(21 ++++-+

= 70sin 70cos |70sin 70cos |70cos 70sin 70cos 70sin 21--=+-- =170sin 70cos 70cos 70sin -=--

. 例3 化简cos315°+sin(-30°)+sin225°+cos480°.

活动:这是要求学生灵活运用诱导公式进行变形、求值与证明的题目.利用诱导公式将有关角的三角函数化为锐角的三角函数,再求值、合并、约分.

解:cos315°+sin(-30°)+sin225°+cos480°

=cos(360°-45°)-sin30°+sin(180°+45°)+cos(360°+120°)

=cos(-45°)21-

-sin45°+cos120° =cos45°21-22-+cos(180°-60°) =2221-22--cos60°=-1. 点评:利用诱导公式化简,是进行角的转化,最终达到统一角或求值的目的.

变式训练

求证:θθπθθπθπθπtan )

5sin()cos ()6cos()2sin()2tan(=+----. 分析:利用诱导公式化简较繁的一边,使之等于另一边.

证明:左边=

)5sin()cos ()6cos()2sin()2tan(θπθθπθπθπ+---- =)sin()cos ()cos()sin()tan(θπθθθθ+---- =θθθθθsin cos cos sin tan =tan θ=右边. 所以原式成立.

规律总结:证明恒等式,一般是化繁为简,可以化简一边,也可以两边都化简.

知能训练

课本本节练习1—3.

解答:1.(1)-cos 94π;(2)-sin1;(3)-sin 5

π;(4)cos70°6′. 点评:利用诱导公式转化为锐角三角函数.

2.(1)21;(2)21;(3)0.642 8;(4)2

3-. 点评:先利用诱导公式转化为锐角三角函数,再求值. 3.(1)-sin 2αcos α;(2)sin 4α.

点评:先利用诱导公式变形为角α的三角函数,再进一步化简.

课堂小结

本节课我们学习了公式二、公式三、公式四三组公式,这三组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结了“函数名不变,符号看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应用,我们要多加练习,切实掌握由未知向已知转化的化归思想.

作业

课本习题1.3 A 组2、3、4.

设计感想

一、有关角的终边的对称性

(1)角α的终边与角π+α的终边关于原点对称.

(2)角α的终边与角-α的终边关于x 轴对称.

(3)角α的终边与角π-α的终边关于y 轴对称.

二、三角函数的诱导公式应注意的问题

(1)α+k·2π(k∈Z ),-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数的符号;可简单记忆为:“函数名不变,符号看象限.”

(2)公式中的α是任意角.

(3)利用诱导公式一、二、三、四,可以把任意角的三角函数值转化为锐角的三角函数值.

基本步骤是:任意负角的三角函数???→?公式三或一相应的正角的三角函数??

→?公式一0到2π角的三角函数???→?四公式二、锐角的三角函数??→

?查表三角函数. 即负化正,大化小,化为锐角再查表.

(设计者:沈献宏)

第2课时

导入新课

上一节课我们研究了诱导公式二、三、四.现在请同学们回忆一下相应的公式.提问多名学生上黑板默写公式.在此基础上,我们今天继续探究别的诱导公式,揭示课题.

推进新课

新知探究

提出问题

终边与角α的终边关于直线y=x 对称的角有何数量关系?

活动:我们借助单位圆探究终边与角α的终边关于直线y=x 对称的角的数量关系. 教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y=x 对称的两个角之间的数量关系,关于直线y=x 对称的两个点的坐标之间的关系进行引导.

图3

讨论结果:如图3,设任意角α的终边与单位圆的交点P 1的坐标为(x,y),由于角2

π-α的终边与角α的终边关于直线y=x 对称,角2π-α的终边与单位圆的交点P 2与点P 1关于直

线y=x 对称,因此点P 2的坐标是(y,x),于是,我们有

sin α=y,cos α=x, cos(2π-α)=y,sin(2

π-α)=x. 从而得到公式五:

提出问题

能否用已有公式得出2π+α的正弦、余弦与α的正弦、余弦之间的关系式? 活动:教师点拨学生将2π+α转化为π-(2π-α),从而利用公式四和公式五达到我们的目的.因为

2π+α可以转化为π-(2π-α),所以求2π+α角的正余弦问题就转化为利用公式

四接着转化为利用公式五,这时可以让学生独立推导公式六.

讨论结果:公式六

提出问题

你能概括一下公式五、六吗?

活动:结合上一堂课研究公式一—四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括.

讨论结果:

2

π±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号. 进一步可以简记为:函数名改变,符号看象限.

利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.

公式一—六都叫做诱导公式.

提出问题

学了六组诱导公式及上例的结果后,能否进一步归纳概括诱导公式,怎样概括? 讨论结果:诱导公式一—四,函数名称不改变,这些公式左边的角分别是

2k π+α(k∈Z ),π±α,-α(可看作0-α).其中2k π,π,0是横坐标轴上的角,因此,上述公式可归结为横坐标轴上的角±α,函数名称不改变.而公式五、六及上面的例1,这些公式左边的角分别是

2π±α,23π-α.其中2π,23π是纵坐标轴上的角,因此这些公式可归结为纵坐标上的角±α,函数名称要改变.两类诱导公式的符号的考查是一致的,故而所有的诱导公式可用十个字来概括:纵变横不变,符号看象限.

教师指点学习方法:如果我们孤立地记忆这么多诱导公式,那么我们的学习将十分苦累,且效率低下.学习过程中,能挖掘各个公式的本质特征,寻求它们之间的共性,那么我们对数学公式的记忆就不再是负担了.因此,要求大家多做这方面的工作,以后数学的学习就不再是枯燥无味的了.

示例应用

思路1

例1 证明(1)sin(23π-α)=-cos α;(2)cos(2

3π-α)=-sin α. 活动:直接应用公式五、六或者通过转化后利用公式五、六解决化简、证明问题.

证明:(1)sin(

23π-α)=sin[π+(2π-α)]=-sin(2π-α)=-cos α; (2)cos(23π-α)=cos[π+(2π-α)]=-cos(2π-α)=-sin α. 点评:由公式五及六推得23π±α的三角函数值与角α的三角函数值之间的关系,从而进一步可以推广到212+k π(k∈Z )的情形.本例的结果可以直接作为诱导公式直接使用. 例2 化简.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(a a a a a a a a +-----++-ππππππππ 活动:仔细观察题目中的角,哪些是可以利用公式二—四的,哪些是可以利用公式五、六的.认真应用诱导公式,达到化简的目的.

解:原式=)]2(4sin[)]sin()[sin()cos ()]2(5cos[)sin )(cos )(sin (a a a a a a a a +++----+---ππππππ =)2

sin()]sin ([sin )cos ()]2cos([cos sin 2a a a a a a a +------ππ=a a cos sin -=-tan α. 思路2 例1 (1)已知f(cosx)=cos17x,求证:f(sinx)=sin17x; (2)对于怎样的整数n,才能由f(sinx)=sinnx 推出f(cosx)=cosnx?

活动:对诱导公式的应用需要较多的思维空间,善于观察题目特点,要灵活变形.观察本例条件与结论在结构上类似,差别在于一个含余弦,一个含正弦,注意到正弦、余弦转化可借助sinx=cos(

2π-x)或cosx=sin(2π-x).要善于观察条件和结论的结构特征,找出它们的共性与差异;要注意诱导公式可实现角的形式之间及互余函数名称之间的转移.

证明:(1)f(sinx)=f[cos(2π-x)]=cos[17(2π-x)]=cos(8π+2π-17x)=cos(2

π-17x)=sin17x,

即f(sinx)=sin17x. (2)f(cosx)=f[sin(2π-x)]=sin[n(2π-x)]=sin(2πn -nx)=???????∈+=-∈+=∈+=∈=-,,34,cos ,,24,sin ,,14,cos ,,4,sin Z k k n nx Z k k n nx Z k k n nx Z k k n x 故所求的整数n=4k+1(k∈Z ). 点评:正确合理地运用公式是解决问题的关键所在.

变式训练

已知cos(

6π-α)=m(m≤1),求sin(32π-α)的值. 解:∵32π-α-(6π-α)=2π,∴32π-α=2π+(6π-α). ∴sin(32π-α)=sin [2π+(6π-α)]=cos(6π-α)=m. 点评:(1)当两个角的和或差是2π的整数倍时,它们的三角函数值可通过诱导公式联系起来. (2)化简已知与所求,然后探求联系,这是解决问题的重要思想方法.

例2 已知sin α是方程5x 2-7x-6=0的根,且α为第三象限角, 求)2cos()2

cos()

tan()2(tan )23sin()23sin(2a a a a a a +?--?-?-?+

ππππππ的值.

活动:教师引导学生先确定sin α的值再化简待求式,从而架起已知与未知的桥梁. 解:∵5x 2-7x-6=0的两根x=2或x=53-, ∵-1≤x≤1,∴sin α=5

3-. 又∵α为第三象限角,∴cos α=2sin -1-=5

4-

. ∴tan α=43. ∴原式=)sin (sin )tan (tan )cos ()cos (2a a a a a a -?-??-?-=tana=4

3 点评:综合运用相关知识解决综合问题.

变式训练 若函数f(n)=sin

6πn (n∈Z ),则f(1)+f(2)+f(3)+…+f(102)=____________________. 解:∵=sin 6πn (6πn +2π)=sin 6)12(π+n , ∴f(n)=f(n+12).

从而有f(1)+f(2)+f(3)+…+f(12)=0,

∴f(1)+f(2)+f(3)+…+f(102)

=f(1)+f(2)+f(3)+f(4)+f(5)+(6)

=2[f(1)+f(2)+f(3)] =2+3.

例3 已知函数f(x)=asin(πx+α)+bcos(πx+β).其中a,b,α,β都是非零实数,又知f(2 003)=-1,求f(2 004)的值.

活动:寻求f(2 003)=-1与f(2 004)之间的联系,这个联系就是我们解答问题的关键和要害.

解:f(2 003)=asin(2 003π+α)+bcos(2 003π+β)

=asin(2 002π+π+α)+bcos(2 002π+π+β)

=asin(π+α)+bcos(π+β)

=-asin α-bcos β

=-(asin α+bcos β),

∵f(2 003)=-1,

∴asin α+bcos β=1.

∴f(2 004)=asin(2 004π+α)+bcos(2 004π+β)

=asin α+bcos β=1.

点评:解决问题的实质就是由未知向已知转化的过程,在这个过程中一定要抓住关键和要害,注意“整体代入”这一思想的应用.解答本题的关键和要害就是求得式子

asin α+bcos β=1,它是联系已知和未知的纽带.

知能训练

课本练习4—7.

4.

5.(1)-tan 52;(2)-tan79°39′;(3)-tan 365;(4)-tan35°28′.

6.(1)23(2)22-;(3)-0.2116;(4)-0.758 7(5)3;(6)-0.647 5.

7.(1)sin 2α;(2)cos 2α+a cos 1 课堂小结

本节课同学们自己导出了公式五、公式六,完成了教材中诱导公式的学习任务,为求任意角的三角函数值“铺平了道路”.公式一至六可用一句话“纵变横不变,符号看象限”来记

忆,简单方便,不会遗忘.利用这些公式,可把任意角的三角函数转化为锐角三角函数,为求值带来很大的方便,这种转化的思想方法,是我们经常用到的一种策略,要细心去体会、去把握.利用这些公式,还可以化简三角函数式,证明简单的三角恒等式,我们要多练习,在应用中达到熟练掌握的程度.

作业

1.课本习题1.3 B 组

2.

2.求值:sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°.

答案:44.5.

设计感想

1.本节设计指导思想是:在教师引导下放手让学生自主探究.因为公式多,学生容易记混,所以在学生的主动探究中明了公式的来龙去脉,在应用公式解决问题中灵活熟练掌握公式.通过学生的自主探究、推导公式,培养学生独立思考、知难而上的科学态度,更进一步地体会数学的奇特美、对称美.激发学生强烈的探究欲望,培养学生会学习的良好品质.

2.用口诀记忆公式:①π±α,-α,2k π+α的三角函数公式为:“函数名不变,符号看象限.” ②2

π±α,23π±α的三角函数公式为:“函数名改变,符号看象限.”其中α看成锐角. 3.用类比的方法学习本节课的基础知识,用化归的数学思想指导三角函数的求值、化简与证明.

三角函数的诱导公式教案优质课

三角函数的诱导公式(共5课时) 教学目标: 1、知识目标:理解四组诱导公式及其探究思路,学会利用 四组诱导公式求解任意角的三角函数值,会 进行简单的化简与证明。 2、能力目标:培养学生数学探究与交流的能力,培养学生 直觉猜想与抽象概括的能力。 3、情感目标与价值观:通过不断设置悬念、疑问,来引起 学生的困惑与惊讶,激发学生的好奇心和 求知欲,通过小组的合作与交流,来增强 学生学习数学的自信心。 教学重点:理解四组诱导公式 利用四组诱导公式求任意角的三角函数值和简单的化简与证明。 教学难点:四组诱导公式的推导过程 为了区分下节课的几组公式,要理解为何名称不变 理解确定符号的方法 教学方法:启发式结合讨论式教学方法,结合多媒体课件演示

教学工具:多媒体电脑,投影仪 教学过程: 一、问题情景: 回顾前面已经学习的理论知识,我们已经学习了任意角的三角函数的定义,学习了三角函数线,还有同角三角函数关系,但是我们还有一个关键问题没有解决,那就是:我们如何来求任意角的三角函数值呢 思考:你能填好下面的表吗 二、学生活动: 小组讨论: 1、找出我们可以解决的和目前无法解决的 2、对于还无法解决的,可否借助前面学习的知识求解

3、这些角之间有何关联 教师指导:我们前面学过了三角函数的定义和三角函数线,知道角的 终边和单位圆的交点的坐标就是角对应的三角函数值,大 家先画出一个单位圆,然后把第一个角的终边画出来,它 和单位圆的交点记为(00,x y ),然后我们以每两排为一 组前后左右可以相互讨论,分别画出另外四个角的终边和 单位圆的交点,每组画一个,然后每组推出一名代表发言, 看看你在画图的时候发现了什么。 (给五分钟画图、总结,学生在画图中容易看出另外的几个角和 开始的锐角的关系) 三、 意义建构: 教师指导:请每组推出的代表发言。(按顺序,没合适人选时,教师可以随机指出一名代表) 第一组:由画图发现0390的角的终边和6 的终边是重合的,它们相差 0360,由三角函数定义可知,终边相同的角的同一三角函数值相等,表中第二列和第一列值相同。 教师指导:第一组总结的很好,我们可否也把 它推广到任意的角呢总结一下就是“终 边相同的角的三角函数值相同”,如何

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

三角函数的诱导公式第一课时教学设计

课题名称:三角函数的诱导公式(一) 课程模块及章节:必修4第一章节 教学背景分析 (一)课标的理解与把握 能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式 (二)教材分析: 本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。 (三)学情分析: 如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法. 教学目标 1记忆正弦、余弦的诱导公式. 2. 诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明. 教学重点和难点 运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明 教学准备、教学资源和主要教学方法 模型、直尺、多媒体。 自主性学习法;反馈练习式学习法 教学过程 教 学环节教师为主的活动 学生为主 的活动 设 计 意 图 导入新课一.问题引入: 角的概念已经由锐角扩充到了任意角,前面已经学习过任 意角的三角函数,那么任意角的三角函数值.怎么求呢先看一个 具体的问题。 求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同 一三角函数值相等,即有: sin(+2kπ) = sinα,cos(+2kπ) = cosα,ta n(+2k π) = tanα (k∈Z) 。 (公式一) 通过复习 知识引人 新课 激 发 学 生 的 学 习 兴 趣 目 标 引 把学习目标板在黑板的右上角,并对目标进行解读。

领 活动导学二.尝试推导 由上一组公式,我们知道,终边相同的角的同一三角函数 值一定相等。反过来呢 问题:你能找出和30°角正弦值相等,但终边不同的角吗 角π与角的终边关 于y轴对称,有 sin(π ) = sin , cos(π ) = cos ,(公式二) tan(π ) = tan 。 因为与角终边关于y轴 对称是角π-,,利用这种对称关系,得到它们的终边与单位 圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得 到了角π与角的三角函 数值之间的关系:正弦值相等, 余弦值互为相反数,进而,就得 到我们研究三角函数诱导公式 的路线图: 角间关系→对称关系→坐 标关系→三角函数值间关系。 三.自主探究 问题:两个角的终边关于x 轴对称,你有什么结论两个角的终边关于原点对称呢 角与角的终边关于x轴对称,有: sin() = sin , cos() = cos ,(公式三) tan() = tan 。 角π + 与角终边关于 原点O对称,有: sin(π + ) = sin , cos(π + ) = cos ,(公式四) tan(π + ) = tan 。 上面的公式一~四都称为三角函数的诱导公式。 结论:α π α π α± - ∈ ? +, , ) ( 2Z k k的三角函数值,等 于α的同名函数值,前面加上一个把α看成锐角时原函数值的 符号. 学生阅读、 观察、思 考、讨论交 流。 提问式回 答,教师再 补充完整。 学生观察 图形,思考 学生观察、 思考、讨论 以 问 题 式 给 出, 把 课 堂 较 给 学 生, 激 发 学 生 学 习 的 自 主 性。 培 养 学 生 的 空 间 想 象 能 力

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数的诱导公式教案

1.3三角函数的诱导公式 贾斐三维目标 1、通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想. 2、通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用. 3、进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力. 重点难点 教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等. 教学难点:六组诱导公式的灵活运用. 课时安排2课时 教学过程 导入新课 思路1.①利用单位圆表示任意角的正弦值和余弦值. ②复习诱导公式一及其用途.

思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到 到2π)范围内的角的三角函数怎样求解,能不能有像360°( 2 公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题. 新知探究 提出问题 由公式一把任意角α转化为[0°,360°)内的角后,如何进一步求出它的三角函数值? 活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题:0°到90°的角的正弦值、余弦值用何法可以求得?90°到360°的角β能否与锐角α相联系?通过分析β与α的联系,引导学生得出解决设问的一种思路:若能把求[90°,360°)内的角β的三角函数值,转化为求有关锐角α的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

三角函数的诱导公式(教案)

三角函数的诱导公式 (教案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课题:三角函数的诱导公式 授课教师:吴淑群 教材:苏教版数学4第1章1.2.3 教学目标 1.理解三角函数的诱导公式; 2.能运用这些公式处理简单的三角函数的化简、求值等问题; 目标解析 1.在理解的基础上,熟记诱导公式; 2.能运用诱导公式将任意角的三角函数化为锐角的三角函数,并进行简单的三角变换; 3.经历由几何特征(终边的对称)到发现数量关系(诱导公式)的探索过程;4.从公式推导和运用的过程中,体会数形结合、转化与化归等思想方法; 5.初步体会三角函数和周期性变化的内在联系; 教学重点、难点 重点:四组诱导公式的推导、记忆和运用。 难点:诱导公式推导过程中数形关系的转换;符号的判断。 教学方法与教学手段 探究教学法、多媒体辅助教学。 教学过程 一、创设情景 先行组织者

师:我们已经学习了任意角三角函数的概念。三角函数是以圆周运动为原型,为 了刻画周期性运动而建立的数学模型。那么,周期性是怎样体现在三角函数的概念之中的?今天,我们仅就上述问题做一个初步的探讨。 二、建构数学 1.终边相同的角的三角函数 (1)提出问题(展示课件) 已知任意..角α,观察角α的终边绕着原点逆时针旋转的过程。 问题1:在上述变化过程中,有哪些东西会周而复始的重复出现? (2)解决问题 (根据学生回答的情况,视机提出下列提示性问题) 问题1-1:角的终边的位置会重复出现吗三角函数值会重复出现吗 问题1-2:什么时候“角的终边位置”会重复出现什么时候三角函数值会重复出现 要求学生把分析的结论用数学等式表示出来: ) (tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπαα πα 问题1-3 :角α与角παk 2+)(Z k ∈的三角函数值为什么相等呢? (让学生回到定义去解决问题) (3)小结: 回顾解决问题的思路,得到下面的框图

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

《三角函数的诱导公式》(学案)

三角函数的诱导公式(第1课时)(学案) 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢? (一)情境创设及问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数 求值问题。 【情境创设】摩天轮旋转一周(比如如图30°角的位置)后又会 回到原位,你能否从数学角度或者用数学学语言来刻画一下什么是 “回到原位”?摩天轮旋转一周后,发生变化和没有变化的量分别 是什么?它们之间有何关系?从中你能得到什么结论? 一般地,由三角函数的定义可以知道,终边相同的角的同一三 角函数值__________,三角函数看重的就是终边位置关系。即有: (二)尝试推导 如何利用对称推导出角π-α与角α的三角函数之间的关系。 【问题2】你能找出和30°角正弦值相等,但终边不同的角吗? 角与角α的终边关于y轴对称,有:

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

必修四1.3.三角函数的诱导公式(教案)

人教版新课标普通高中◎数学④ 必修 1 1.3 三角函数的诱导公式 教案 A 教学目标 一、知识与技能 1.理解诱导公式的推导过程; 2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用. 3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力. 二、过程与方法 利用三角函数线,从单位圆关于x 轴、y 轴、直线y x 的轴对称性以及关于原点O 的中心对称性出发,通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想. 三、情感、态度与价值观 通过本节的学习使学生认识到了解任何新事物须从它较为熟悉的一面入手,利用转化的方法将新事物转化为我们熟知的事物,从而达到了解新事物的目的,并使学生养成积极探索、科学研究的好习惯. 教学重点、难点 教学重点:五组诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等. 教学难点:六组诱导公式的灵活运用. 教学关键:五组诱导公式的探究. 教学突破方法:问题引导,充分利用多媒体引导学生主动探究. 教法与学法导航 教学方法:探究式,讲练结合. 学习方法:切实贯彻学案导学,以学生的学为主,教师起引导的作用,具体表现在教学过程当中. 1. 充分利用多媒体引导学生完善从特殊到一般的认知过程; 2. 强调记忆规律,加强公式的记忆; 3. 通过对例题的学习,完成学习目标. 教学准备 教师准备:多媒体,投影仪、直尺、圆规. 学生准备:练习本、直尺、圆规. 教学过程 一、创设情境,导入新课 我们利用单位圆定义了三角函数,而圆具有很好的对称性.能否利用圆的这种对称

高中数学三角函数

三角函数常见题 1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A 解:1+cos2A-cos2B-cos2C=2sinBsinC 2cos2A-1-2cos2B+1+2sin2C=2sinBsinC cos2A-cos2B+sin2(A+B)=sinBsinC cos2A-cos2B+sin2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC cos2A-cos2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC 2cos2AsinB+2sinAcosAcosB=sin(180-A-B) 2cosA(cosAsinB+sinAcosB)-sin(A+B)=0 Sin(A+B)(2cosA-1)=0 cosA=1/2 A=60 2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα <===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)2 <===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa <===>0=0恒成立 以上各步可逆,原命题成立 证毕 3、在△ABC中,sinB*sinC=cos2(A/2),则△ABC的形状是? sinBsin(180-A-B)=(1+cosA)/2 2sinBsin(A+B)=1+cosA 2sinB(sinAcosB+cosAsinB)=1+cosA sin2BsinA+2cosAsin2B-cosA-1=0 sin2BsinA+cosA(2sin2B-1)=1 sin2BsinA-cosAcos2B=1 cos2BcosA-sin2BsinA=-1 cos(2B+A)=-1 因为A,B是三角形内角 2B+A=180 因为A+B+C=180 所以B=C 三角形ABC是等腰三角形 4、求函数y=2-cos(x/3)的最大值和最小值并分别写出使这个函数取得最大值和最小值的x的集合 -1≤cos(x/3)≤1 -1≤-cos(x/3)≤1 1≤2-cos(x/3)≤3 值域[1,3] 当cos(x/3)=1时即x/3=2kπ即x=6kπ时,y有最小值1此时{x|x=6kπ,k∈Z} 当cos(x/3)=-1时即x/3=2kπ+π即x=6kπ+3π时,y有最小值1此时{x|x=6k π+3π,k∈Z} 5、已知△ABC,若(2c-b)tanB=btanA,求角A [(2c-b)/b]sinB/cosB=sinA/cosA 正弦定理c/sinC=b/sinB=2R代入

三角函数诱导公式 精品教案

函数的概念和图象 【教学目标】 知识与技能 1.了解实际背景的图象与数学情境下的图象是相通的。 2.了解图象可以是散点。 3.图象是数形结合的基础。 【教学重点】 一次函数、二次函数、分式函数图象的作法 【教学难点】 分段函数图象的作法 【教学过程】 一、创设情景,引入新课 1.复习初中学过的一次函数、二次函数、反比例函数的图象。并作出x y x y x y 1 ,1,122-=+=-=的图象。 2.说出2x y =与2)1(-=x y 、2x y =与2)1(+=x y 、2x y =与12+=x y 、2x y =与12-=x y 两两图象之间的关系。你能得出一般性的结论吗? 3.社会生活中还有许多函数的图象的例子 看2005股市走势图,书上的心电图、示波图,这些曲线的图象有什么共同特点? 二、讲解新课 1.什么是函数)(x f y =的图象? 2.如何作出y=f(x)的图象呢?

作出下列函数的图象: (1)f(x)=x+1,{}4,3,2,1∈x ; (2)f (x )=()11-x 2 +,[)31,∈x ; (3)(]3,2,1)(-∈=x x x f 注意: (1)根据函数的解析式画出函数的图象时,一定要注意函数的定义域。函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等。(2)注意函数本身的特点,如二次函数图象的顶点,对称性等,有利于比较准确地作出函数的图象。 例2.借助x y 1=的图象,画出2 13-+-=x y 的图象。 小结:平移变换:)()(a x f y x f y -=→=;)()(a x f y x f y +=→= a x f y x f y +=→=)()(;a x f y x f y -=→=)()( 作出下列函数的图象: (1)x x x y 1|1|22--=; (2)|32|2--=x x y ; (3)3||22--=x x y 。 想一想(2)(3)的图象与322--=x x y 的图象有何关系? 小结:1.含有绝对值函数的图象的作法: 。 2.翻折变换: |)(|x f y =的图象可由)(x f y =的象 。 |)(|x f y =的图象可由)(x f y =的象 。 课堂练习2 (1)x x x y +-=||)1(0; (2)62--=x x y ; (3)1--=x y 。 变题:就a 的取值范围讨论方程a x x =--|32|2的解的情况。 试根据复习题中函数1)(2+=x x f 的图象,回答下列问题: (1)比较)3(),1(),2(f f f -的大小;

相关文档
相关文档 最新文档